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EXPLICIT EXPRESSIONS FOR SOME LINEAR EULER–TYPE SUMS

CONTAINING HARMONIC AND SKEW–HARMONIC NUMBERS

SEÁN M. STEWART

Abstract. Closed-form expressions for the three general linear Euler-type sums containing the
harmonic numbers Hn and the skew-harmonic numbers Hn

∞

∑
n=1

(−1)nHn

(2n+1)2q+1 ,
∞

∑
n=1

Hn

(2n+1)q , and
∞

∑
n=1

(−1)nHn

(2n+1)2q+1 ,

where q is a positive integer greater than or equal to zero or two as needed to ensure convergence
are given. Closed-form expressions for several other closely related generalised logarithmic
integrals and sums are also presented.

1. Introduction

Suppose n ∈ Z�0 . The n th harmonic number Hn is defined by ∑n
k=1

1
k such that

H0 ≡ 0. The n th skew-harmonic number Hn is defined by ∑n
k=1

(−1)k+1

k such that
Hn ≡ 0. Note the notation we adopt here for the skew-harmonic numbers is that intro-
duced by Flajolet and Salvy [10]. Other notations used for the skew-harmonic numbers
include H−

n by Boyadzhiev [5, 6], Ln by Xu, Zhang, and Zhu [31], and H ′
n by Camp-

bell and Sofo [7]. Historically, the study of infinite series containing harmonic numbers
was initiated in response to a letter dated December 6, 1742, sent by the German mathe-
matician Christian Goldbach (1690–1764) to the famous Swiss mathematician Leonard
Euler [15, p. 741]. Today infinite series containing harmonic numbers, and to a lesser
extent the skew-harmonic numbers, continue to occupy the attention of mathematicians
with this area of study now vast [23, 27, 28].

For q ∈ Z>1 Euler gave without proof a general closed-form expression for the
first and perhaps most famous of the so-called linear Euler sums [9]. Here

∞

∑
n=1

Hn

nq =
1
2
(q+2)ζ (q+1)− 1

2

q−2

∑
n=1

ζ (n+1)ζ (q−n). (1)

Note the empty sum that arises when q = 2 is understood to be nil. Here ζ denotes the
Riemann zeta function which is defined by

ζ (s) =
∞

∑
n=1

1
ns , (2)
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for s > 1. After Euler, interest in sums of the type given by (1) lapsed and it would
be the best part of two centuries before interest in them was finally renewed. Given
how fundamental the linear Euler sum of (1) is, it has, unsurprisingly, been repeatedly
rediscovered independently a number of times since the time of Euler [16, 30, 20, 11].
In the case of the linear Euler sum containing skew-harmonic numbers (we intend to call
this a skew-Euler sum), its general closed-form expression came much later, appearing
to have been first given by Sitaramachandrarao [21, Thm 3.5]. For q ∈ Z>1 one has

∞

∑
n=1

Hn

nq = (2−21−q) log(2)ζ (q)+
(

1− 1
2q −

q
2

)
ζ (q+1)

+
1
2

q−2

∑
k=1

(1−21−q+k)(1−2−k)ζ (q− k)ζ (k+1). (3)

Again the empty sum that arises when q = 2 is understood to be nil. Alternative deriva-
tions to the one given by Sitaramachandrarao can be found in [10], [17, pp. 196–200,
Eq. (4.11)]. Similar closed-form expressions can be found for the corresponding al-
ternating cases (Hn and Hn in expressions (1) and (3) replaced with (−1)nHn and
(−1)nHn respectively) for the case when one has an even index appearing in the de-
nominator of the summand [21, Thm 3.7], [10, Thm 7.1 (ii)], [17, pp. 200–203, Eqs
(4.17) and (4.28)].

Closely related to the linear Euler and linear skew-Euler sums are linear Euler-
type sums where the n appearing in the denominator of the summand is replaced by the
linear factor 2n+ 1. In the case of the linear Euler-type sum containing the harmonic
numbers, for q ∈ Z>1 one has [2], [17, pp. 212–213, Eq. (4.73)]:

∞

∑
n=1

Hn

(2n+1)q = (21−q−2) log(2)ζ (q)+q

(
1− 1

2q+1

)
ζ (q+1)

− 1
2

q−2

∑
k=1

(2k+1−1)(2−k−2−q)ζ (q− k)ζ (k+1). (4)

Again the empty sum that arises when q = 2 is understood to be nil. Beyond this linear
Euler-type sum an expression for the corresponding alternating case of (4) containing an
odd index (q replaced with 2q+1) has been given [17, p. 216, Eq. (4.91)]. Nothing, as
far as the author is aware, for those cases where the harmonic number term is replaced
with a skew-harmonic number term has however been given.

In this paper we give closed-form expressions for the following linear Euler-type
sums:

∞

∑
n=1

(−1)nHn

(2n+1)2q+1 ,
∞

∑
n=1

Hn

(2n+1)q , and
∞

∑
n=1

(−1)nHn

(2n+1)2q+1 . (5)

In the first and third sum q ∈ Z�0 while in the second q ∈ Z>1 . For the first sum we
give a new proof that leads to an alternative form of an existing result already known
in the literature [17, p. 216, Eq. (4.91)] while the results we give for the second and
third sums are believed to be completely new. Several other closely related generalised
logarithmic integrals and sums in closed-form to the three sums given in (5) are also
presented.
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2. Some preliminaries

In this section we give a number of preliminary results that are going to be needed
when it comes to presenting the main results in the paper.

The digamma function is defined by

ψ(x) =
d
dx

logΓ(x) =
Γ′(x)
Γ(x)

, (6)

where Γ(x) is the classical gamma function defined by the Eulerian integral

Γ(x) =
∫ ∞

0
tx−1e−t dt.

