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A NOTE ON A FAMILY OF LOG–INTEGRALS

KHRISTO N. BOYADZHIEV AND ROBERT FRONTCZAK ∗

Abstract. A family of log-integrals with three parameters is analyzed. In particular, some diffi-
cult integrals are evaluated exactly using the derivatives of the Gamma function.

1. Motivation

The motivation for this note comes from a paper by Srivastava and Choi from 2000
[6]. In this paper, the authors show how higher-order derivatives of the Gamma function
can be obtained in closed form. Let Γ(z) be the familiar Gamma function given by the
integral

Γ(z) =
∫ ∞

0
e−t tz−1dt (ℜ(z) > 0).

The digamma function ψ(z) is defined for all z ∈ C\ {0,−1,−2, . . .} by

ψ(z) = (lnΓ(z))′ = −γ − 1
z

+
∞

∑
k=1

(1
k
− 1

k+ z

)
,

with γ being the Euler-Mascheroni constant

γ = lim
n→∞

( n

∑
k=1

1
k
− lnn

)
= 0,5772156649 . . ..

Srivastava and Choi [6] show the following recursions for the values Γ(n)(1) and
Γ(n)(1/2) for n � 0 (Eqs. (2.2) and (2.3) in [6]):

Γ(n+1)(1) = −γΓ(n)(1)+n!
n

∑
k=1

(−1)k+1

(n− k)!
ζ (k+1)Γ(n−k)(1) (1)

and

Γ(n+1)(1/2) = −δΓ(n)(1/2)+n!
n

∑
k=1

(−1)k+1

(n− k)!
(2k+1−1)ζ (k+1)Γ(n−k)(1/2) (2)
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with δ = γ +2ln(2) and where

ζ (s) =
∞

∑
k=1

1
ks (ℜ(s) > 1)

is the Riemann zeta function. These recursions allow to compute all higher-order
derivatives and the first values are

Γ(1)(1) = −γ,

Γ(2)(1) = γ2 + ζ (2),

Γ(3)(1) = −γ3−3γζ (2)−2ζ (3),

Γ(4)(1) = γ4 +6γ2ζ (2)+8γζ (3)+
27
2

ζ (4),

Γ(1)(1/2) = −δ
√

π,

Γ(2)(1/2) =
√

π(δ 2 +3ζ (2)),

Γ(3)(1/2) =
√

π(−δ 3 −9δζ (2)−14ζ (3)),

Γ(4)(1/2) =
√

π
(

δ 4 +18δ 2ζ (2)+56δζ (3)+
315
2

ζ (4)
)
,

and so on. The authors also show that these values are useful in the evaluation of
integrals. As an example they analyze the family of integrals I(m),m � 0, given by

I(m) =
∫ ∞

0

lnm(x)
(1+ x)

√
x

dx. (3)

In this note, we study the family of logarithmic integrals given by

J(m,n, p) =
∫ ∞

0

lnm(x)
(1+ xn)p dx (4)

with the three free parameters m � 0 and 1 < np . Obviously, some members of the
family are easily evaluated. Namely, J(0,2,1) = π/2, J(0,1,3/2) = 2 and maybe a
few others but the general case seems to be difficult. The family of integrals does not
appear in the compendium [5]. Other logarithmic integrals, of which some are related
to J(m,n, p) are discussed by Boros and Moll in their treatise of integrals [1, Chapter
12].
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2. Main result and consequences

THEOREM 1. For integers m ∈ N0 , n ∈ N , and p ∈ Q+ with 1 < np, we have

J(m,n, p) =
1

nm+1Γ(p)

m

∑
k=0

(
m
k

)
(−1)m−kΓ(k)

(1
n

)
Γ(m−k)

(
p− 1

n

)
. (5)

Proof. For n > 0, consider the function f (x) = (1+xn)−p . Then, from the theory
of Mellin transforms (see [3, Chapter 8]) we have

g(s) =
∫ ∞

0

xs−1

(1+ xn)p dx =
1

nΓ(p)
·Γ

( s
n

)
Γ
(

p− s
n

)
0 < ℜ(s) < np.

Therefore

dm

dsm g(s) =
∫ ∞

0

lnm(x)xs−1

(1+ xn)p dx

=
1

nΓ(p)
dm

dsm

(
Γ
( s

n

)
·Γ

(
p− s

n

))

=
1

nΓ(p)

m

∑
k=0

(
m
k

)
Γ(k)

( s
n

)
Γ(m−k)

(
p− s

n

)
,

where in the last step the Leibniz rule for derivatives was applied. The statement follows
by evaluating the derivatives at s = 1. �

We proceed with some special cases of Theorem 1.

