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RECURRENCE RELATIONS FOR THE MOMENTS OF

DISCRETE SEMICLASSICAL ORTHOGONAL POLYNOMIALS

DIEGO DOMINICI

Dedicated to Dick Askey (1933 – 2019), Grandmaster of Special Functions.

Abstract. We study recurrence relations satisfied by the moments νn (z) of a linear functional L
whose first moment satisfies a differential equation (in z ) with polynomial coefficients.

1. Introduction

Let K be a field (we mostly think of K as the set of complex numbers C) and N0

be the set of nonnegative integers

N0 = N∪{0} = {0,1,2, . . .} .

We will denote by δk,n the Kronecker delta, defined by

δk,n =
{

1, k = n
0, k �= n

, k,n ∈ N0,

and say that {Λn (x)}n�0 ⊂ K[x] is a monic basis if Λn (x) is monic and deg(Λn) = n
for all n ∈ N0.

Suppose that {Λn (x)}n�0 is a monic basis and L : K[x]→ K is a linear functional
(acting on the variable x) satisfying

hn = L
[
Λ2

n

] �= 0, n ∈ N0.

If the system of linear equations

n

∑
i=0

L [ΛkΛi]cn,i = hnδk,n, 0 � k � n, cn,n = 1, (1)

has a unique solution {cn,i}0�i�n , we can define a monic polynomial Pn (x) by

Pn (x) =
n

∑
i=0

cn,iΛi (x) ,
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and say that {Pn (x)}n�0 is an orthogonal polynomial sequence with respect to the
functional L .

The system (1) can be written as

L [ΛkPn] = hnδk,n, 0 � k � n,

and using linearity we see that the sequence {Pn (x)}n�0 satisfies the orthogonality
conditions

L [PkPn] = hnδk,n, 0 � k � n. (2)

If we define the (symmetric) matrix of moments G by

Gi,k = L [ΛiΛk] , i,k ∈ N0, (3)

one can show [14] that the condition

det
0�i,k�n

(
Gi,k
) �= 0, n � 0,

is equivalent to the existence of a unique family of orthogonal polynomial satisfying
(2) and deg(Pn) = n.

The theory of orthogonal polynomials is vast and rich, extending all the way back
to the groundbreaking work of Legendre [42], where he introduced the family of poly-
nomials that now bears his name. We direct the interested reader to (some of!) the
fundamental treatises on the field [8], [10], [29], [31], [33], [40], [70].

A particular fruitful approach that has received a lot of attention in recent years,
is to work with the (infinite) matrix (3) acting on the (infinite) vector

−→
P = (P0,P1, . . .) .

One can then view orthogonal polynomial sequences as elements of an infinite dimen-
sional vector space [17], [22], [30], [45], [74], [75], [76], [77].

Of course, in its full generality, it’s difficult to get results that apply to any family
of orthogonal polynomials. Thus, one chooses, for example:

i.) an operator (difference, differential, functional, integral) that annihilates Pn (x) .
ii.) a degree-reducing operator relating Pn (x) and Pn−1 (x) (Sheffer classification,

umbral calculus, generating functions).
iii.) a particular form of the linear functional L (continuous, discrete, matrix val-

ued, q -series).
iv.) a particular domain of L (C , N0 , R , quadratic lattices, unit circle).
Another possibility, is to ask L to satisfy a relation of the form

L [σ p] = L [τU [p]] , p ∈ K[x],

where σ (x) ,τ (x) are fixed polynomials, and U : K[x] → K[x] is a degree reducing
linear operator satisfying U [1] = 0 and

degU [xn] = n−1, n ∈ N.

In this case, we say that L is a semiclassical functional with respect to U . The class of
the functional L is defined by

s = max{deg(σ)−2,deg(τ)−1} ,
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and semiclassical functional of class s = 0 are called classical.
This type of functionals was introduced by Shohat [67], and studied in detail by P.

Maroni and collaborators [53], [55], [56], particularly when U [p] = ∂xp is the deriva-
tive operator [47], [51], [52], and also for the operator

Uω [p] =
p(x+ ω)− p(x)

ω
,

which contains the finite difference operators Δ,∇ as special cases (ω = ±1) , and the
derivative operator as a limiting case [1]. Other examples include the q -semiclassical
polynomials [38], [57], associated with the operator

Uq [p] =
p(qx)− p(x)

(q−1)x
, q �= 1.