These are respectively entries 5.2.2 and 5.2.1 in [19]. Closely connected to the gamma
function is the beta function defined by

B(x,y) =
∫ 1

0
tx−1(1− t)y−1 dt, x,y > 0, (7)

which is related to the gamma function by the identity

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

. (8)

These are respectively entries 8.380.1 and 8.384.1 in [12]. Alternative integral repre-
sentations for the beta function can be given. One such one is found on substituting
t = sin2 θ into (7). Doing so yields

B(x,y) = 2
∫ π

2

0
sin2x−1 θ cos2y−1 θ dθ . (9)

This is entry 8.380.2 in [12]. Euler’s reflexion formula for the gamma function is given
by

Γ(1− z)Γ(z) =
π

sin(πz)
, z �= 0,±1,±2, . . . (10)

while Legendre’s duplication formula for the gamma function is

Γ(2z) =
22z−1
√

π
Γ(z)Γ

(
z+

1
2

)
, 2z �= 0,−1,−2, . . . (11)

These are respectively entries 5.5.1 and 5.5.5 in [19].
The functional relation for the digamma function is

ψ(x+1) = ψ(x)+
1
x
. (12)

This is entry 5.5.2 in [19]. A series representation for the digamma function is

ψ(x+1) = −γ +
∞

∑
n=1

(
1
n
− 1

n+ x

)
, x �= −1,−2,−3, . . . (13)
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Here γ is the Euler–Mascheroni constant. This is entry 5.7.6 in [19]. The Maclaurin
series expansion for the digamma function is

ψ(x+1) = −γ −
∞

∑
n=1

(−1)nζ (n+1)xn, |x| < 1. (14)

This is entry 5.7.4 in [19]. Some needed values for the digamma function are ψ(1) =
−γ and

ψ
(

1
4

)
= −γ −3log(2)− π

2
, ψ

(
3
4

)
= −γ −3log(2)+

π
2

, (15)

the first of these values being entry 6.3.2 in [1], the latter two values being entries 44.7.4
and 44.7.6 in [18].

The polygamma function of order m ∈ Z�1 is defined by

ψ(m)(x) =
dm

dxm {ψ(x)} = (−1)m+1m!
∞

∑
n=0

1
(x+n)m+1 ,

and is valid for all x ∈ R , x �= 0,−1,−2, . . . . This is entry 6.4.1 in [1]. Note the
polygamma function of order zero is given by

ψ(0)(x) := ψ(x) =
Γ′(x)
Γ(x)

,

and is, by definition, just the digamma function given in (6).
The Maclaurin series expansion for the secant function is

sec(x) =
∞

∑
n=0

|En|xn

n!
, |x| < π

2
, (16)

where En denote the Euler numbers. This is entry 1.411.9 in [12]. The first few of these
numbers are:

E0 = 1,E2 = −1,E4 = 5,E6 = −61,E8 = 1385,

while all odd-indexed Euler numbers are equal to zero. The Maclaurin series expansion
for the tangent function is

tan(x) =
∞

∑
n=1

2n+1(2n+1−1)|Bn+1|
(n+1)!

xn, |x| < π
2

, (17)

where Bn denote the Bernoulli numbers. This is entry 1.411.5 in [12]. The first few of
these numbers are:

B0 = 1,B1 =
1
2
,B2 =

1
6
,B3 = 0,B4 = − 1

30
,B5 = 0,B6 =

1
42

.

In fact, B2n+1 = 0 for all n ∈ Z�1 .
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The Dirichlet beta function is defined by

β (s) =
∞

∑
n=0

(−1)n

(2n+1)s , (18)

and is valid for s > 0. This is entry 3.6.4 in [18]. A special value when the argument is
even is β (2) = G , which is Catalan’s constant. When the argument is odd one has:

β (1) =
π
4

,β (3) =
π3

32
,β (5) =

5π5

1536
,β (7) =

61π7

184320
, and so on.

Indeed, for all odd arguments the Dirichlet beta function can be expressed in terms of a
multiple of π as follows:

β (2n+1) =
|E2n|
2(2n)!

(π
2

)2n+1
, n ∈ Z�0. (19)

This is entry 3.13.3 in [18]. A closely related function to the Dirichlet beta function is
the Dirichlet lambda function. It is defined by

λ (s) =
∞

∑
n=0

1
(2n+1)s , (20)

and is valid for s > 1. This is entry 3.6.2 in [18]. It is related to the Riemann zeta
function by

λ (s) =
(

1− 1
2s

)
ζ (s). (21)

This is entry 3.0.1 in [18].
The series representation of the Dirichlet beta function given in (18) can be formed

in terms of a difference between two polygamma functions. For s ∈ Z�0 we have

β (s+1) =
1

2s+1

∞

∑
n=0

(−1)n(
n+ 1

2

)s+1 =
(−1)s+1

4s+1s!

[
ψ(s)

(
1
4

)
−ψ(s)

(
3
4

)]
. (22)

Replacing s with 2q and 2q+1 in (22), where q ∈ Z�0 , one has [13]

ψ(2q)
(

3
4

)
−ψ(2q)

(
1
4

)
= (−1)q4qE2qπ2q+1, (23)

and

ψ(2q+1)
(

3
4

)
−ψ(2q+1)

(
1
4

)
= −42q+2(2q+1)!β (2q+2), (24)

respectively. In (23) the Dirichlet beta function has been expressed in terms of the Euler
numbers using (19). A similar thing can be done for the Dirichlet lambda function. Here

λ (s+1) =
1

2s+1

∞

∑
n=0

1(
n+ 1

2

)s+1 =
(−1)s+1

4s+1s!

[
ψ(s)

(
3
4

)
+ ψ(s)

(
1
4

)]
. (25)
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Replacing s with 2q in (25), where q = Z�0 , and writing the Dirichlet lambda function
in terms of the Riemann zeta function using (21) one obtains [13]

ψ(2q)
(

3
4

)
+ ψ(2q)

(
1
4

)
= −(2q)!22q+1(22q+1−1

)
ζ (2q+1). (26)

In the next lemma an important result concerning a power series expansion involv-
ing a difference between two digamma functions with differing arguments is given.