COROLLARY 1. For all m � 0 and n � 2 , we have

J(m,n,1) =
1

nm+1

m

∑
k=0

(
m
k

)
(−1)m−kΓ(k)

(1
n

)
Γ(m−k)

(
1− 1

n

)
. (6)

In particular, we have the relation

J(m,2,1) = 2−(m+1)I(m), (7)

where I(m) is the integral in (3).

Proof. The first part is obvious. The second part follows from the fact that (see
[6])

I(m) =
m

∑
k=0

(
m
k

)
(−1)m−kΓ(k)

(1
2

)
Γ(m−k)

(1
2

)
. �

It is notable to observe that due to identity (7) we have that for all m odd

J(m,2,1) = 0. (8)
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This is true because I(m) = 0 when m is odd as is shown in [6]. Three other explicit
evaluations are

J(2,2,1) =
π3

8
, J(4,2,1) =

5π5

32
, J(6,2,1) =

61π7

128
.

COROLLARY 2. For all m � 0 and n � 1 , we have

J(m,n,3/2) =
2

nm+1
√

π

m

∑
k=0

(
m
k

)
(−1)m−kΓ(k)

(1
n

)
Γ(m−k)

(3
2
− 1

n

)
. (9)

In particular,

J(0,n,3/2) =
n−2
n2
√

π
Γ
(1

n

)
Γ
(n−2

2n

)
(n �= 2). (10)

Proof. Formula (9) is also an immediate consequence of Theorem 1 keeping in
mind that Γ(3/2) =

√
π/2. �

Applying the special evaluations of Γ(n)(1) and Γ(n)(1/2) we have the following
examples:

J(1,1,3/2) = 4ln(2), J(1,2,3/2) = − ln(2),

J(2,1,3/2) =
4
3

π2 +8ln2(2), J(2,2,3/2) =
1
6

π2 + ln2(2),

J(3,1,3/2) = 24ζ (3)+16ln3(2)+8π2 ln(2),

J(3,2,3/2) = −1
2

(
3ζ (3)+2ln3(2)+ π2 ln(2)

)
,

J(4,1,3/2) =
24
5

π4 +32π2 ln2(2)+32ln4(2)+192ln(2)ζ (3),

J(4,2,3/2) =
3
20

π4 + π2 ln2(2)+ ln4(2)+6ln(2)ζ (3).

The following relation between J(m,2,3/2) and J(m,1,3/2) holds.

COROLLARY 3. For all m � 0 ,

J(m,2,3/2) = (−1)m2−(m+1)J(m,1,3/2). (11)

Proof. Calculate

2m√πJ(m,2,3/2) =
m

∑
k=0

(
m
k

)
(−1)m−kΓ(k)

(1
2

)
Γ(m−k)(1)

=
m

∑
k=0

(
m

m− k

)
(−1)kΓ(m−k)

(1
2

)
Γ(k)(1)

= (−1)m
m

∑
k=0

(
m
k

)
(−1)m−kΓ(m−k)

(1
2

)
Γ(k)(1)

= (−1)m
√

π
2

J(m,1,3/2). �
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We also have the evaluation

J(1,3,3/2) =
2

9
√

π
Γ
(1

3

)
Γ
(1

6

)(
−1+

√
3π

18
+

1
3

ln(2)
)
,

where we have used

ψ
(1

3

)
= −γ − 1

6

√
3π − 3

2
ln(3)

and

ψ
(1

6

)
= −γ − 1

2

√
3π − 3

2
ln(3)−2ln(2).

COROLLARY 4.

J(m,n,2) =
1

nm+1

m

∑
k=0

(
m
k

)
(−1)m−kΓ(k)

(1
n

)
Γ(m−k)

(
2− 1

n

)
. (12)

In particular, for all n � 1

J(0,n,2) =
1
n

Γ
(1

n

)
Γ
(2n−1

n

)
. (13)

Also, if m is odd then
J(m,1,2) = 0. (14)

Proof. The first two parts are obvious, so we focus on the last statement. Let m
be odd. Then, we can calculate

J(m,1,2) =
m

∑
k=0

(
m
k

)
(−1)m−kΓ(k)(1)Γ(m−k)(1)

=
( (m−1)/2

∑
k=0

+
m

∑
k=(m−1)/2+1

)(
m
k

)
(−1)m−kΓ(k)(1)Γ(m−k)(1)

=
(m−1)/2

∑
k=0

(
m
k

)
(−1)m−kΓ(k)(1)Γ(m−k)(1)

+
(m−1)/2

∑
k=0

(
m

m+1
2 + k

)
(−1)m−(m+1)/2−kΓ((m+1)/2+k)(1)Γ(m−(m+1)/2−k)(1)

=
(m−1)/2

∑
k=0

(
m
k

)
(−1)m−kΓ(k)(1)Γ(m−k)(1)

+
(m−1)/2

∑
k=0

(
m

m+1
2 + k

)
(−1)(m−1)/2−kΓ((m+1)/2+k)(1)Γ((m−1)/2−k)(1).

