A NOTE ON A FAMILY OF LOG-INTEGRALS

Khristo N. Boyadzhiev and Robert Frontczak*

Abstract

A family of log-integrals with three parameters is analyzed. In particular, some difficult integrals are evaluated exactly using the derivatives of the Gamma function.

1. Motivation

The motivation for this note comes from a paper by Srivastava and Choi from 2000 [6]. In this paper, the authors show how higher-order derivatives of the Gamma function can be obtained in closed form. Let $\Gamma(z)$ be the familiar Gamma function given by the integral

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t \quad(\Re(z)>0)
$$

The digamma function $\psi(z)$ is defined for all $z \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$ by

$$
\psi(z)=(\ln \Gamma(z))^{\prime}=-\gamma-\frac{1}{z}+\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+z}\right)
$$

with γ being the Euler-Mascheroni constant

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right)=0,5772156649 \ldots
$$

Srivastava and Choi [6] show the following recursions for the values $\Gamma^{(n)}(1)$ and $\Gamma^{(n)}(1 / 2)$ for $n \geqslant 0$ (Eqs. (2.2) and (2.3) in [6]):

$$
\begin{equation*}
\Gamma^{(n+1)}(1)=-\gamma \Gamma^{(n)}(1)+n!\sum_{k=1}^{n} \frac{(-1)^{k+1}}{(n-k)!} \zeta(k+1) \Gamma^{(n-k)}(1) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma^{(n+1)}(1 / 2)=-\delta \Gamma^{(n)}(1 / 2)+n!\sum_{k=1}^{n} \frac{(-1)^{k+1}}{(n-k)!}\left(2^{k+1}-1\right) \zeta(k+1) \Gamma^{(n-k)}(1 / 2) \tag{2}
\end{equation*}
$$

[^0]with $\delta=\gamma+2 \ln (2)$ and where
$$
\zeta(s)=\sum_{k=1}^{\infty} \frac{1}{k^{s}} \quad(\Re(s)>1)
$$
is the Riemann zeta function. These recursions allow to compute all higher-order derivatives and the first values are
\[

$$
\begin{gathered}
\Gamma^{(1)}(1)=-\gamma \\
\Gamma^{(2)}(1)=\gamma^{2}+\zeta(2), \\
\Gamma^{(3)}(1)=-\gamma^{3}-3 \gamma \zeta(2)-2 \zeta(3), \\
\Gamma^{(4)}(1)=\gamma^{4}+6 \gamma^{2} \zeta(2)+8 \gamma \zeta(3)+\frac{27}{2} \zeta(4), \\
\Gamma^{(2)}(1 / 2)=\sqrt{\pi}\left(\delta^{2}+3 \zeta(2)\right) \\
\Gamma^{(3)}(1 / 2)=\sqrt{\pi}\left(-\delta^{3}-9 \delta \zeta(2)-14 \zeta(3)\right), \\
\Gamma^{(4)}(1 / 2)=\sqrt{\pi}\left(\delta^{4}+18 \delta^{2} \zeta(2)+56 \delta \zeta(3)+\frac{315}{2} \zeta(4)\right)
\end{gathered}
$$
\]

and so on. The authors also show that these values are useful in the evaluation of integrals. As an example they analyze the family of integrals $I(m), m \geqslant 0$, given by

$$
\begin{equation*}
I(m)=\int_{0}^{\infty} \frac{\ln ^{m}(x)}{(1+x) \sqrt{x}} d x \tag{3}
\end{equation*}
$$

In this note, we study the family of logarithmic integrals given by

$$
\begin{equation*}
J(m, n, p)=\int_{0}^{\infty} \frac{\ln ^{m}(x)}{\left(1+x^{n}\right)^{p}} d x \tag{4}
\end{equation*}
$$

with the three free parameters $m \geqslant 0$ and $1<n p$. Obviously, some members of the family are easily evaluated. Namely, $J(0,2,1)=\pi / 2, J(0,1,3 / 2)=2$ and maybe a few others but the general case seems to be difficult. The family of integrals does not appear in the compendium [5]. Other logarithmic integrals, of which some are related to $J(m, n, p)$ are discussed by Boros and Moll in their treatise of integrals [1, Chapter 12].

