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PATH CONNECTEDNESS OF VOLTERRA TYPE INTEGRAL

OPERATORS ON BERGMAN AND DIRICHLET TYPE SPACES

CUI WANG

Abstract. Let V (Ap,Ap) be the class of all bounded Volterra type integral operators acting on
Bergman spaces. The paper studies the topological structure of V(Ap,Ap) . We obtained that
it has the same (path) connected components, while it has no isolated point and no essentially
isolated Volterra type integral operator. The same is true for Dirichet type spaces.

1. Preliminary and introduction

Let D = {z : |z| < 1} denote the open unit disk in the complex plane C , H(D)
denotes the set of all holomorphic functions on the open disk D .

We say the analytic functions f on D is a Bloch function if

‖ f‖∗ = sup
z∈D

(1−|z|2)| f ′(z)| < ∞.

The Bloch space is the set of all Bloch functions. The norm of f ∈ B is

‖ f‖B = | f (0)|+‖ f‖∗.

‖ · ‖∗ is a complete semi-norm on B , and B is a Banach space with the above norm.
The little Bloch space B0 is the closed subspace of B , a function f ∈ B belongs to
B0 if

lim
|z|→1−

(1−|z|2) f ′(z) = 0.

See [2], [22] for more introductions of Bloch spaces.
Let 0 < p < +∞ , a function f ∈ H(D) belongs to the Bergman spaces Ap , if

∫
D

| f (z)|pdA(z) < ∞.

For 1 � p < ∞ , it is known that Ap is a Banach space with the norm

‖ f‖Ap =
(∫

D

| f (z)|pdA(z)
)1/p

,
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and dA(z) denotes the area measure on D [7], [13], [26]; while for 0 < p < 1, Ap is a
complete metric space with the distance d( f ,g) = ‖ f −g‖p

Ap .
For 0 < p < ∞ , it follows from [3], [15], [19] that an analytic function f belongs

to Ap if and only if ∫
D

| f ′(z)|p(1−|z|2)pdA(z) < ∞.

The Hardy space Hp(0 < p < +∞) contains functions f ∈ H(D) with

‖ f‖p
Hp = sup

0�r<1

∫
∂D

| f (rξ )|pdm(ξ ) < ∞,

where dm denotes the normalized Lebesgue measure on ∂D .
The Dirichlet type space D p

p−1 (0 < p < ∞) consists of these analytic functions f
for which

‖ f‖p
D p

p−1
= | f (0)|p +

∫
D

| f ′(z)|p(1−|z|2)p−1dA(z) < ∞.

If p = 2, D p
p−1 equals to the Hardy space H2 ; for the case p > 2, Hp ⊂ D p

p−1 ,
which comes from a classical result by Littlewood and Paley [12], [16]; otherwise,
D p

p−1 ⊂ Hp [8], [23], [24].

For a ∈ D, ϕa(z) = a−z
1−az (z ∈ D) is defined as the Möbius function, in which

ϕa : D → D and ϕa ◦ϕa(z) = z , ϕ−1
a (z) = ϕa(z).

The class F(p,q,s) is consisted of f : D → C for which

‖ f‖p
F(p,q,s) = sup

a∈D

∫
D

| f ′(z)|p(1−|z|2)q(1−|ϕa(z)|2)sdA(z) < ∞,

with the parameters 0 < p < ∞ , −2 < q < ∞ , 0 < s < ∞ .
We say f belongs to F0(p,q,s) if

lim
|a|→1−

∫
D

| f ′(z)|p(1−|z|2)q(1−|ϕa(z)|2)sdA(z) = 0.

You can see [25] for more related theory of the space F(p,q,s) and F0(p,q,s) .
Suppose that A ⊆ X . A point x0 ∈ X is called an accumulation point of A , if for

every ε > 0, there exists an x ∈ A such that 0 < d(x0,x) < ε; in other words, every
punctured open ball B(x0,ε) \ x0 contains a point of A . A point c ∈ A is called an
isolated point of A if it is not an accumulation point of A [14].

Path connectedness is a topological property which is stronger than connectivity.
Suppose X is a topological space. If there is a continuous road connecting them between
any two points in X, then X is said to be path connected.