LEMMA 1. For |t| < 1

ψ
( t

2
+1
)
−ψ(t +1) =

∞

∑
k=1

(−1)k
(

1− 1
2k

)
ζ (k+1)tk. (27)

Proof. From (13) we see that

ψ
( t

2
+1
)
−ψ(t +1) =

∞

∑
n=1

(
1

n+ t
− 1

n+ t/2

)
. (28)

Also for |t| < 1, as

1
n+ t

=
∞

∑
k=0

(−1)ktk

nk+1 =
1
n

+
∞

∑
k=1

(−1)ktk

nk+1 ,

and
1

n+ t/2
=

∞

∑
k=0

(−1)k

nk+1

tk

2k =
1
n

+
∞

∑
k=0

(−1)k

nk+1

tk

2k ,

and are nothing more than infinite geometric series expansions, the term appearing in
the brackets on the right of (28) can be rewritten as

ψ
( t

2
+1
)
−ψ(t +1) =

∞

∑
n=1

(
∞

∑
k=1

(−1)k

nk+1

(
1− 1

2k

)
tk
)

=
∞

∑
n=1

∞

∑
k=1

ank(t),

or

ψ
( t

2
+1
)
−ψ(t +1) =

∞

∑
k=1

(−1)k
(

1− 1
2k

)( ∞

∑
n=1

1
nk+1

)
tk,

after the order of the double summation has been interchanged and is permissible since
for |t| < 1 and each n ∈ Z�1

∞

∑
k=1

|ank(t)| < t
n2− tn

= Mn(t) < ∞ and
∞

∑
n=1

Mn(t) < ∞.

Recognising the right most term within brackets as the Riemann zeta function given in
(2) completes the proof. �

An alternative expression for the digamma function ψ
( 1−t

2

)
follows in the next

lemma.
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LEMMA 2. For x ∈ R,x �= 1,3,5, . . . the following equality holds:

ψ
(

1− x
2

)
= −

[
ψ
( x

2
+1
)
−ψ(x+1)

]
+ ψ(x+1)−2log(2)−π tan

(πx
2

)
. (29)

Proof. From Legendre’s duplication formula for the gamma function given in (11)
one has

Γ
(

1− x
2

)
=

√
π2xΓ(1− x)
Γ
(
1− x

2

) .

And from Euler’s reflexion formula of (10) we have

Γ(1− x) =
π

sin(πx)Γ(x)
and Γ

(
1− x

2

)
=

π
sin
(πx

2

)
Γ
(

x
2

) .
Thus

Γ
(

1− x
2

)
=

√
π2t−1Γ

(
x
2

)
Γ(x)cos

(πx
2

) ,

where the double angle formula for the sine function has been used. Taking the loga-
rithmic derivative with respect to x yields

ψ
(

1− x
2

)
= 2ψ(x)−ψ

( x
2

)
−2log(2)−π tan

(πx
2

)
.

Applying the functional relation of (12) to the two digamma function terms appearing
to the right of the equality then completes the proof. �

We next give, as lemmas, a number of important logarithmic integrals we are going
to have a need for.

LEMMA 3. If q ∈ Z>0 then

∫ 1

0

logq(x)
1− x2 dx = (−1)qq!

(
1− 1

2q+1

)
ζ (q+1). (30)

Proof. A proof can be found in [4, Proposition 12.3.1]. �

LEMMA 4. If q ∈ Z�0 then

∫ 1

0

logq(x)
1+ x2 dx = (−1)qq!β (q+1). (31)

This is entry 4.271.5 in [12].
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LEMMA 5. If n ∈ Z�0 then the following equality holds:

∫ ∞

0

logn(x) log(1+ x2)
1+ x2 dx =

(π
2

)n+1
n!

n

∑
k=1

(−1)k|En−k|(2k+1−1)ζ (k+1)
πk(n− k)!

+
(π

2

)n+2
n!

n

∑
k=1

2k+2(2k+1−1)|Bk+1| · |En−k|
(n− k)!(k+1)!

+2
(π

2

)n+1
|En| log(2).

(32)

The two empty sums that arise when n = 0 are understood to be nil.

Proof. Denoting the integral to be prove by In , after enforcing a substitution of
x �→ tanx one has

In = −2
∫ π

2

0
logn(tanx) log(cosx)dx.

The resulting integral will now be found using an exponential generating function ap-
proach [29]. Consider the exponential generating function given by

G(t) =
∞

∑
n=0

Intn

n!
.

One therefore has

G(t) = −2
∫ π

2

0
log(cosx)

∞

∑
n=0

(t log(tanx))n

n!
dx = −2

∫ π
2

0
sint xcos−t log(cosx)dx.

Now consider the function defined by

J(a) = 2
∫ π

2

0
sint xcosa−t xdx, a � 0,

where we observe that G(t) = −J′(0) . Now J(a) can be readily written in terms of a
beta function as follows

J(a) = B

(
t +1

2
,
a+1− t

2

)
=

Γ
(

1+t
2

)
Γ
(

a+1−t
2

)
Γ
(
1+ a

2

) .

Here we have made use of the integral representation for the beta function given in (9)
together with the result given in identity (8). Taking the logarithmic derivative with
respect to a yields

J′(a)
J(a)

=
1
2

ψ
(

a+1− t
2

)
− 1

2
ψ
(a

2
+1
)

.

On setting a = 0 we find

G(t) = −J′(0) = −π
2

sec
(πt

2

)[
γ + ψ

(
1− t

2

)]
,
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where we note the results of J(0) = Γ
(

1+t
2

)
Γ
(

1−t
2

)
= π sec

(πt
2

)
and ψ(1) = −γ have

been used. From result (29) given in Lemma 2, the expression for G(t) can be rewritten
as

G(t) =
π
2

sec
(πt

2

){
(−γ −ψ(t +1))+

[
ψ
( t

2
+1
)
−ψ(t +1)

]
+2log(2)+ π tan

(πt
2

)}
. (33)

If we now express each of the product terms appearing in (33) as a product between
their Maclaurin series expansions, on finding the Cauchy product we find:
For the first term

π
2

sec
(πt

2

)
· (−γ −ψ(t +1)) =

π
2t

∞

∑
n=1

|En−1|πn−1tn

2n−1(n−1)!
·

∞

∑
n=1

(−1)nζ (n+1)tn

=
∞

∑
n=1

(
n

∑
k=1

(−1)kζ (k+1)|En−k|πn−k+1n!
2n−k+1(n− k)!