2. Main result and consequences

ThEOREM 1. For integers $m \in \mathbb{N}_{0}, n \in \mathbb{N}$, and $p \in \mathbb{Q}_{+}$with $1<n p$, we have

$$
\begin{equation*}
J(m, n, p)=\frac{1}{n^{m+1} \Gamma(p)} \sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}\left(\frac{1}{n}\right) \Gamma^{(m-k)}\left(p-\frac{1}{n}\right) . \tag{5}
\end{equation*}
$$

Proof. For $n>0$, consider the function $f(x)=\left(1+x^{n}\right)^{-p}$. Then, from the theory of Mellin transforms (see [3, Chapter 8]) we have

$$
g(s)=\int_{0}^{\infty} \frac{x^{s-1}}{\left(1+x^{n}\right)^{p}} d x=\frac{1}{n \Gamma(p)} \cdot \Gamma\left(\frac{s}{n}\right) \Gamma\left(p-\frac{s}{n}\right) \quad 0<\mathfrak{R}(s)<n p
$$

Therefore

$$
\begin{aligned}
\frac{d^{m}}{d s^{m}} g(s) & =\int_{0}^{\infty} \frac{\ln ^{m}(x) x^{s-1}}{\left(1+x^{n}\right)^{p}} d x \\
& =\frac{1}{n \Gamma(p)} \frac{d^{m}}{d s^{m}}\left(\Gamma\left(\frac{s}{n}\right) \cdot \Gamma\left(p-\frac{s}{n}\right)\right) \\
& =\frac{1}{n \Gamma(p)} \sum_{k=0}^{m}\binom{m}{k} \Gamma^{(k)}\left(\frac{s}{n}\right) \Gamma^{(m-k)}\left(p-\frac{s}{n}\right),
\end{aligned}
$$

where in the last step the Leibniz rule for derivatives was applied. The statement follows by evaluating the derivatives at $s=1$.

We proceed with some special cases of Theorem 1.
Corollary 1. For all $m \geqslant 0$ and $n \geqslant 2$, we have

$$
\begin{equation*}
J(m, n, 1)=\frac{1}{n^{m+1}} \sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}\left(\frac{1}{n}\right) \Gamma^{(m-k)}\left(1-\frac{1}{n}\right) . \tag{6}
\end{equation*}
$$

In particular, we have the relation

$$
\begin{equation*}
J(m, 2,1)=2^{-(m+1)} I(m), \tag{7}
\end{equation*}
$$

where $I(m)$ is the integral in (3).

Proof. The first part is obvious. The second part follows from the fact that (see [6])

$$
I(m)=\sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}\left(\frac{1}{2}\right) \Gamma^{(m-k)}\left(\frac{1}{2}\right) .
$$

It is notable to observe that due to identity (7) we have that for all m odd

$$
\begin{equation*}
J(m, 2,1)=0 \tag{8}
\end{equation*}
$$

This is true because $I(m)=0$ when m is odd as is shown in [6]. Three other explicit evaluations are

$$
J(2,2,1)=\frac{\pi^{3}}{8}, \quad J(4,2,1)=\frac{5 \pi^{5}}{32}, \quad J(6,2,1)=\frac{61 \pi^{7}}{128}
$$

COROLLARY 2. For all $m \geqslant 0$ and $n \geqslant 1$, we have

$$
\begin{equation*}
J(m, n, 3 / 2)=\frac{2}{n^{m+1} \sqrt{\pi}} \sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}\left(\frac{1}{n}\right) \Gamma^{(m-k)}\left(\frac{3}{2}-\frac{1}{n}\right) . \tag{9}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
J(0, n, 3 / 2)=\frac{n-2}{n^{2} \sqrt{\pi}} \Gamma\left(\frac{1}{n}\right) \Gamma\left(\frac{n-2}{2 n}\right) \quad(n \neq 2) \tag{10}
\end{equation*}
$$

Proof. Formula (9) is also an immediate consequence of Theorem 1 keeping in mind that $\Gamma(3 / 2)=\sqrt{\pi} / 2$.