But, (
m

m+1
2 + k

)
=

(
m

m−1
2 − k

)
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and changing the order of summation in the second sum we arrive at

J(m,1,2) = (1+(−1)m)
(m−1)/2

∑
k=0

(
m
k

)
(−1)m−kΓ(k)(1)Γ(m−k)(1),

which finishes the proof. �

Once more, applying the special evaluations of Γ(n)(1) we state the following
results

J(2,1,2) =
π2

3
, J(4,1,2) = 27ζ (4)+6ζ 2(2) =

7π4

15
.

and

J(6,1,2) = 2(Γ(6)(1)−6Γ(1)(1)Γ(5)(1)+15Γ(2)(1)Γ(4)(1))−20(Γ(3)(1))2 =
31π6

21
.

In addition,

J(1,2,2) = −J(0,2,2) =
π
4

, and J(2,2,2) =
π3

16
,

where we have used ψ(3/2) = 2− δ .

We close this section with a few observations concerning the integrals J(m,n,1/2) ,
n > 2, which cannot be evaluated using the values for Γ(n)(1/2) and Γ(n)(1) .

COROLLARY 5.

J(m,n,1/2) =
1

nm+1
√

π

m

∑
k=0

(
m
k

)
(−1)m−kΓ(k)

(1
n

)
Γ(m−k)

(1
2
− 1

n

)
. (15)

In particular, if m is odd then
J(m,4,1/2) = 0. (16)

Proof. The first part is obvious. For m odd, we have

J(m,4,1/2) =
1

4m+1
√

π

m

∑
k=0

(
m
k

)
(−1)m−kΓ(k)

(1
4

)
Γ(m−k)

(1
4

)

and we can apply the same idea as in in the proof of Corollary 4. �

As special values we record

J(0,3,1/2) =
Γ( 1

3)Γ( 1
6 )

3
√

π
,

J(1,3,1/2) =
Γ( 1

3 )Γ( 1
6 )

9
√

π

( π√
3

+2ln(2)
)
,
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and

J(2,4,1/2) =
(Γ( 1

4 ))2

32
√

π
(
8C+ π2),

where we have used

ψ
(1

4

)
= −γ − π

2
−3ln(2)

and

ψ ′
(1

4

)
= 8C+ π2,

where C is Catalan’s constant.

3. A different approach to evaluate J(m,n, p)

A different approach to evaluate J(m,n, p) in form of infinite series uses the
Goyal-Laddha generalized Hurwitz-Lerch zeta function [4, 8]

Φ∗
μ(z,s,a) =

∞

∑
k=0

(μ)k

k!
zk

(k+a)s (17)

(μ ∈ C,a ∈ C\Z−
0 ,s ∈ C when |z| < 1 and ℜ(s− μ) > 1 when z = 1)

where (μ)n = Γ(μ +n)/Γ(μ) denotes the Pochhammer symbol with (0)0 := 1. Using
this function we have the following result.

THEOREM 2. For integers m ∈ N0 , n ∈ N , and p ∈ Q+ with 1 < np, we have

J(m,n, p) =
m!

nm+1

(
Φ∗

p

(
−1,m+1, p− 1

n

)
+(−1)mΦ∗

p

(
−1,m+1,

1
n

))
. (18)

Proof. It is known that Φ∗
μ(z,s,a) possesses the integral representation [8, Eq.

(2.10)]

Φ∗
μ(z,s,a) =

1
Γ(s)

∫ ∞

0

ts−1 e−at

(1− ze−t)μ dt (19)

(ℜ(a),ℜ(s) > 0 when |z| � 1(z �= 1) and ℜ(s) > 1 when z = 1).

On the other hand, the substitution x = e−t in (4) results in

J(m,n, p) =
1

nm+1

∫ ∞

0

tm e−(p−1/n)t

(1+ e−t)p dt +
(−1)m

nm+1

∫ ∞

0

tm e−t/n

(1+ e−t)p dt.

This completes the proof. �
Theorem 2 turns out to be very useful to provide closed forms for J(m,n, p) for

some particular values of the parameters. For instance we have the following evalua-
tions, which extend (8) and in view of (7) also give a closed form for the integral (3)
considered by Srivastava and Choi in [6].
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COROLLARY 6. We have

J(m,2,1) =

{
0, if m is odd,

2−(m+1)(−1)m/2 Em πm+1, if m is even,
(20)

and

I(m) =

{
0, if m is odd,

(−1)m/2 Em πm+1, if m is even,
(21)

where En are the Euler numbers which are obtained by the Taylor series expansion of
1/cosh(z), |z| < π/2 .