)
tn

n!
, (34)

where the series expansions of (14) and (16) with x replaced with πt
2 have been used.

For the second term

π
2

sec
(πt

2

)
·
[
ψ
( t

2
+1
)
−ψ(t +1)

]
=

π
2t

∞

∑
n=1

|En−1|πn−1tn

2n−1(n−1)!
(35)

×
∞

∑
n=1

(−1)n
(

1− 1
2n

)
ζ (n+1)tn

=
∞

∑
n=1

(
n

∑
k=1

|En−k|πn−k+1(−1)k(1−2−k)ζ (k+1)n!
2n−k+1(n− k)!

)
tn

n!
, (36)

where the series expansions of (16) with x replaced with πt
2 and (27) have been used.

For the third term

π sec
(πt

2

)
· log(2) = π log(2)+

∞

∑
n=1

(
log(2)|En|πn+1

2n

)
tn

n!
, (37)

where the series expansion of (16) with x replaced with πt
2 has been used.

For the fourth term

π2

2
sec
(πt

2

)
· tan

(πt
2

)
=

π2

2t

∞

∑
n=1

|En−1|πn−1tn

2n−1(n−1)!
·

∞

∑
n=1

2(2n+1−1)|Bn+1|πn

(n+1)!

=
∞

∑
n=1

(
n

∑
k=1

(2k+1−1)|En−k| · |Bk+1|πn+2n!
2n−k(n− k)!(k+1)!

)
tn

n!
, (38)

where the series expansions of (16) and (17) have been used, and in both cases x has
been replaced with πt

2 .
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In ensuring all the sums start at n = 1 we see that

G(t) =
∞

∑
n=0

Intn

n!
= I0 +

∞

∑
n=1

Intn

n!
= π log(2)+

∞

∑
n=1

Intn

n!
, (39)

where

I0 = −2
∫ π

2

0
log(cosx)dx = −2

∫ π
2

0
log(sinx)dx = π log(2),

this last result being Euler’s famous log–sine integral [26, p. 229]. Substituting the
results given in (34), (36), (37), and (38) into (39), on equating equal coefficients for
tn/n! delivers the desired result and completes the proof. �

COROLLARY 1. If q ∈ Z�0 then the following equality holds:

∫ ∞

0

log2q(x) log(1+ x2)
1+ x2 dx =

(π
2

)2q+1
(2q)!

q

∑
k=1

ζ (2k+1)|E2q−2k|
(
22k+1−1

)
π2k(2q−2k)!

+2
(π

2

)2q+1
|E2q| log(2). (40)

The empty sum that arises when q = 0 is understood to be nil.

Proof. Replacing n with 2q in (32), for |E2q−k| to be non-zero one requires (2q−
k) to be even. Setting 2q−k = 2m where m ∈ Z�0 we see k = 2(q−m) must be even.
But if k is even then k + 1 is odd, so |Bk+1| = 0 and ensures the second term in (32)
containing |Bk+1| is zero for all 1 � k � n . Reindexing the remaining sum by k �→ 2k
yields the desired result and completes the proof. �

REMARK 1. When the index n is odd in (32) all values for the integrals will
consist of a simple multiple of π as the term containing log(2) is zero due to all odd-
index Euler numbers being equal to zero.

We shall also have a need for a number of ordinary generating functions. The first
of these is the ordinary generating function for the harmonic numbers. It is given by
[17, p. 58, Eq. (2.4)]

∞

∑
n=1

Hnx
n = − log(1− x)

1− x
, |x| < 1. (41)

The second of these is the ordinary generating function for the skew-harmonic numbers.
It is given by [17, p. 74, Eq. (2.28)]

∞

∑
n=1

Hnx
n =

log(1+ x)
1− x

, |x| < 1, (42)

A final ordinary generating function involving the harmonic numbers is given in the
following lemma.
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LEMMA 6. For |x| < 1

∞

∑
n=1

Hn(x2 −1)x4n =
log(1− x4)

1+ x2 . (43)

Proof. Write the log term appearing on the right-hand side of (43) as

log(1− x4)
1+ x2 =

(1− x2) log(1− x4)
1− x4 .

Replacing x with x4 in the ordinary generating function for the harmonic numbers
given by (41), on substituting the resulting expression into the right-hand side of the
above expression, the desired result then follows and completes the proof. �

We conclude this section by giving a very general result for a sum containing the
harmonic numbers.

LEMMA 7. Let x be a real number x �= −1,−2,−3, . . . and q ∈ Z>1 . Then the
following equality holds:

∞

∑
n=1

Hn

(n+ x)q =
(−1)q

(q−1)!

[
(ψ(x)+ γ)ψ(q−1)(x)− 1

2
ψ(q)(x)

+
q−2

∑
k=1

(
q−2

k

)
ψ(k)(x)ψ(q−k−1)(x)

]
(44)

Proof. A proof can be found in [22]. �

3. Main results

In this section the three general closed-formed expressions for the linear Euler-
type sums containing the harmonic and the skew-harmonic numbers found in (5) are
given and form the main results of our paper.

THEOREM 1. For q ∈ Z�0 the following equality holds

∞

∑
n=1

(−1)nHn

(2n+1)2q+1 = (2q+1)β (2q+2)−
(π

2

)2q+1 |E2q|
(2q)!

log(2)

− 1
2

(π
2

)2q+1 q

∑
k=1

(22k+1−1)|E2q−2k|ζ (2k+1)
π2k(2q−2k)!

. (45)

The empty sum that arises when q = 0 is understood to be nil.
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Proof. For q ∈ Z�1 let

Lq−1 =
∫ 1

0

logq−1(x) log(1+ x2)
1+ x2 dx.