Applying the special evaluations of $\Gamma^{(n)}(1)$ and $\Gamma^{(n)}(1 / 2)$ we have the following examples:

$$
\begin{gathered}
J(1,1,3 / 2)=4 \ln (2), \quad J(1,2,3 / 2)=-\ln (2), \\
J(2,1,3 / 2)=\frac{4}{3} \pi^{2}+8 \ln ^{2}(2), \quad J(2,2,3 / 2)=\frac{1}{6} \pi^{2}+\ln ^{2}(2), \\
J(3,1,3 / 2)=24 \zeta(3)+16 \ln ^{3}(2)+8 \pi^{2} \ln (2), \\
J(3,2,3 / 2)=-\frac{1}{2}\left(3 \zeta(3)+2 \ln ^{3}(2)+\pi^{2} \ln (2)\right), \\
J(4,1,3 / 2)=\frac{24}{5} \pi^{4}+32 \pi^{2} \ln ^{2}(2)+32 \ln ^{4}(2)+192 \ln (2) \zeta(3), \\
J(4,2,3 / 2)=\frac{3}{20} \pi^{4}+\pi^{2} \ln ^{2}(2)+\ln ^{4}(2)+6 \ln (2) \zeta(3) .
\end{gathered}
$$

The following relation between $J(m, 2,3 / 2)$ and $J(m, 1,3 / 2)$ holds.
Corollary 3. For all $m \geqslant 0$,

$$
\begin{equation*}
J(m, 2,3 / 2)=(-1)^{m} 2^{-(m+1)} J(m, 1,3 / 2) \tag{11}
\end{equation*}
$$

Proof. Calculate

$$
\begin{aligned}
2^{m} \sqrt{\pi} J(m, 2,3 / 2) & =\sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}\left(\frac{1}{2}\right) \Gamma^{(m-k)}(1) \\
& =\sum_{k=0}^{m}\binom{m}{m-k}(-1)^{k} \Gamma^{(m-k)}\left(\frac{1}{2}\right) \Gamma^{(k)}(1) \\
& =(-1)^{m} \sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(m-k)}\left(\frac{1}{2}\right) \Gamma^{(k)}(1) \\
& =(-1)^{m} \frac{\sqrt{\pi}}{2} J(m, 1,3 / 2)
\end{aligned}
$$

We also have the evaluation

$$
J(1,3,3 / 2)=\frac{2}{9 \sqrt{\pi}} \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{1}{6}\right)\left(-1+\frac{\sqrt{3} \pi}{18}+\frac{1}{3} \ln (2)\right)
$$

where we have used

$$
\psi\left(\frac{1}{3}\right)=-\gamma-\frac{1}{6} \sqrt{3} \pi-\frac{3}{2} \ln (3)
$$

and

$$
\psi\left(\frac{1}{6}\right)=-\gamma-\frac{1}{2} \sqrt{3} \pi-\frac{3}{2} \ln (3)-2 \ln (2) .
$$

Corollary 4.

$$
\begin{equation*}
J(m, n, 2)=\frac{1}{n^{m+1}} \sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}\left(\frac{1}{n}\right) \Gamma^{(m-k)}\left(2-\frac{1}{n}\right) . \tag{12}
\end{equation*}
$$

In particular, for all $n \geqslant 1$

$$
\begin{equation*}
J(0, n, 2)=\frac{1}{n} \Gamma\left(\frac{1}{n}\right) \Gamma\left(\frac{2 n-1}{n}\right) \tag{13}
\end{equation*}
$$