In this paper, we will focus on the so-called discrete semiclassical orthogonal
polynomials [7], [27], [50], [58], [79], where U is the shift operator U [p] = p(x+1) .
In this case, the linear functional L is of the form

L [p] =
∞

∑
x=0

p(x)ρ (x) , p ∈ K[x],

where ρ (x) is a given weight function. The traditional starting point is the Pearson
equation satisfied by ρ (x)

U [σρ ] = τ (x)ρ (x) , (4)

but after trying this approach in [24], we found it very dissatisfying, especially when
one considers spectral transformations of L .

For example, applying an Uvarov transformation to L at a point ω (see Section
3.3) will lead to the Pearson equation

ρ̃ (x+1)
ρ̃ (x)

=
(x−ω)(x+1−ω)τ (x)

(x−ω)(x+1−ω)σ (x+1)
,

and this begs the question of when one is allowed (or not) to simplify the above expres-
sion. A possibility to avoid this problem is to study the difference equation satisfied by
the Stieltjes transform of L

S (t) = L

[
1

t − x

]
, t /∈ N0,

and we did this in [25], where we classified the discrete semiclassical orthogonal poly-
nomials of class s � 2.

Now suppose that the weight function ρ (x) also contains an independent variable
z , ρ = ρ̃ (x;z) . Although this may seem like an extra assumption, we note that one
could always introduce such a variable as a Toda deformation [9], [62], [72],

ρ̃ (x;z) = ρ (x)ex f (z), f (z0) = 0,



146 D. DOMINICI

and recover the original functional L by setting z = z0. We studied this type of weight
functions in [23], and observed that the operator ϑ defined by

ϑ [u] = z
du
dz

is naturally associated to the shift operator.
As we will see in Section 2, this allows us to replace the Pearson equation (4) with

the ODE satisfied by the first moment λ0 (z) = L [1] ,

σ (ϑ) [λ0] = zτ (ϑ) [λ0] . (5)

We note in passing that the ODE (5) is the true starting point of the theory, and by
considering alternative equations satisfied by λ0 (z) , one could study semiclassical or-
thogonal polynomials associated with different operators U.

The structure of the paper is as follows: in Section 2, we introduce the operator ϑ
and the ODE satisfied by the moments of a discrete linear functional

σ (ϑ)Λn (ϑ) [λ0] = zτ (ϑ)Λn (ϑ +1)[λ0] , n ∈ N0. (6)

This will naturally lead to the class of functionals whose first moment λ0 (z) can be
represented as a (generalized) hypergeometric function.

Since the ODE (6) contains a shift, we need to choose a convenient basis {Λn(x)}n�0.
In Section 2.1, we study the monomial basis and derive a linear recurrence of order
n + s + 1 for the (standard) moments μn (z) . We also find a representation for μn (z)
as a linear combination involving a family of polynomials that satisfies a differential-
difference equation.

In Section 2.2, we consider the basis of falling factorial polynomials defined by
φ0 (x) = 1,

φn+1 (x) = xφn (x−1), n ∈ N,

which allows us to easily work on the lattice N0 . We use Newton’s interpolation for-
mula and obtain a linear recurrence of order s+ 1 for the (modified) moments νn (z) .
The linear functionals of class s = 1 are particularly interesting, since in this case the
moments νn (z) are themselves a family of orthogonal polynomials. This is an area that
has been studied in detail by M. Ismail and D. Stanton, see [34], [35], and [36].

Both the monomials and the falling factorial polynomials are examples of Newton
basis polynomials defined by n0 (x) = 1 and

nk (x) =
k−1

∏
j=0

(x−κ j) ,

where
{

κ j
}

j�0 is a fixed sequence. This type of polynomials satisfy 2-term recurrence
relations, which we study in Section 2.3. Among other results, we look at the connec-
tion between the monomial and falling factorial bases (through Stirling numbers), and
find the (formal) representation for the Stieltjes transform

S (ω ;z) =
∞

∑
k=0

λk (z)
Λk+1 (ω)

. (7)
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In [26], we used (7) to derive recurrence relations for the modified moments νn (z) .
In Section 3, we consider transformations Ωα

β between different families of dis-
crete semiclassical orthogonal polynomials. We introduce a uniform notation to label
objects belonging to different families, and show how the recurrence relations for the
moments change as we apply a transformation.

