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A NOTE ON A FAMILY OF LOG-INTEGRALS

KHRISTO N. BOYADZHIEV AND ROBERT FRONTCZAK *

Abstract. A family of log-integrals with three parameters is analyzed. In particular, some diffi-
cult integrals are evaluated exactly using the derivatives of the Gamma function.

1. Motivation

The motivation for this note comes from a paper by Srivastava and Choi from 2000
[6]. In this paper, the authors show how higher-order derivatives of the Gamma function
can be obtained in closed form. Let I'(z) be the familiar Gamma function given by the
integral

(o) = /0 Tl (R(z) > 0).

The digamma function y(z) is defined for all z € C\ {0,—1,-2,...} by

Z

PRV S < A
Ve = @) =-v- 2+ 3 (3~ 7)

with 7y being the Euler-Mascheroni constant

n

y=lim (Z % —1nn) —0,5772156649. . ..

n—oo =1

Srivastava and Choi [6] show the following recursions for the values T (1) and
(")(1/2) for n >0 (Eqs. (2.2) and (2.3) in [6]):

n k+1
r+0 (1) = =T (1) +n! 2 C(k+1)T=R (1) (1)

and

r+0(1/2) = —8T(1/2) + i 2"+1 DE¢(k+Dr"=9a/2) @)
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with 8 = y+2In(2) and where

=S @6
k=1

is the Riemann zeta function. These recursions allow to compute all higher-order
derivatives and the first values are

F(l)(l) =7

Y1) =7 +L2)
—7 —374(2) - 24(3),
T@(1) = 7* + 6724 (2) + 87 ( )+§C(4),
D(1/2) = -6/,
@(1/2) = Vr(8*+3¢£(2)),
()(1/2) = Vm(—5> —988(2) — 145(3)),

W(1/2) = ﬁ(54+ 18828(2) +568¢ (3 )+£C( ))

and so on. The authors also show that these values are useful in the evaluation of
integrals. As an example they analyze the family of integrals I(m),m > 0, given by

oo lnm (x)
I(m) = / ———=dx. 3
= Jy Trave )
In this note, we study the family of logarithmic integrals given by
= In"(x)
J = ——d 4
mmp)= [ g o)

with the three free parameters m > 0 and 1 < np. Obviously, some members of the
family are easily evaluated. Namely, J(0,2,1) = /2, J(0,1,3/2) = 2 and maybe a
few others but the general case seems to be difficult. The family of integrals does not
appear in the compendium [5]. Other logarithmic integrals, of which some are related
to J(m,n, p) are discussed by Boros and Moll in their treatise of integrals [1, Chapter
12].
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2. Main result and consequences

THEOREM 1. Forintegers m € Ny, n € N, and p € Q4 with 1 < np, we have

= ot B (D e (el

k=0

Proof. For n> 0, consider the function f(x) = (1+x")"7. Then, from the theory
of Mellin transforms (see [3, Chapter 8]) we have
(s) /m > ! r(s>r( s) 0<R(s) <
s) = x= T = — = s) < np.
g o (14+x7)P nl'(p) n - p

Therefore

m  1p™ X )CY71
)= [ %d
- nFl(p) ;;’” <F<_> ~l"(p— %))
- 2 (oG (-2).

where in the last step the Leibniz rule for derivatives was applied. The statement follows
by evaluating the derivativesat s =1. [

We proceed with some special cases of Theorem 1.

COROLLARY 1. Forall m >0 and n > 2, we have

J(m,n,1) an Z( ) ym—kp(k ><’1l)r('"—’<><1—%). (6)

In particular, we have the relation
J(m,2,1) =27 V1(m), (7)

where I(m) is the integral in (3).

Proof. The first part is obvious. The second part follows from the fact that (see
[61)
_x (™ m—k <k)(1> (mfk><1>
I(m) = — = — .
(m) %(0( "™k 5)T 5) O
It is notable to observe that due to identity (7) we have that for all m odd

J(m,2,1) =0. (8)
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This is true because I(m) = 0 when m is odd as is shown in [6]. Three other explicit
evaluations are
X 51 617

s =T J@e2D=3% U621 =

COROLLARY 2. Forall m >0 and n > 1, we have

2 n 1 3 1
Tomn3/2) = o X (r;':) O (E ) ©
k=0

In particular,
n—2 1 n—2
J(0,1,3/2) = mr<;)r(7) (n#2). (10)

Proof. Formula (9) is also an immediate consequence of Theorem 1 keeping in
mind that T'(3/2) = /x/2. O