Also, if m is odd then

$$
\begin{equation*}
J(m, 1,2)=0 \tag{14}
\end{equation*}
$$

Proof. The first two parts are obvious, so we focus on the last statement. Let m be odd. Then, we can calculate

$$
\begin{align*}
J(m, 1,2)= & \sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}(1) \Gamma^{(m-k)}(1) \\
= & \left(\sum_{k=0}^{(m-1) / 2}+\sum_{k=(m-1) / 2+1}^{m}\right)\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}(1) \Gamma^{(m-k)}(1) \\
= & \sum_{k=0}^{(m-1) / 2}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}(1) \Gamma^{(m-k)}(1) \\
& +\sum_{k=0}^{(m-1) / 2}\binom{m}{\frac{m+1}{2}+k}(-1)^{m-(m+1) / 2-k} \Gamma^{((m+1) / 2+k)}(1) \Gamma^{(m-(m+1) / 2-k)}(1) \tag{1}\\
= & \sum_{k=0}^{(m-1) / 2}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}(1) \Gamma^{(m-k)}(1) \\
& +\sum_{k=0}^{(m-1) / 2}\binom{m}{\frac{m+1}{2}+k}(-1)^{(m-1) / 2-k} \Gamma^{((m+1) / 2+k)}(1) \Gamma^{((m-1) / 2-k)}(1) .
\end{align*}
$$

But,

$$
\binom{m}{\frac{m+1}{2}+k}=\binom{m}{\frac{m-1}{2}-k}
$$

and changing the order of summation in the second sum we arrive at

$$
J(m, 1,2)=\left(1+(-1)^{m}\right) \sum_{k=0}^{(m-1) / 2}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}(1) \Gamma^{(m-k)}(1)
$$

which finishes the proof.
Once more, applying the special evaluations of $\Gamma^{(n)}(1)$ we state the following results

$$
J(2,1,2)=\frac{\pi^{2}}{3}, \quad J(4,1,2)=27 \zeta(4)+6 \zeta^{2}(2)=\frac{7 \pi^{4}}{15}
$$

and

$$
J(6,1,2)=2\left(\Gamma^{(6)}(1)-6 \Gamma^{(1)}(1) \Gamma^{(5)}(1)+15 \Gamma^{(2)}(1) \Gamma^{(4)}(1)\right)-20\left(\Gamma^{(3)}(1)\right)^{2}=\frac{31 \pi^{6}}{21}
$$

In addition,

$$
J(1,2,2)=-J(0,2,2)=\frac{\pi}{4}, \quad \text { and } \quad J(2,2,2)=\frac{\pi^{3}}{16}
$$

where we have used $\psi(3 / 2)=2-\delta$.

We close this section with a few observations concerning the integrals $J(m, n, 1 / 2)$, $n>2$, which cannot be evaluated using the values for $\Gamma^{(n)}(1 / 2)$ and $\Gamma^{(n)}(1)$.

Corollary 5.

$$
\begin{equation*}
J(m, n, 1 / 2)=\frac{1}{n^{m+1} \sqrt{\pi}} \sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}\left(\frac{1}{n}\right) \Gamma^{(m-k)}\left(\frac{1}{2}-\frac{1}{n}\right) \tag{15}
\end{equation*}
$$

In particular, if m is odd then

$$
\begin{equation*}
J(m, 4,1 / 2)=0 \tag{16}
\end{equation*}
$$

Proof. The first part is obvious. For m odd, we have

$$
J(m, 4,1 / 2)=\frac{1}{4^{m+1} \sqrt{\pi}} \sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \Gamma^{(k)}\left(\frac{1}{4}\right) \Gamma^{(m-k)}\left(\frac{1}{4}\right)
$$

and we can apply the same idea as in in the proof of Corollary 4.
As special values we record

$$
\begin{gathered}
J(0,3,1 / 2)=\frac{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{1}{6}\right)}{3 \sqrt{\pi}} \\
J(1,3,1 / 2)=\frac{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{1}{6}\right)}{9 \sqrt{\pi}}\left(\frac{\pi}{\sqrt{3}}+2 \ln (2)\right),
\end{gathered}
$$

and

$$
J(2,4,1 / 2)=\frac{\left(\Gamma\left(\frac{1}{4}\right)\right)^{2}}{32 \sqrt{\pi}}\left(8 C+\pi^{2}\right)
$$

where we have used

$$
\psi\left(\frac{1}{4}\right)=-\gamma-\frac{\pi}{2}-3 \ln (2)
$$

and

$$
\psi^{\prime}\left(\frac{1}{4}\right)=8 C+\pi^{2}
$$

where C is Catalan's constant.