Firstly, the Volterra type integral operator Vg was studied by Pommerenke [20] in
order to investigate the exponents of functions f ∈ BMOA , and at the same time, he
demonstrated that Vg on H2 is bounded if and only if g ∈ BMOA . Many researchers
devoted great enthusiasm to the theory of Volterra type integral operators in the past
decades. The operators have investigated quite widely on a variety of functional spaces
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over various domains. Aleman and Siskakis [3] have given a description of the bound-
edness and compactness of Vg on the Bergman spaces while Galanopoulos et al. [10],
[11] determined to study the boundedness of Vg on the Dirichlet type spaces. Recently,
Miihkinen, Pau, Perälä, and Wang [19] have completely demonstrated the boundedness
of the Volterra type operators Vg acting from the weighted Bergman spaces Ap

α to the
Hardy spaces Hq of the unit ball of C

n for 0 < p,q < ∞ . Moreover, Qian and Hu
[21] studied the Volterra integral operators and characterize the boundedness and com-
pactness of embedding from Dirichlet-Morrey spaces into tent spaces. However, few
researches do the topological structure of the space of the operators. Recent years, the
compact difference structure of these operators has been studied in [18]. In this paper,
we devote to give a description of the (path) connected components of the space of the
operators acting on Bergman spaces and Dirichlet type spaces.

If g ∈ H(D) , Volterra-type integral operator Vg is defined by

Vg f (z) =
∫ z

0
f (w)g′(w)dw.

For 0 < s < ∞, the positive measure μ on D is called a bounded s-Carleson
measure, if there exists a positive number C such that

μ(S(I)) � C|I|s, (1.1)

where |I| denotes the arc length of a subarc I of ∂D .
Define

S(I) = {z ∈ D :
z
|z| ∈ I,1−|z|� |I|/2π}, (1.2)

and it is called the Carleson box whose supremum takes over all subarcs I of ∂D with
|I| � 1. Moreover, μ is a compact (or vanishing) s-Carleson measure, if

μ(S(I))
|I|s → 0 (1.3)

as |I| → 0.
In addition, it is known that a positive measure μ on D is a bounded s-Carleson

measure if and only if

sup
a∈D

∫
D

|ϕ ′
a(z)|sdμ(z) < ∞, (1.4)

and (1.1) and (1.4) are comparable. See [1], [11], [12] for the above results.
Carleson [4], [5] has stated that the injection map from the Hardy space Hp into

the measure space Lp(dμ) is bounded if and only if the positive measure μ on D is a
bounded Carleson measure. Later, the characterization was generalized by Duren [6].

Throughout this article, C1A � B � C2A and A � B (or B � A) means that there
is a constant C such that A � CB .
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2. The main results

Hereafter, for convenience of notation, V (Ap,Ap) denotes the space of all bounded
Volterra type integral operators Vg : Ap →Ap endowed with the operator norm topology
unless otherwise specified.

Inspired by Mengestie [17], we investigate the path connected components of the
space V (Ap,Ap) and V (D p

p−1,D
p
p−1) .

THEOREM 1. Let 0 < p < ∞ and Vg : Ap → Ap be a compact operator. Then Vg

and Vg(0) belong to the same path connected components of the space V (Ap,Ap) .

The above theorem yields that when 0< p < ∞ , the set of all compact Volterra type
operators is path connected. Indeed, suppose Vg1

and Vg2 are two compact Volterra-
type integral operators, we obtain that Vg1 and Vg1(0) belong to the same path connected
components by employing Theorem 1, the same circumstance holds for Vg2 and Vg2(0) ,
while Vg1(0) and Vg2(0) are zero operators. Hence the implication follows.

THEOREM 2. Let 1 � p � 2 and Vg : D p
p−1 →D p

p−1 be a compact operator. Then
Vg and Vg(0) belong to the same path connected components of the space V (D p

p−1,D
p
p−1) .

Mengestie [17] recently had several work on the topology properties on the space
of Volterra type integral operators acting on Fock spaces. When Vg acts on Bergman
spaces and Dirichlet type spaces, the corresponding results are totally different.

THEOREM 3. Let 0 < p < ∞ . Then V (Ap,Ap) has no isolated point.