From the ordinary generating function for the harmonic numbers given by (41) with x
replaced with −x2 , we can write

Lq−1 = −
∞

∑
n=1

(−1)nHn

∫ 1

0
x2n logq−1(x)dx,

where the interchange made between the integration and summation signs is permissi-
ble due to Fubini’s theorem. Integrating by parts (q−1)-times one finds

Lq−1 = (−1)q(q−1)!
∞

∑
n=1

(−1)nHn

(2n+1)q ,

or after rearranging
∞

∑
n=1

(−1)nHn

(2n+1)q =
(−1)q

(q−1)!
Lq−1.

A reindexing of q �→ 2q+1 then produces

∞

∑
n=1

(−1)nHn

(2n+1)2q+1 =
−1

(2q)!
L2q. (46)

Now consider the integral

∫ ∞

0

logq−1(x) log(1+ x2)
1+ x2 dx =

∫ 1

0

logq−1(x) log(1+ x2)
1+ x2 dx

+
∫ ∞

1

logq−1(x) log(1+ x2)
1+ x2 dx.

Enforcing a substitution of x �→ 1
x in the second of the integrals to the right of the

equality leads to

∫ ∞

0

logq−1(x) log(1+ x2)
1+ x2 dx =

(
1+(−1)q−1)∫ 1

0

logq−1(x) log(1+ x2)
1+ x2 dx

−2(−1)q−1
∫ 1

0

logq(x)
1+ x2 dx, (47)

or

L2q =
∫ 1

0

log2q+1(x)
1+ x2 dx+

1
2

∫ ∞

0

logq−1(x) log(1+ x2)
1+ x2 dx, (48)

after rearranging and a reindexing of q �→ 2q + 1 has been made. The first of the
integrals appearing to the right of the equality in (48) is given by (30) with q replaced
with 2q+ 1, the second is given by (40), which upon substituting into (46) yields the
desired result and completes the proof. �
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REMARK 2. An alternative closed-form expression for the sum appearing in (45)
in terms of a limit of a 2q -order derivative can be found in [17, p. 216, Eq. (4.91)].
Expression (45) has subsequently appeared1 in a paper [25, p. 20] that was submitted
prior to the initial submission of this paper and published somewhat after this time.
Here an alternative proof to the one given above was used.

COROLLARY 2. If q ∈ Z�1 then the following equality holds:

∫ ∞

0

log2q−1(x) log(1+ x2)
1+ x2 dx =

(π
2

)2q+1
|E2q|. (49)

Proof. If in (47) q is replaced with 2q one obtains∫ ∞

0

log2q−1(x) log(1+ x2)
1+ x2 dx = 2

∫ 1

0

log2q(x)
1+ x2 dx.

The integral appearing to the right of the equality is just (31) with q replaced with
2q . The result then follows on applying (19) to the Dirichlet beta function term, and
completes the proof. �

REMARK 3. The result given in Corollary 2 confirms the observation made in
Remark 1. For an alternative derivation of this result, see [24, Thm 2].

COROLLARY 3. If q ∈ Z�1 then the following equality holds:

q

∑
k=1

(
2q
2k

)
22k(22k −1)|B2k| · |E2q−2k| = 2q|E2q|.

Proof. Replacing n with 2q− 1 in (32) before setting the result equal to (49)
yields

|E2q|
(2q−1)!

=
2q−1

∑
k=1

2(−1)k|E2q−k−1|(22k+1−1)ζ (k+1)
πk+1(2q− k−1)!

+
2q−1

∑
k=1

2k+2(2k+2−1)|Bk+1| · |E2q−k−1|
(2q− k−1)!(k+1)!

.

For the Euler number term appearing in each of the sums to be non-zero we require
2q− k−1 = 2m where m ∈ Z>0 , that is, k = 2(q−m)−1 to be odd. If a reindexing
of k �→ 2k−1 in each sum is made, on recalling the result [19, Entry 25.6.2]

ζ (2k) =
|B2k|22k−1π2k

(2k)!
,

and writing the product between the factorials in the denominator in terms of a binomial
coefficient, the desired result then follows and completes the proof. �

1Or be it with a typo present in the argument for the Dirichlet beta function term.
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REMARK 4. More curious is the case when the index appearing in the term in the
denominator of the summand of (45) is even. For all but the lowest order case when
the index is equal to two and a closed-form expression for the sum in terms of known
mathematical constants can be found, one has sums of the type

∞

∑
n=1

(−1)nHn

(2n+1)2q .

For q∈Z>1 these represent a new variety of mathematical constants that are not known
to be related to any of the classical constants of mathematics. We will write these as:

Λ(s) =
∞

∑
n=1

(−1)nHn

(2n+1)s .

When s is a positive odd integer their values are as given in Theorem 1. When s = 2
it is known that [17, pp. 270–271] (see also [24, p. 69] for an alternative, equivalent
expression)

Λ(2) =
∞

∑
n=1

(−1)nHn

(2n+1)2 =
3π3

32
+

π
8

log2(2)− log(2)G+2ℑLi3(1− i).

Here i =
√−1 is the imaginary unit, ℑ denotes the imaginary part, while Li3 denotes

the trilogarithm defined by [14, p. 153, Eq. (6.1)]

Li3(x) =
∞

∑
n=1

xn

n3 , |x| � 1.

The first of these new constants is Λ(4) . It has a numerical value equal to

Λ(4) = −0.010 493 456 297 335 . . .

REMARK 5. The term ℑLi3(1− i) appearing in the constant Λ(2) can be related
to a new, recently defined constant G ∗ which is a variant of a Catalan-like constant [8].
Here ℑLi3(1− i) = −G ∗ .

LEMMA 8. For q ∈ Z>1 the second of the sums appearing in (5) can be repre-
sented by an integral as follows:

∞

∑
n=1

Hn

(2n+1)q =
(−1)q+1

(q−1)!