In Sections 3.1, 3.2, 3.3, and (3.4) we consider the special cases α = β + 1
(Christoffel transformation) [12], [28], [66], α = β − 1 (Geronimus transformation)
[19], [20], [41], [54], their composition (Uvarov transformation) [5], [6], [15], [39],
[49], and α = β = −N, N ∈ N (truncation transformation). These rational spectral
transformations have been studied by many authors, [4], [43], [61], [81]. The relation
between these transformations and the so-called Darboux transformation, has also been
considered [13], [48], [80].

2. Differential operators and moment functionals

Let F denote the ring of formal power series in the variable z

F = K [[z]] =

{
∞

∑
n=0

cnz
n : cn ∈ K

}
,

and ϑ : F → F be the differential operator defined by [59, 16.8.2]

ϑ = z∂z, (8)

where ∂z is the derivative operator ∂z = ∂
∂ z . The operator ϑ has the following proper-

ties.

PROPOSITION 1. Let the differential operator ϑ be defined by (8). Then, for all
u,v ∈ K [x] we have:

(i) The action of ϑ on the monomials is given by

u(ϑ) [zx] = u(x) zx, (9)

where we always assume that x and z are independent variables.

(ii) ϑ is multiplicative
(uv)(ϑ) = u(ϑ)v(ϑ) . (10)

(iii) For all k ∈ N0,

u(ϑ)
[
zkv(ϑ)

]
= zkS k

ϑ [u]v(ϑ) , (11)

where Sr denotes the shift operator defined by

Sr [ f ] = f (r+1) . (12)
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Proof. (i) Iterating (8), we get

ϑ k [zx] = xkzx, k ∈ N0.

Using linearity, the result follows.
(ii) Using (9), we have

ϑ n+m [zx] = xn+mzx = xnxmzx = xnϑm [zx] = ϑm [xnzx] = ϑmϑ n [zx] ,

for all m,n ∈ N0. The result follows from linearity.
(iii) Using (9) and (10), we see that

u(ϑ)
[
zkv(ϑ) [zx]

]
= u(ϑ)

[
zkv(x) zx

]
= u(ϑ)

[
v(x) zx+k

]
= v(x)u(ϑ)

[
zx+k

]
= v(x)u(x+ k)zx+k

= zkv(x)u(x+ k)zx = zkv(ϑ)u(ϑ + k) [zx] ,

and the result follows. �
Let L : K[x] → F be the linear functional (acting on the variable x) defined by

L [u] =
∞

∑
x=0

u(x)ρ (x)zx, u ∈ K[x], (13)

where ρ : N0 → K is a given function.

REMARK 2. If f ∈ K [[x]] , we can extend (9) to

f (ϑ) [zx] =
∞

∑
n=0

cnϑ n [zx] = zx
∞

∑
n=0

cnx
n = f (x)zx,

and therefore we can consider L as a functional on K [[x]] , satisfying

L [u f ] =
∞

∑
x=0

u(x) f (x)ρ (x) zx = f (ϑ)

[
∞

∑
x=0

u(x)ρ (x)zx

]
= f (ϑ) [L [u]] , (14)

for all u ∈ K[x], f ∈ K [[x]] .

Let {Λn}n�0 be a monic polynomial basis. If we define a sequence of moments
[2], [3], [68] by

λn (z) = L [Λn] ∈ F,

then from (14) we obtain

f (ϑ) [λ0] = f (ϑ) [L [1]] = L [ f ] , f ∈ K [[x]] , (15)

and in particular
λn (z) = L [Λn] = Λn (ϑ) [λ0] . (16)

Using (15), we can obtain a generating function for the moments of L .
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PROPOSITION 3. Let EΛ (t,x) denote the exponential generating function [78] of
the polynomials Λn (x)

EΛ (t;x) =
∞

∑
n=0

Λn (x)
tn

n!
. (17)