THEOREM 4. Let 1 � p � 2 . Then V (D p
p−1,D

p
p−1) has no isolated point.

We all know that essential norm topology is weaker than operator norm topology.
Theorems 3 induces a natural question, whether there exists essentially isolated Volterra
type integral operator in V (Ap,Ap) . Now, we are going to figure that out.

For two Banach spaces X1 and X2 , the essential norm ‖V‖e of a bounded linear
operator V : X1 → X2 is defined by

‖V‖e = inf
T
{‖V −T‖;T : X1 → X2 is a compact operator}.

It is easy to see that, the operator V is compact if and only if its essential norm ‖V‖e =
0.

Now, we give the result on essentially isolated Volterra type integral operators.

THEOREM 5. Let 0 < p < ∞ . Then there exists no essentially isolated Volterra-
type integral operator in the space V (Ap,Ap) .

Proof. Since there is no isolated point by Theorem 3, clearly there is no essentially
isolated points (essential norm topology is weaker than operator norm topology).

We proof the theorem. �
When Vg acts on Dirichlet type spaces D p

p−1 for 1 � p � 2, the conclusion is
exactly the same as those provided above, we omit it.
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3. Proof of the main results

LEMMA 1. (i) Suppose that μ is a positive measure on the unit open disk D .
Then μ is a bounded q/p-Carleson measure if and only if there is a positive constant
C such that ∫

D

| f (z)|qdμ(z) � C‖ f‖q
Hp (1.5)

for all analytic functions f in D , where C depends only on p and q for 0 < p � q < ∞ .
(ii) Let 0 < p � 2 , then ‖ f‖Hp � ‖ f‖D p

p−1
+ | f (0)| for f ∈ H(D) .

(iii) Let t ∈ (0,1) and 0 < s < ∞ . Then

sup
|I|�1−t

μ(S(I))
|I|s � 10s sup

|a|�t

∫
D\Δ(0,t)

|ϕ ′
a(z)|sdμ(z). (1.6)

where μ is a positive measure on D .

The above lemma follows from [15], which will be used in the proof of the main
results.

Aleman and Siskakis [3] have characterized several aspects of Volterra type inte-
gral operators on Bergman spaces, from their work, we have the following result.

LEMMA 2. Let 0 < p < ∞ and Vg : Ap → Ap be a bounded operator. Then

‖Vg‖ 
 sup
z∈D

|g′(z)|(1−|z|2).

LEMMA 3. Let 1 � p � 2 and Vg : D p
p−1 → D p

p−1 be a bounded operator. Then

‖Vg‖p 
 sup
a∈D

∫
D

|g′(z)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z).

Lemma 3 can be found in Proposition 11 of [15].

Proof of Theorem 1. We first consider sequences of scaling functions gt(z) =
g(tz) , t ∈ [0,1].

From [15, Corollary 7(i)], we know that Vg : Ap → Ap is compact if and only if
g ∈ B0 . Then for any ε > 0, there exists δ ∈ (0,1) such that

(1−|z|2)|g′(z)| < ε, δ 2 < |z| < 1.

If δ < t < 1, δ < |z| < 1, then δ 2 < t|z| < 1 and hence

(1−|z|2)|tg′(tz)| � (1−|z|2)|g′(tz)| < ε, δ 2 < |tz| < 1.

Thus gt(z) ∈ B0, and the assertion Vgt : Ap → Ap is compact for all t follows with
Vg =Vg1 and Vg(0) = Vg0 .
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We define an operator T : [0,1] → V (Ap,Ap) by T (x) = Vgx . Then, to prove our
results it suffices to show that for every x in [0,1]

lim
t→x

‖Vgt −Vgx‖ = 0

for each fixed t ∈ [0,1] .
Let Dδ = {z ∈ D : 0 � |z| � δ} , Dc

δ = D \Dδ . Since B0 is a linear space, then
(gt −gx) ∈ B0 , thus

(1−|z|2)|tg′(tz)− xg′(xz)| < ε, δ < t, x < 1, δ < |z| < 1.