Applying the special evaluations of T (1) and T")(1/2) we have the following
examples:
J(1,1,3/2) =41In(2),  J(1,2,3/2) = —In(2),

4 1
J(2,1,3/2) = §n2+81n2(2), J(2,2,3/2) = g7r2+1n2(2),
J(3,1,3/2) = 24£(3) + 161n°(2) + 87 1n(2),

J(3,2,3/2) = (3:(3) 12Id(2) + 7t21n(2)> :

!
2
24
J(4,1,3/2) = ?n“ +327°1n%(2) +321n*(2) + 1921n(2)¢ (3),
J(4,2,3/2) = i7:4+7121n2(2)+1n4(2) +6In(2)¢(3)
) ) - 20 :
The following relation between J(m,2,3/2) and J(m,1,3/2) holds.
COROLLARY 3. Forall m >0,
J(m,2,3/2) = (—1)"2" "D (m,1,3/2). (11)

Proof. Calculate

2" /7 (m,2,3/2) = i (’Z) (—1)m*kr(k><%)r(m*k>(1)

k=0

=3 ( k)(—1)kr<m—")<%)r(’<>(1)
k=0 \"" —
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‘We also have the evaluation

J(1,3,3/2) =

where we have used

and

COROLLARY 4.

J(m,n,2) =

)-

9V

() (1

18 3

o(8) -1~ se- 3w

In particular, for all n > 1

Also, if m is odd then

Proof. The first two parts are obvious, so we focus on the last statement.

J(m,1,2) =

be odd. Then, we can calculate

J(m,1,2) =

But,

k=0

(m—1)/2

(m— 1/2
=0

)

ml/

=0
m—l)

+ 2

k=0

+

2

m
k

1 3
—y— 5\/§71:— 51n(3) —21In(2).

e 2, (1) (e

0.

5 (7)ot )

n(2)),

)(—1>mkr<k><1>r<mk><1>

( ) Y=k ®) ()yrem=R) (1)

mfl)/ (

135

12)

13)

(14)

Let m

m m—(m — m m—(m —
A k) D)2k (1) /24K (= (1) /2K) (1)

( ) ym=kp®) () rm=k) (1)

(

m+l_|_k

m ) 1)(in—l)/Z—kr((rn+l)/2+k)(l)r((m—l)/2—k)(1).
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and changing the order of summation in the second sum we arrive at

K12 =413 <m> (=0T @rea)
o k=0 k 7

which finishes the proof. [

Once more, applying the special evaluations of F(")(l) we state the following
results

J(2,1,2) = %2 J(4,1,2) =27{(4) +68%(2) = %
and
J(6,1,2) =2(T (1) = 6r) (1T (1) + 15T (1T (1)) — 20T (1)) = %ﬁ

In addition,

TL'3
=75

J(l,Z,Z):—J(0,2,2):§, and J(2,2,2) = 12

where we have used w(3/2)=2-9.

We close this section with a few observations concerning the integrals J(m,n,1/2),
n > 2, which cannot be evaluated using the values for I'" (1/2) and T()(1).

COROLLARY 5.
1 Zo(m 1 1 1
Jmn,1/2) = —— — 1)k —>r<m*k>(———>. 15
mn1/2)= o= 3 () o (e (3-0) a9
In particular, if m is odd then

J(m,4,1/2) =0. (16)

Proof. The first part is obvious. For m odd, we have

J(m,4,1/2) = WE kfb ('Z) (—1ymkr®) (%) =) (%)

and we can apply the same idea as in in the proof of Corollary 4. [

As special values we record

J(0,3,1/2) = F(iz/FE(%),
J(1,3,1/2) = r(éi}“ﬁ(%) (% +21n(2)),
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and
(C(3))?

7(2,4,1/2) = NG

(8C+7?),
where we have used

T
o(§)=-r-5-amey

and

where C is Catalan’s constant.

3. A different approach to evaluate J(m,n,p)

A different approach to evaluate J(m,n,p) in form of infinite series uses the
Goyal-Laddha generalized Hurwitz-Lerch zeta function [4, &]

oo

" oy Wz
‘I’NM)—% K (k+a) an

(MeC,acC\Z,,s € Cwhen|z] <landR(s—pu)>1whenz=1)

where (1), =T (¢ +n)/T(u) denotes the Pochhammer symbol with (0)g := 1. Using
this function we have the following result.

THEOREM 2. Forintegers m € Ny, n € N, and p € Q4 with 1 < np, we have
_ m! . 1 o 1
J(m,n,p) = W(‘I)p(—Lm—f—l,p—;)—l—(—l) (I)p<—1,m+l7;>>. (18)

o l01;’];"00]“. It is known that @}, (z,5,a) possesses the integral representation [8, Eq.