Then, the exponential generating function of the moments λn (z) is given by

ελ (t;z) =
∞

∑
n=0

λn (z)
tn

n!
= L [EΛ (t;x)] ,

where it’s always understood that L is only acting on the variable x.
In particular, if EΛ (t;x) = [ f (t)]x is an exponential function, we have

ελ (t;z) = λ0 [z f (t)] . (18)

Proof. Using (16) and (17), we get

∞

∑
n=0

λn (z)
tn

n!
=

∞

∑
n=0

Λn (ϑ) [λ0]
tn

n!
= EΛ (t;ϑ) [λ0] ,

and from (15) we see that EΛ (t;ϑ) [λ0] = L [EΛ (t;x)] .
If EΛ (t;x) = [ f (t)]x , then

L [EΛ (t;x)] = L [ f x] =
∞

∑
x=0

ρ (x)
[z f (t)]x

x!
= λ0 [z f (t)] . �

Up to this point, ρ (x) is an arbitrary weight function. We will now characterize it
by imposing a condition on the first moment λ0 (z) .

THEOREM 4. If the first moment λ0 (z) satisfies the differential equation with
polynomial coefficients

[σ (ϑ)− zτ (ϑ)] [λ0] = 0, σ ,τ ∈ K [x] , (19)

then
(i) L is a semiclassical functional

L [σu] = L [zτSx [u]] , u ∈ K [x] (20)

with respect to the shift operator Sx defined in (12).
(ii) If σ (0) = 0, then ρ (x) satisfies the Pearson equation [60]

ρ (x+1)
ρ (x)

=
τ (x)

σ (x+1)
, x ∈ N0. (21)

(iii) If we set ρ (0) = 1, then

ρ (x) =
x−1

∏
k=0

τ (k)
σ (k+1)

, x ∈ N. (22)
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Proof. (i) Let u ∈ K [x] . Using (11) in (19), we see that

u(ϑ)σ (ϑ) [λ0] = u(ϑ) [zτ (ϑ) [λ0]] = zτ (ϑ)u(ϑ +1)[λ0] , (23)

and using (15), we conclude that

L [σ (x)u(x)] = L [zτ (x)u(x+1)] .

(ii) If σ (0) = 0, we can use (20) and obtain

∞

∑
x=1

σ (x)u(x)ρ (x) zx = L [σu] = L [zτu(x+1)]

=
∞

∑
x=0

τ (x)u(x+1)ρ (x)zx+1 =
∞

∑
x=1

τ (x−1)u(x)ρ (x−1)zx.

Comparing powers of z, (21) follows.
(iii) Using (21), we get

x−1

∏
k=0

τ (k)
σ (k+1)

=
x−1

∏
k=0

ρ (k+1)
ρ (k)

=
ρ (x)
ρ (0)

,

and (22) follows if we define ρ (0) = 1. �
The Pochhammer symbol (c)x is defined by [63]

(c)x = lim
k→∞

kx
k

∏
j=0

c+ j
c+ x+ j

, −(c+ x) /∈ N0,

and when n ∈ N0, (c)n becomes a polynomial in c of degree n

(c)n =
n−1

∏
j=0

(c+ j) , n ∈ N, (c)0 = 1. (24)

We will use the notation [59, 16.1]

(c)n = (c1)n · · · (cm)n , c ∈ K
m,

and also
(x+ c) = (x+ c1) · · · (x+ cm) , c ∈ K

m.

In the special case m = 0, we understand that

K
0 = /0, ( /0)n = 1, n ∈ N0,

while for m = ∞ we have

K
∞ =

{{ck}k�0 : ck ∈ K
}

.
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Let p,q ∈ N0 be some fixed numbers. In the remainder of the paper, we will
always have a ∈ Kp , b ∈ Kq and

σ (x) = x(x+b) , τ (x) = (x+a) . (25)

Using (24), we can rewrite (22) as

ρ (x) =
(a)x

(b+1)x

1
x!

,

and using (25) in (19), we have

[ϑ (ϑ +b)− z(ϑ +a)] [λ0] = 0. (26)

The ODE (26) is the (generalized) hypergeometric differential equation [59, 16.8.3] of
order

o = max{p,q+1},

and the first moment λ0 (z) can be represented as

λ0 (z) = pFq

(
a

b+1
;z

)
,

where the (generalized) hypergeometric function pFq is defined by [59, 16.2.1], [69],

pFq

(
a
b

;z

)
=

∞

∑
x=0

(a)x

(b)x

zx

x!
.