3. A different approach to evaluate $J(m, n, p)$

A different approach to evaluate $J(m, n, p)$ in form of infinite series uses the Goyal-Laddha generalized Hurwitz-Lerch zeta function [4, 8]

$$
\begin{gather*}
\Phi_{\mu}^{*}(z, s, a)=\sum_{k=0}^{\infty} \frac{(\mu)_{k}}{k!} \frac{z^{k}}{(k+a)^{s}} \tag{17}\\
\left(\mu \in \mathbb{C}, a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, s \in \mathbb{C} \text { when }|z|<1 \text { and } \Re(s-\mu)>1 \text { when } z=1\right)
\end{gather*}
$$

where $(\mu)_{n}=\Gamma(\mu+n) / \Gamma(\mu)$ denotes the Pochhammer symbol with $(0)_{0}:=1$. Using this function we have the following result.

THEOREM 2. For integers $m \in \mathbb{N}_{0}, n \in \mathbb{N}$, and $p \in \mathbb{Q}_{+}$with $1<n p$, we have

$$
\begin{equation*}
J(m, n, p)=\frac{m!}{n^{m+1}}\left(\Phi_{p}^{*}\left(-1, m+1, p-\frac{1}{n}\right)+(-1)^{m} \Phi_{p}^{*}\left(-1, m+1, \frac{1}{n}\right)\right) \tag{18}
\end{equation*}
$$

Proof. It is known that $\Phi_{\mu}^{*}(z, s, a)$ possesses the integral representation [8, Eq. (2.10)]

$$
\begin{gather*}
\Phi_{\mu}^{*}(z, s, a)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1} e^{-a t}}{\left(1-z e^{-t}\right)^{\mu}} d t \tag{19}\\
(\Re(a), \Re(s)>0 \text { when }|z| \leqslant 1(z \neq 1) \text { and } \mathfrak{R}(s)>1 \text { when } z=1) .
\end{gather*}
$$

On the other hand, the substitution $x=e^{-t}$ in (4) results in

$$
J(m, n, p)=\frac{1}{n^{m+1}} \int_{0}^{\infty} \frac{t^{m} e^{-(p-1 / n) t}}{\left(1+e^{-t}\right)^{p}} d t+\frac{(-1)^{m}}{n^{m+1}} \int_{0}^{\infty} \frac{t^{m} e^{-t / n}}{\left(1+e^{-t}\right)^{p}} d t
$$

This completes the proof.
Theorem 2 turns out to be very useful to provide closed forms for $J(m, n, p)$ for some particular values of the parameters. For instance we have the following evaluations, which extend (8) and in view of (7) also give a closed form for the integral (3) considered by Srivastava and Choi in [6].

Corollary 6. We have

$$
J(m, 2,1)= \begin{cases}0, & \text { if } m \text { is odd } \tag{20}\\ 2^{-(m+1)}(-1)^{m / 2} E_{m} \pi^{m+1}, & \text { if } m \text { is even }\end{cases}
$$

and

$$
I(m)= \begin{cases}0, & \text { if } m \text { is odd } \tag{21}\\ (-1)^{m / 2} E_{m} \pi^{m+1}, & \text { if } m \text { is even }\end{cases}
$$

where E_{n} are the Euler numbers which are obtained by the Taylor series expansion of $1 / \cosh (z),|z|<\pi / 2$.