Proof. From the expression

J(m,2,1) =
m!

2m+1

(
Φ∗

1

(
−1,m+1,

1
2

)
+(−1)mΦ∗

1

(
−1,m+1,

1
2

))

the first part (for m odd) is deduced immediately. When m is even, then

J(m,2,1) =
m!
2m Φ∗

1

(
−1,m+1,

1
2

)
.

As (1)k = k! we have the relation

Φ∗
1

(
−1,m+1,

1
2

)
= 2m+1β (m+1),

where β (z) is the Dirichlet Beta function defined by

β (z) =
∞

∑
k=1

(−1)k+1

(2k−1)z , (ℜ(z) > 0).

From here, we use the known expression valid for q ∈ N0

β (2q+1) =
∞

∑
k=1

(−1)k+1

(2k−1)2q+1

=
(−1)q E2q

(2q)!22q+2 π2q+1. �

The curious and remarkable identity, valid for all even m , may be interesting on
its own

m

∑
k=0

(
m
k

)
(−1)kΓ(k)

(1
2

)
Γ(m−k)

(1
2

)
= (−1)m/2 Em πm+1. (22)
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4. Concluding remarks

This short note was about investigating some logarithmic integrals that admit an
evaluation using combinations of higher-order derivatives of the Gamma function. The
integrals discussed in the text cannot be evaluated by standard and advanced calculus
techniques. See [2] for a recent exploration of methods. It is noteworthy, however, that
a bit more is possible. Without much effort, we can add a fourth free parameter a > 0
to the family of integrals J(m,n, p) and consider

J(m,n, p,a) =
∫ ∞

0

lnm(x)
(1+axn)p dx.

Then, the main result for J(m,n, p) presented in Theorem 1 can be generalized to
J(m,n, p,a) . We leave the details to the reader but give the next result as a taste of
what is the outcome for p = 3/2:

J(m,n,3/2,a) =
∫ ∞

0

lnm(x)
(1+axn)3/2

dx

=
2

nm+1
√

πa1/n

m

∑
j=0

(
m
j

)
(−1)m− j lnm− j(a)

×
j

∑
k=0

(
j
k

)
(−1) j−kΓ(k)

(1
n

)
Γ( j−k)

(3
2
− 1

n

)
.

Another direction we can go is to use properties of Mellin transforms. Here,
we think of the following property: If M( f (x),s) = g(s) is the Mellin transform of
the (suitably chosen) function f (x) , then M(1/x f (1/x),s) = g(1− s) . Working with
f (x) = (1+ xn)−p we get, valid for ℜ(s) < 1 < np+ ℜ(s) ,

M
(1

x
f
(1

x

)
,s

)
=

∫ ∞

0

xs−1 xnp−1

(1+ xn)p dx =
1

nΓ(p)
·Γ

(1− s
n

)
Γ
(

p− 1− s
n

)
.

This gives

dm

dsm g(1− s) =
∫ ∞

0

lnm(x)xnp+s−2

(1+ xn)p dx

=
1

nΓ(p)

m

∑
k=0

(
m
k

)
Γ(k)

(1− s
n

)
Γ(m−k)

(
p− 1− s

n

)
,

The last identity allows to evaluate some logarithmic integrals with an additional factor
xq , for some q , in the numerator. For instance, proceeding as before with s = −1,n =
p = 2 we get the formula

∫ ∞

0

lnm(x)x
(1+ x2)2 dx =

1
2m+1

m

∑
k=0

(
m
k

)
(−1)kΓ(k)(1)Γ(m−k)(1),
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from which we easily get the expressions

∫ ∞

0

x
(1+ x2)2 dx =

1
2
,

∫ ∞

0

ln(x)x
(1+ x2)2 dx = 0,

∫ ∞

0

ln2(x)x
(1+ x2)2 dx =

1
4

ζ (2) =
π2

24
,

and in general ∫ ∞

0

lnm(x)x
(1+ x2)2 dx = 0 (modd).

Similarly, with s = −2,n = 3 and p = 2,

∫ ∞

0

lnm(x)x2

(1+ x3)2 dx =
1

3m+1

m

∑
k=0

(
m
k

)
(−1)kΓ(k)(1)Γ(m−k)(1),

and we can deduce ∫ ∞

0

x2

(1+ x3)2 dx =
1
3
,

∫ ∞

0

ln(x)x2

(1+ x3)2 dx = 0,

∫ ∞

0

ln2(x)x2

(1+ x3)2 dx =
2
27

ζ (2) =
π2

81
,

and in general ∫ ∞

0

lnm(x)x2

(1+ x3)2 dx = 0 (modd).
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