We define the class s of the semiclassical functional L by

s = o−1 = max{p−1,q} ,

and functionals of class s = 0 are called classical.
Multiplying (26) by Λn (ϑ) and using (23), we conclude that

[ϑ (ϑ +b)Λn (ϑ)− z(ϑ +a)Λn (ϑ +1)] [λ0] = 0, n ∈ N0, (27)

and expanding the polynomials coefficients on the basis {Λn}n�0 ,

x(x+b)Λn (x) =
n+q+1

∑
k=0

cn,kΛk (x) ,

(x+a)Λn (x+1) =
n+p

∑
k=0

c̃n,kΛk (x) ,

we get a recurrence relation of order n+ s+1 for the moments λn (z)

q+1

∑
k=−n

cn,n+kλn+k − z
p

∑
k=−n

c̃n,n+kλn+k = 0. (28)

The question is: can we do better than this? In other words, can one choose a
convenient basis Λn so that the recurrence (28) will have minimal order s + 1? The
answer is yes, as we will see in Section 2.2. In the meantime, we study the simplest
basis: the monomials.
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2.1. Standard moments

To simplify the formulas, in the remainder of the paper we will use the umbral
notation [65]

ψk ↔ ψk, ψ ∈ K
∞.

So, for example, the equation

(ψ +b)ψn+1− z(ψ +a)(ψ +1)n = 0

can be written in extended form as

ψn+2 +bψn+1− z
n

∑
k=0

(
n
k

)
(ψk+1 +aψk) = 0.

Let μn (z) ∈ F denote the standard moments of L on the monomial basis Λn (x) =
xn

μn (z) = L [xn] , n ∈ N0.

Using Λn (x) = xn in (27), we get[
(ϑ +b)ϑ n+1− z(ϑ +a)(ϑ +1)n

]
[μ0] = 0. (29)

The polynomials (x+ c) can be written in the monomial basis as

(x+ c) =
m

∑
k=0

em−k (c)xk, c ∈ K
m, (30)

where the elementary symmetric polynomials en (c) are defined by the generating func-
tion [46]

∞

∑
n=0

en (c)tn =
m

∏
i=1

(1+ tci) , c ∈ K
m. (31)

Using these formulas, we can write a recurrence for μn (z) .

THEOREM 5. (i) The standard moments of L satisfy the recurrence

(μ +b)μn+1− z(μ +a)(μ +1)n = 0. (32)

(ii) We have the explicit recurrence

q

∑
k=0

eq−k (b)μn+k+1− z
n

∑
k=0

(
n
k

) p

∑
j=0

ep− j (a)μk+ j = 0. (33)

In particular, for n = 0

q

∑
k=0

eq−k (b)μk+1 − z
p

∑
j=0

ep− j (a)μ j = 0. (34)
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Proof. (i) Using (15) in (29), we have[
(ϑ +b)ϑ n+1] [μ0] = (μ +b)μn+1,

(ϑ +a)(ϑ +1)n [μ0] = (μ +a)(μ +1)n ,

and the result follows.
(ii) Using (30) in (32), we get

(μ +b)μn+1 =
q

∑
k=0

eq−k (b)μn+k+1,

(μ +a)(μ +1)n =
n

∑
k=0

(
n
k

)
(μ +a)μk =

n

∑
k=0

(
n
k

) p

∑
j=0

ep− j (a)μk+ j,

and the result follows. �
It is clear from (33) that elements of the set

{μk : k > s} , s = max{p−1,q},

are linear combinations of the first s+1 standard moments. Thus, we have a represen-
tation of the form

μn (z) =
s

∑
k=0

gn,k (z)μk (z) , n ∈ N0, (35)

where the coefficients must satisfy

gn,k (z) = δn,k, 0 � n,k � s. (36)

If we introduce the vectors −→μ ,−→g n ∈ Fs+1 defined by(−→μ )k = μk, (−→g n)k = gn,k, 0 � k � s,

we can write (35) as an inner product

μn = −→g n ·−→μ . (37)

To satisfy the initial conditions (36), we need

−→g n = −→ε n, 0 � n � s,

where the standard unit vectors −→ε n ∈ Ks+1 are defined by(−→ε n
)
k = δn,k, 0 � k � s, n ∈ N0.