Proof. From the expression

$$
J(m, 2,1)=\frac{m!}{2^{m+1}}\left(\Phi_{1}^{*}\left(-1, m+1, \frac{1}{2}\right)+(-1)^{m} \Phi_{1}^{*}\left(-1, m+1, \frac{1}{2}\right)\right)
$$

the first part (for m odd) is deduced immediately. When m is even, then

$$
J(m, 2,1)=\frac{m!}{2^{m}} \Phi_{1}^{*}\left(-1, m+1, \frac{1}{2}\right)
$$

As $(1)_{k}=k$! we have the relation

$$
\Phi_{1}^{*}\left(-1, m+1, \frac{1}{2}\right)=2^{m+1} \beta(m+1)
$$

where $\beta(z)$ is the Dirichlet Beta function defined by

$$
\beta(z)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2 k-1)^{z}}, \quad(\Re(z)>0)
$$

From here, we use the known expression valid for $q \in \mathbb{N}_{0}$

$$
\begin{aligned}
\beta(2 q+1) & =\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2 k-1)^{2 q+1}} \\
& =\frac{(-1)^{q} E_{2 q}}{(2 q)!2^{2 q+2}} \pi^{2 q+1}
\end{aligned}
$$

The curious and remarkable identity, valid for all even m, may be interesting on its own

$$
\begin{equation*}
\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} \Gamma^{(k)}\left(\frac{1}{2}\right) \Gamma^{(m-k)}\left(\frac{1}{2}\right)=(-1)^{m / 2} E_{m} \pi^{m+1} \tag{22}
\end{equation*}
$$

4. Concluding remarks

This short note was about investigating some logarithmic integrals that admit an evaluation using combinations of higher-order derivatives of the Gamma function. The integrals discussed in the text cannot be evaluated by standard and advanced calculus techniques. See [2] for a recent exploration of methods. It is noteworthy, however, that a bit more is possible. Without much effort, we can add a fourth free parameter $a>0$ to the family of integrals $J(m, n, p)$ and consider

$$
J(m, n, p, a)=\int_{0}^{\infty} \frac{\ln ^{m}(x)}{\left(1+a x^{n}\right)^{p}} d x
$$

Then, the main result for $J(m, n, p)$ presented in Theorem 1 can be generalized to $J(m, n, p, a)$. We leave the details to the reader but give the next result as a taste of what is the outcome for $p=3 / 2$:

$$
\begin{aligned}
J(m, n, 3 / 2, a)= & \int_{0}^{\infty} \frac{\ln ^{m}(x)}{\left(1+a x^{n}\right)^{3 / 2}} d x \\
= & \frac{2}{n^{m+1} \sqrt{\pi} a^{1 / n}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{m-j} \ln ^{m-j}(a) \\
& \times \sum_{k=0}^{j}\binom{j}{k}(-1)^{j-k} \Gamma^{(k)}\left(\frac{1}{n}\right) \Gamma^{(j-k)}\left(\frac{3}{2}-\frac{1}{n}\right) .
\end{aligned}
$$

Another direction we can go is to use properties of Mellin transforms. Here, we think of the following property: If $M(f(x), s)=g(s)$ is the Mellin transform of the (suitably chosen) function $f(x)$, then $M(1 / x f(1 / x), s)=g(1-s)$. Working with $f(x)=\left(1+x^{n}\right)^{-p}$ we get, valid for $\mathfrak{R}(s)<1<n p+\mathfrak{R}(s)$,

$$
M\left(\frac{1}{x} f\left(\frac{1}{x}\right), s\right)=\int_{0}^{\infty} \frac{x^{s-1} x^{n p-1}}{\left(1+x^{n}\right)^{p}} d x=\frac{1}{n \Gamma(p)} \cdot \Gamma\left(\frac{1-s}{n}\right) \Gamma\left(p-\frac{1-s}{n}\right)
$$

This gives

$$
\begin{aligned}
\frac{d^{m}}{d s^{m}} g(1-s) & =\int_{0}^{\infty} \frac{\ln ^{m}(x) x^{n p+s-2}}{\left(1+x^{n}\right)^{p}} d x \\
& =\frac{1}{n \Gamma(p)} \sum_{k=0}^{m}\binom{m}{k} \Gamma^{(k)}\left(\frac{1-s}{n}\right) \Gamma^{(m-k)}\left(p-\frac{1-s}{n}\right)
\end{aligned}
$$