∫ 1

0

logq−1(x) log(1+ x2)
1− x2 dx. (50)

Proof. From the ordinary generating function for the skew-harmonics of (42) with
x replaced with x2 , using this allows one to rewrite the integral as

∫ 1

0

logq−1(x) log(1+ x2)
1− x2 dx =

∫ 1

0
logq−1(x)

∞

∑
n=1

Hnx
2n dx =

∞

∑
n=1

Hn

∫ 1

0
x2n logq−1(x)dx.
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The interchange made between the order of the summation and integration is permis-
sible due to its absolute convergence since for fixed q ∈ Z>1 all terms involved are
unsigned (all negative if q is even, all positive if q is odd). Integrating by parts (q−1)-
times, the result then follows and completes the proof. �

THEOREM 2. For q ∈ Z>1 the following equality holds

∞

∑
n=1

Hn

(2n+1)q =
(

1− 1
2q

)
log(2)ζ (q)−q

(
1− 1

2q+1

)
ζ (q+1)+

q−1

∑
k=0

β (q−k)β (k+1).

(51)

Proof. Denote integral (50) appearing in Lemma 8 by Jq and define on the interval
x ∈ [0,1] the function

Rq(x) =
∫ x

0

logq−1(t)
1− t2

dt.

Setting t �→ xt produces

Rq(x) =
∫ 1

0

x logq(xt)
1− x2t2

dt.

Note that Rq(0) = 0 and

Rq(1) =
∫ 1

0

logq−1(t)
1− t2

dt = (−1)q−1(q−1)!
(

1− 1
2q

)
ζ (q), (52)

which is just the result given in (30) with q replaced with q− 1. Integrating by parts
gives

Jq =
[
Rq(x) log(1+ x2)

]1
0−

∫ 1

0

2xRq(x)
1+ x2 dx

= Rq(1) log(2)−2
∫ 1

0

∫ 1

0

x2 logq−1(xt)
(1+ x2)(1− x2t2)

dt dx.

From the partial fraction decomposition of

x2

(1+ x2)(1− x2t2)
=

1
(1+ t2)(1− x2t2)

− 1
(1+ t2)(1+ x2)

,

the integral for Jq may be rewritten as

Jq = Rq(1) log(2)+2
∫ 1

0

∫ 1

0

logq−1(xt)
(1+ x2)(1+ t2)

dt dx

−2
∫ 1

0

∫ 1

0

logq−1(xt)
(1+ t2)(1− x2t2)

dt dx.

On expanding the first of the logq−1(xt) terms using the binomial expansion, namely

logq−1(xt) = (log(x)+ log(t))q−1 =
q−1

∑
k=0

(
q−1

k

)
logq−k−1(x) logk(t),
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allows one to rewrite the integral as

Jq = Rq(1) log(2)+2
q−1

∑
k=0

(
q−1

k

)∫ 1

0

logq−k−1(x)
1+ x2 dx

∫ 1

0

logk(t)
1+ t2

dt

−
∫ 1

0

2
t(1+ t2)

(∫ 1

0

t logq−1(xt)
1− x2t2

dx

)
dt. (53)

The first two single integrals appearing to the right of the equality in (53) are related to
the Dirichlet beta function from their connection with the integral appearing in Lemma
3. Here ∫ 1

0

logq−k−1(x)
1+ x2 dx = (−1)q−k−1(q− k−1)!β (q− k),

and ∫ 1

0

logk(t)
1+ t2

dt = (−1)kk!β (k+1).

Thus the integral in (53) becomes

Jq = Rq(1) log(2)−2(−1)q(q−1)!
q−1

∑
k=0

β (q− k)β (k+1)−
∫ 1

0

2Rq(t)
t(1+ t2)

dt. (54)

Now consider the last remaining integral separately. From the partial fraction decom-
position of

1
t(1+ t2)

=
1
t
− t

1+ t2
,

integrating by parts we have

∫ 1

0

2Rq(t)
t(1+ t2)

dt =
[
Rq(t)

(
2log(t)− log(1+ t2)

)]1
0

−
∫ 1

0

(
2log(t)− log(1+ t2)

) logq−1(t)
1− t2

dt

= −Rq(1) log(2)−2
∫ 1

0

logq(t)
1− t2

dt +
∫ 1

0

logq−1(t) log(1+ t2)
1− t2

dt

= −Rq(1) log(2)−2Rq+1(1)− Jq.

Returning to (54), one has

Jq = 2Rq(1) log(2)+2Rq+1(1)−2(−1)q(q−1)!
q−1

∑
k=0

β (q− k)β (k+1)− Jq,

or, after rearranging and simplifying

Jq = Rq(1) log(2)+Rq+1(1)− (−1)q(q−1)!
q−1

∑
k=0

β (q− k)β (k+1).
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The values for Rq(1) and Rq+1(1) come from (52). Here one has

Jq = (−1)q+1(q−1)!
(

1− 1
2q

)
ζ (q) log(2)+ (−1)qq!

(
1− 1

2q+1

)
ζ (q+1)

+ (−1)q+1(q−1)!
q−1

∑
k=0

β (q− k)β (k+1). (55)

Substituting this result for the integral into the result given in Lemma 8, the result for
the required sum then follows and completes the proof. �

In the following example we record the first five of the sums as given by (51) in
Theorem 2.

EXAMPLE 1. Setting q = 2,3,4,5, and 6 in (51) the first five sums are:

∞

∑
n=1

Hn

(2n+1)2 =
π2

8
log(2)+

π
2

G− 7
4

ζ (3);

∞

∑
n=1

Hn

(2n+1)3 =
7
8

ζ (3) log(2)+G2− π4

64
;

∞

∑
n=1

Hn

(2n+1)4 =
π4

96
log(2)+

π3

16
G+

π
2

β (4)− 31
8

ζ (5);

∞

∑
n=1

Hn

(2n+1)5 =
31
32

log(2)ζ (5)− π6

384
+2Gβ (4);

∞

∑
n=1

Hn

(2n+1)6 =
π6

960
log(2)+

5π5

768
G+

π3

16
β (4)+

π
2

β (6)− 381
64

ζ (7).

We now move to the third of the sums appearing in (5) which contains an alternat-
ing skew-harmonic number term.

LEMMA 9. For q ∈ Z�1 the following equality holds:

∞

∑
n=1

(−1)nHn

(2n+1)q =
(−1)q+1

(q−1)!