. - 1 oo tsflefat
q)u(z7s7a) = W/O mdl (19)
(R(a),R(s) > O when |z| < 1(z# 1) and R(s) > | whenz = 1).

On the other hand, the substitution x = e~ in (4) results in

I N o VL T
J(m,n,P):an/O (l+e—t)17 dt + nm+1 /0 (l+€_t)pdt.

This completes the proof. [l

Theorem 2 turns out to be very useful to provide closed forms for J(m,n, p) for
some particular values of the parameters. For instance we have the following evalua-
tions, which extend (8) and in view of (7) also give a closed form for the integral (3)
considered by Srivastava and Choi in [6].
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COROLLARY 6. We have

0, if mis odd,
J(m’z’ 1) o {2_(1n+1)(_1)m/2Em n.m+l, if mis even, 20)

and

0, if mis odd,
I(m) = 21
(m> {(_l)m/zEm n-m+l, lfm is even, ( )

where E, are the Euler numbers which are obtained by the Taylor series expansion of
1/cosh(z), |z| < /2.

Proof. From the expression

1 1
J(m,2,1) = 2m+1 (@*(— 1,m—|—1,§> +(—1)mq>*;(— 1,m—|—1,§>>

the first part (for m odd) is deduced immediately. When m is even, then

! 1
J(m,2,1) = %cb’{(— l7m+1,§>.

As (1); = k! we have the relation

1
O (—Lm+1,5) =2 B(n+ 1),

where f3(z) is the Dirichlet Beta function defined by
fd )k+1
R(z) >0).
g e (R@>0
From here, we use the known expression valid for g € Ny

oo (_1)k+1
B(2g+1)= kg,l k= 1)t

_ (_l)qE2q 2g+1
“ G

The curious and remarkable identity, valid for all even m, may be interesting on

its own
< (™M k@ (NN (1Y w2 m+1
k:EO <k>( DT <2)F <2> = (-1 E,n""". (22)
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4. Concluding remarks

This short note was about investigating some logarithmic integrals that admit an
evaluation using combinations of higher-order derivatives of the Gamma function. The
integrals discussed in the text cannot be evaluated by standard and advanced calculus
techniques. See [2] for a recent exploration of methods. It is noteworthy, however, that
a bit more is possible. Without much effort, we can add a fourth free parameter a > 0
to the family of integrals J(m,n, p) and consider

oo lnm(x)
J = _
(m,n,p,) /0 (14+ax)p

Then, the main result for J(m,n,p) presented in Theorem 1 can be generalized to
J(m,n,p,a). We leave the details to the reader but give the next result as a taste of
what is the outcome for p =3/2:

= In"(x)
J(m,n,3/2,a)=/0 W X

= n’"“#\/ﬁal/" .ﬁb (rj) (=)™ 1In" (a)
e @G-

Another direction we can go is to use properties of Mellin transforms. Here,
we think of the following property: If M(f(x),s) = g(s) is the Mellin transform of
the (suitably chosen) function f(x), then M(1/xf(1/x),s) = g(1 —s). Working with
S(x) = (1+x")"P we get, valid for R(s) < 1 <np+ R(s),

oo syl —s —s
M(%f(%),s) :/0 (1 _:;:)p dx= nrl(p) 'F<1n )F(p— 1n )

This gives

a4 e I (x) 2
Wg(l_s)_/o (1+x")P
1 & /m 1—s 1—s
- (k) (m—k) () _
nl"(p)%(k)r ( n )F (p n )’

The last identity allows to evaluate some logarithmic integrals with an additional factor
x4, for some ¢, in the numerator. For instance, proceeding as before with s = —1,n =
p =2 we get the formula

[ s = g 2 () 0T e,
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from which we easily get the expressions
° X 1
T dx==
/0 1+22" "2

< 1
/ nb)x e,
0

(1+x2)
= Inf(x)x 1 o
/O (l+x2)2d~x—ZC(2)_ﬂ7

and in general

/Ow%dxzo (modd).

Similarly, with s = —2,n =3 and p =2,

© 0™ (x x2 mo /o
/0 1(145)33)2 dx = 3ml+1 Y (k)(—1)kr(k>(1)r<mk)(1),
k=0

and we can deduce

> X2 1
iy ==
| ey

= In(x)x?
§ epds=o

/°° In?(x)x? 2 (2) = L
o T+ 7275 78

and in general

o mxx2
/O%dx:o (modd).
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