The last identity allows to evaluate some logarithmic integrals with an additional factor x^{q}, for some q, in the numerator. For instance, proceeding as before with $s=-1, n=$ $p=2$ we get the formula

$$
\int_{0}^{\infty} \frac{\ln ^{m}(x) x}{\left(1+x^{2}\right)^{2}} d x=\frac{1}{2^{m+1}} \sum_{k=0}^{m}\binom{m}{k}(-1)^{k} \Gamma^{(k)}(1) \Gamma^{(m-k)}(1)
$$

from which we easily get the expressions

$$
\begin{gathered}
\int_{0}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2}} d x=\frac{1}{2} \\
\int_{0}^{\infty} \frac{\ln (x) x}{\left(1+x^{2}\right)^{2}} d x=0 \\
\int_{0}^{\infty} \frac{\ln ^{2}(x) x}{\left(1+x^{2}\right)^{2}} d x=\frac{1}{4} \zeta(2)=\frac{\pi^{2}}{24}
\end{gathered}
$$

and in general

$$
\int_{0}^{\infty} \frac{\ln ^{m}(x) x}{\left(1+x^{2}\right)^{2}} d x=0 \quad(\text { modd })
$$

Similarly, with $s=-2, n=3$ and $p=2$,

$$
\int_{0}^{\infty} \frac{\ln ^{m}(x) x^{2}}{\left(1+x^{3}\right)^{2}} d x=\frac{1}{3^{m+1}} \sum_{k=0}^{m}\binom{m}{k}(-1)^{k} \Gamma^{(k)}(1) \Gamma^{(m-k)}(1)
$$

and we can deduce

$$
\begin{gathered}
\int_{0}^{\infty} \frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x=\frac{1}{3} \\
\int_{0}^{\infty} \frac{\ln (x) x^{2}}{\left(1+x^{3}\right)^{2}} d x=0 \\
\int_{0}^{\infty} \frac{\ln ^{2}(x) x^{2}}{\left(1+x^{3}\right)^{2}} d x=\frac{2}{27} \zeta(2)=\frac{\pi^{2}}{81}
\end{gathered}
$$

and in general

$$
\int_{0}^{\infty} \frac{\ln ^{m}(x) x^{2}}{\left(1+x^{3}\right)^{2}} d x=0 \quad(m \text { odd })
$$

Acknowledgements. The authors are grateful to the referee for a very quick review and her/his valuable suggestions. In particular, the idea to connect $J(m, n, p)$ to the Goyal-Laddha generalized Hurwitz-Lerch zeta function came from the referee during the review.

REFERENCES

[1] G. Boros and V. H. Moll, Irresistible Integrals Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, USA, 2004.
[2] K. N. Boyadzhiev, Special Techniques for Solving Integrals: Examples and Problems, World Scientific, USA, 2021.
[3] L. Debnath and D. Bhatta, Integral Transforms and Their Applications, 3rd edition, Chapman \& Hall/CRC, USA, 2014.
[4] S. P. Goyal and R. K. Laddha, On the generalized zeta function and the generalized Lambert function, Ganita Sandesh 11 (1997), 99-108.
[5] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products, 7th edition, Elsevier Academic Press, Amsterdam, 2007.
[6] H. M. Srivastava and J. Choi, Evaluation of higher-order derivatives of the Gamma function, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 11 (2000), 9-18.
[7] H. M. Srivastava and J. Choi, Series associated with the Zeta and related functions, Springer Science+Business Media, 2001.
[8] H. M. Srivastava, R. K. Saxena, T. K. Pogány and R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct. 22 (2011), no. 7, 487-506.
(Received August 6, 2022)
Khristo N. Boyadzhiev
Department of Mathematics
Ohio Northern University
Ada, OH 45810, USA
e-mail: k-boyadzhiev@onu.edu
Robert Frontczak
Landesbank Baden-Württemberg (LBBW)
70173 Stuttgart, Germany
e-mail: robert.frontczak@1bbw.de

[^0]: Mathematics subject classification (2020): 11B83, 26A36, 33B15, 44A15.
 Keywords and phrases: Log-integral, Gamma function, derivative, zeta function.
 Statements and conclusions made in this article by R. F. are entirely those of the author. They do not necessarily reflect the views of LBBW.

 * Corresponding author.