∫ 1

0

logq−1(x) log(1− x2)
1+ x2 dx. (56)

Proof. Consider the integral

Jq−1 =
∫ 1

0

logq−1(x) log(1− x2)
1+ x2 dx.

If in the ordinary generating function for the skew-harmonic numbers of (42) x is re-
placed with −x2 one obtains

log(1− x2)
1+ x2 =

∞

∑
n=1

(−1)nHnx
2n, |x| < 1.
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Replacing the term on the left with this term that appears in the integral with the ex-
pression on the right, yields

Jq−1 =
∫ 1

0
logq−1(x)

∞

∑
n=1

(−1)nHnx
2n dx =

∞

∑
n=1

(1−)nHn

∫ 1

0
x2n logq−1(x)dx.

The interchange made here between the integration and the summation signs is permis-
sible based on its absolute convergence according to Fubini’s theorem as we have

∞

∑
n=1

∫ 1

0

∣∣(−1)nHnx
2n logq−1(x)

∣∣ dx <
∫ 1

0

logq−1(x) log(1+ x2)
1− x2 dx < ∞,

with the integral being the convergent integral appearing in Lemma 8. Integrating by
parts (q−1)-times yields

Jq−1 = (−1)q+1(q−1)!
∞

∑
n=1

(−1)nHn

(2n+1)q ,

which upon rearranging produces the desired result and completes the proof. �

LEMMA 10. For q ∈ Z�1 the following equality holds:

∞

∑
n=1

(−1)nHn

(2n+1)q =
∞

∑
n=1

Hn

(4n+3)q −
∞

∑
n=1

Hn

(4n+1)q +
∞

∑
n=1

(−1)nHn

(2n+1)q (57)

Proof. As (1− x4) = (1− x2)(1+ x2) the integral Jq−1 appearing in the proof of
Lemma 9 can be written as

Jq−1 =
∫ 1

0

logq−1(x) log(1− x4)
1+ x2 dx−

∫ 1

0

logq−1 log(1+ x2)
1+ x2 dx. (58)

We now consider each integral that has appeared separately. For the first of the integrals
appearing in (58), one applying the result given in (43) one obtains

∫ 1

0

logq−1(x) log(1− x4)
1+ x2 dx =

∞

∑
n=1

Hn

∫ 1

0

(
x4n+2− x4n) logq−1(x)dx,

where the interchange made between the integration and summations signs is permissi-
ble due Fubini’s theorem. Integrating by parts (q−1)-times produces

∫ 1

0

logq−1(x) log(1− x4)
1+ x2 dx = (−1)q−1(q−1)!

{
∞

∑
n=1

Hn

(4n+3)q −
∞

∑
n=1

Hn

(4n+1)q

}
.

The second of the integrals is Lq−1 which appears in the proof of Theorem 1. Here

Lq−1 =
∫ 1

0

logq−1 log(1+ x2)
1+ x2 dx = (−1)q(q−1)!

∞

∑
n=1

(−1)nHn

(2n+1)q .

The result then readily follows on combining (58) with (56) and completes the proof. �
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EXAMPLE 2. Setting q = 1,2,3,4, and 5 in (57), the first five sums are:

∞

∑
n=1

(−1)nHn

2n+1
=

π
4

log(2)−G;

∞

∑
n=1

(−1)nHn

(2n+1)2 =
π3

32
+

π
8

log2(2)+2G log(2)+2ℑLi3(1− i);

∞

∑
n=1

(−1)nHn

(2n+1)3 =
π2

4
G+

π3

32
log(2)−3β (4);

∞

∑
n=1

(−1)nHn

(2n+1)4 =
7
4

ζ (3)G− 5π5

384
+3log(2)β (4)+ Λ(4);

∞

∑
n=1

(−1)nHn

(2n+1)5 =
5π5

1536
log(2)+

π4

48
G+

π2

4
β (4)−5β (6).

When the index q in (57) is odd, an explicit expression for the sum can be given.
This we give in the next theorem.

THEOREM 3. For q ∈ Z�1 the following equality holds:

∞

∑
n=1

(−1)nHn

(2n+1)2q+1 =
π

22q+2

(
22q+1−1

)
ζ (2q+1)+

1
2

(π
2

)2q+1 |E2q|
(2q)!

log(2)

− (2q+1)β (2q+2)− 1
2

(π
2

)2q+1 q

∑
k=1

(
22k+1−1

) |E2q−2k|ζ (2k+1)
π2k(2q−2k)!

− 1
24q+2(2q)!

2q−1

∑
k=1

(
2q−1

k

){
ψ(k)

(
3
4

)
ψ(2q−k)

(
3
4

)

−ψ(k)
(

1
4

)
ψ(2q−k)

(
1
4

)}
.

Proof. Setting x = 3
4 and x = 1

4 in (44) respectively, before considering their dif-
ference, we find

∞

∑
n=1

Hn

(4n+3)q −
∞

∑
n=1

Hn

(4n+1)q =
(−1)q

22q(q−1)!

{
3log(2)

[
ψ(q−1)

(
1
4

)
−ψ(q−1)

(
3
4

)]

+
π
2

[
ψ(q−1)

(
1
4

)
+ ψ(q−1)

(
3
4

)]
+

1
2

[
ψ(q)

(
1
4

)
−ψ(q)

(
3
4

)]

+
q−2

∑
k=1

(
q−2

k

)[
ψ(k)

(
3
4

)
ψ(q−k−1)

(
3
4

)
−ψ(k)

(
1
4

)
ψ(q−k−1)

(
1
4

)]}
.

Note the two values quoted for the digamma function in (15) have been used here.
Enforcing a reindexing of q �→ 2q + 1, on applying each of the polygamma results
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given by (23), (24), and (26) where applicable, produces

∞

∑
n=1

Hn

(4n+3)q −
∞

∑
n=1

Hn

(4n+1)q =
3
2

(π
2

)2q+1 |E2q|
(2q)!

log(2)−2(2q+1)β (2q+2)

+
π

22q+2

(
22q+1−1

)
ζ (2q+1)

− 1
24q+2(2q)!