Applying the linearity of the integral, we have

‖Vgt f −Vgx f‖Ap 
(
∫

D

| f (z)|p|g′t(z)−g′x(z)|p(1−|z|2)pdA(z))
1
p

�sup
z∈D

|g′t(z)−g′x(z)|(1−|z|2)‖ f‖Ap

=sup
z∈D

|tg′(tz)− xg′(xz)|(1−|z|2)‖ f‖Ap

= sup
z∈Dδ

|tg′(tz)− xg′(xz)|(1−|z|2)‖ f‖Ap

+ sup
z∈D\Dδ

|tg′(tz)− xg′(xz)|(1−|z|2)‖ f‖Ap

<ε.

The first term above approaches zero as t → x since tg′(tz) → xg′(xz) uniformly for
|z| � δ .

Since ε is arbitrary, we have

lim
t→x

‖Vgt −Vgx‖ = 0.

We completes the proof of the theorem. �

Proof of Theorem 2. Firstly, we consider function sequences gt(z) = g(tz) , t ∈
[0,1] .

From [15, Corollary 13], we know that Vg : D p
p−1 → D p

p−1 is compact if and only
if g ∈ F0(p, p−2,1) . Then for any ε > 0, there exists δ ∈ (0,1) such that∫

D

|g′(z)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z) < ε, δ < |a| < 1.

Then, for δ < |a| < 1,∫
D

|(gt(z))′|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z)

=
∫

D

|tg′(tz)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z)

�
∫

D

|g′(tz)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z)

< ε.
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Thus gt ∈ F0(p, p− 2,1) and Vgt : D p
p−1 → D p

p−1 is compact for all t follows with
Vg =Vg1 and Vg(0) = Vg0 .

We define an operator T : [0,1] →V (D p
p−1,D

p
p−1) by T (x) =Vgx . Then, to prove

our results it is necessary to prove that for every x in [0,1]

lim
t→x

‖Vgt −Vgx‖ = 0

for each fixed t ∈ [0,1] .
By Lemma 1, and the fact that (1.1) and (1.4) are comparable,

‖Vgt f −Vgx f‖p
D p

p−1



∫
D

| f (z)|p|g′t(z)−g′x(z)|p(1−|z|2)p−1dA(z)

�(sup
I

1
|I|

∫
S(I)

|tg′(tz)− xg′(xz)|p(1−|z|2)p−1dA(z))‖ f‖p
Hp

�(sup
I

1
|I|

∫
S(I)

|tg′(tz)− xg′(xz)|p(1−|z|2)p−1dA(z))

× (‖ f‖D p
p−1

+ | f (0)|)p

�(sup
a∈D

∫
D

|tg′(tz)− xg′(xz)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z))‖ f‖p
D

p
p−1

.

Let Dr = {z ∈ D : 0 � |z| < r} , then Dc
r = D\Dr .

∫
D

|tg′(tz)− xg′(xz)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z))

=
∫

Dr

|tg′(tz)− xg′(xz)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z)

+
∫

Dc
r

|tg′(tz)− xg′(xz)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z).

The first term above approaches zero as t → x since tg′(tz) → xg′(xz) uniformly for
|z| < r . Since gt(z) ∈ F0(p, p−2,1) , we have

∫
Dc

r

|tg′(tz)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z) < ε, δ < |a| < 1,

then
∫

D

|tg′(tz)− xg′(xz)|p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z) < 2ε, δ < |a| < 1

with the fact that F0(p, p−2,1) is a linear space.
Since ε is arbitrary, then

lim
t→x

‖Vgt −Vgx‖ = 0

for each fixed t ∈ [0,1] . �
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Proof of Theorem 3. By the definition of accumulation points and Lemma 2, for
any ε > 0, let g1(z) = g(z)+ εz , then

‖Vg−Vg1‖ 
 sup
z∈D

(1−|z|2)|(g(z)−g1(z))
′ | < ε,

we complete it. �

Proof of Theorem 4. Similar to the proof of Theorem 3 and by Lemma 3, let
g1(z) = g(z)+ εz .

We get

‖Vg−Vg1‖p 
 sup
a∈D

∫
D

|(g(z)−g1(z))
′ |p(1−|z|2)p−2(1−|ϕa(z)|2)dA(z) < ε

where ε > 0 is arbitrary, we prove the theorem. �
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