2q−1

∑
k=1

(
2q−1

k

){
ψ(k)

(
3
4

)
ψ(2q−k)

(
3
4

)
−ψ(k)

(
1
4

)
ψ(2q−k)

(
1
4

)}
.

On combining this result with (45) into (57), the desired result then follows and com-
pletes the proof. �

4. A related result

In this section we give a generalised alternating sum related to the second of the
sums appearing in (5). It contains the difference between two harmonic numbers of
half-integer orders.

LEMMA 11. If n > −1 then the following identity holds:

∫ 1

0

xn

1+ x
dx =

1
2

(
Hn

2
−Hn−1

2

)
. (59)

Here Hz is the analytic continuation of the nth harmonic numbers.

Proof. A proof can be found in [17, p. 156]. �

THEOREM 4. For p ∈ Z>1 the following equality holds:

∞

∑
n=0

(−1)n

(2n+1)q

(
Hn

2
−Hn−1

2

)
= 2q

(
1− 1

2q+1

)
ζ (q+1)−2

q−1

∑
k=0

β (q−k)β (k+1). (60)

Proof. Denoting the sum to be found by Sq , write it as

Sq =
∞

∑
n=0

(−1)n

2n+1
· 1
(2n+1)q−1

(
Hn

2
−Hn−1

2

)
.

Observing that

1
(2n+1)q−1 =

(−1)q

(q−2)!

∫ 1

0
x2n logq−2(x)dx,
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we can write the expression for Sq as

Sq =
∞

∑
n=0

(−1)n

2n+1
· (−1)q

(q−2)!

∫ 1

0
t2n logq−2(t)dt ·2

∫ 1

0

x2

1+ x
dx

=
2(−1)q

(q−2)!

∫ 1

0

∫ 1

0

logq−2(t)
1+ x

∞

∑
n=0

(−1)n(t
√

x)2n

2n+1
dxdt

=
2(−1)q

(q−2)!

∫ 1

0

∫ 1

0

logq−2(t)arctan(t
√

x)
(1+ x)t

√
x

dxdt,

where result (59) in Lemma 11 has been employed and the Maclaurin series expansion
for the arctangent function recognised. Enforcing a substitution of x �→ x2 leads to

Sq =
2(−1)q

(q−2)!

∫ 1

0

∫ 1

0

logq−2(t)arctan(xt)
(1+ x2)t

dxdt.

Integrating the inner x -integral by parts produces

Sq =
4(−1)q+1

(q−1)!

∫ 1

0

∫ 1

0

x logq−1(t)
(1+ x2)(1+ x2t2)

dxdt

=
2(−1)q+1

(q−1)!

∫ 1

0

logq−1(t) log
(

2
1+t2

)
1− t2

dt

=
2(−1)q

(q−1)!

∫ 1

0

logq−1(t) log(1+ t2)
1− t2

dt− 2(−1)q log(2)
(q−1)!

∫ 1

0

logq−1(t)
1− t2

dt.

The first of the integrals to the right of the equality is the integral Jq whose value is
given by (55). The second is (30) with q replaced with q−1. The result then follows
and completes the proof. �

EXAMPLE 3. The first five sums that result from setting q = 2,3,4,5, and 6 in
(60) are:

∞

∑
n=0

(−1)n

(2n+1)2

(
Hn

2
−Hn−1

2

)
=

7
2

ζ (3)−πG;

∞

∑
n=0

(−1)n

(2n+1)3

(
Hn

2
−Hn−1

2

)
=

π4

32
−2G2;

∞

∑
n=0

(−1)n

(2n+1)4

(
Hn

2
−Hn−1

2

)
=

31
4

ζ (5)− π3

8
G−πβ (4);

∞

∑
n=0

(−1)n

(2n+1)5

(
Hn

2
−Hn−1

2

)
=

π6

192
−4Gβ (4);

∞

∑
n=0

(−1)n

(2n+1)6

(
Hn

2
−Hn−1

2

)
=

381
32

ζ (7)− 5π5

384
G− π3

8
β (4)−πβ (6).
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REMARK 6. The second of the sums appearing in Example 3 was recently given
as a problem in [3].
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[22] A. SOFO AND D. CVIJOVIĆ, Extensions of Euler harmonic sums, Appl. Anal. Discrete Math. 6, 2

(2012), 317–328.
[23] A. SOFO AND A. S. NIMBRAN, Euler sums and integral connections, Mathematics 7, 9 (2019),

Article 833, 24 pp.
[24] A. SOFO, A family of definite integrals, Scientia. Series A: Mathematical Sciences 31 (2021), 61–74.
[25] A. SOFO, Log-hyperbolic tangent integrals and Euler sums, Euro-Tbilisi Math. J. 15, 2 (2022), 13–27.
[26] S. M. STEWART, How to Integrate It: A Practical Guide to Finding Elementary Integrals, Cambridge

University Press, Cambridge, 2018.
[27] S. M. STEWART, Explicit evaluation of some quadratic Euler-type sums containing double-index

harmonic numbers, Tatra Mt. Math. Publ. 77, 1 (2020), 73–98.



SKEW-HARMONIC NUMBER SUMS 101

[28] S. M. STEWART, In the shadow of Euler’s greatness: Adventures in the rediscovery of an intriguing
sum, Math. Intelligencer 43, 3 (2021), 82–91.

[29] S. M. STEWART,Using exponential generating functions to evaluate definite integrals, Scientia. Series
A: Mathematical Sciences 32 (2022), 99–133.

[30] G. T. WILLIAMS, A new method of evaluating ζ (2n) , Amer. Math. Monthly 60, 1 (1953), 19–25.
[31] C. XU, M. ZHANG, AND W. ZHU, Some evaluation of harmonic number sums, Integral Transforms

Spec. Funct. 27, 12 (2016), 937–955.

(Received October 18, 2021) Seán M. Stewart
Physical Science and Engineering Division

King Abdullah University of Science and Technology
Thuwal 23955-6900, Saudi Arabia

e-mail: sean.stewart@physics.org

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