THEOREM 6. With the previous definitions, let the matrix M be given by

M =
(−→ε 1,

−→ε 2, · · · ,−→ε s,
−→g s+1

) ∈ F
(s+1)×(s+1),

where the vectors form the columns of M . Then, −→g n (z) satisfies the differential-
difference equation

−→g n+1 = (ϑ +M)−→g n, n � 0, −→g 0 = −→ε 0. (38)
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Proof. From (37). we get

μn+1 = ϑ [μn] = ϑ
[−→g n ·−→μ

]
= ϑ [−→g n] ·−→μ +−→g n ·ϑ

[−→μ ]
and since

ϑ
[−→μ ]=

⎛⎜⎜⎜⎝
μ1

μ2
...

μs+1

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
−→g 1−→g 2
...−→g s+1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

μ0

μ1
...

μs

⎞⎟⎟⎟⎠ ,

we have ϑ
[−→μ ]= MT−→μ , with

MT =

⎛⎜⎜⎜⎝
−→g 1−→g 2
...−→g s+1

⎞⎟⎟⎟⎠ ∈ F
(s+1)×(s+1),

where vectors form the rows of the matrix MT . Thus,

−→g n+1 ·−→μ = μn+1 = ϑ [−→g n] ·−→μ +−→g n ·
(
MT−→μ )= (ϑ [−→g n]+M−→g n) ·−→μ

from which the result follows. �

REMARK 7. In [21], we derived (38) using a different method.

From (33), we see that we have three cases to consider.

COROLLARY 8. (i) If p > q+1, then the vector polynomials

−→
Q n (z) = zn −→g n (z) ∈ (K [z])s+1 , n � 0,

satisfy the differential-difference equation

−→
Q n+1 = z(ϑ +M−nI)

−→
Qn, n � 0,

−→
Q 0 = −→ε 0, (39)

where I is the (s+1× s+1) identity matrix.
(ii) If p = q+1, then the vector polynomials

−→
Qn (z) = (1− z)n −→g n (z) ∈ (K [z])s+1 , n � 0,

satisfy the differential-difference equation

−→
Q n+1 = [(1− z)(ϑ +M)+nzI]

−→
Qn, n � 0,

−→
Q 0 = −→ε 0. (40)

(iii) If p < q+1, then −→g n (z) is a vector polynomial.
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Proof. (i) If p > q+1, then the standard moments will satisfy a recurrence of the
form

zμn+p =
n+p−1

∑
k=0

cn,k (z)μk,

and setting −→g n (z) = z−n−→Q n (z) in (38), we get (39).
(ii) If p = q+1, then the standard moments will satisfy a recurrence of the form

(1− z)μn+p =
n+p−1

∑
k=0

cn,k (z)μk,

and if we set −→g n (z) = (1− z)−n−→Q n (z) in (38), we get (40).
(iii) If p < q+1, then the standard moments will satisfy a recurrence of the form

μn+q+1 = z
n+q

∑
k=0

cn,kμk,

and it follows that the functions −→g n (z) are polynomials in z. �

Finally, we will study the exponential generating function of the standard mo-
ments.

PROPOSITION 9. (i) The exponential generating function of the standard mo-
ments

εμ (t;z) =
∞

∑
n=0

μn (z)
tn

n!

is given by
εμ (t;z) = μ0

(
zet) . (41)

(ii) The function εμ (t;z) is a solution of the linear ODE (in the t variable)[
σ (∂t)− zetτ (∂t)

]
[y] = 0. (42)

Proof. (i) The exponential generating function of the monic basis is the exponen-
tial function

∞

∑
n=0

xn tn

n!
= ext ,

and using (18) we obtain (41).
(ii) Since

∂t
[
y
(
zet)]= zety′

(
zet)= z∂z

[
y
(
zet)]= ϑ

[
y
(
zet)] ,

it follows from (19) that μ0 (zet) satisfies (42). �
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REMARK 10. If we define

Gk (t,z) =
∞

∑
n=0

gn,k (z)
tn

n!
, 0 � k � s,

it follows from (35) that

μ0
(
zet)=

s

∑
k=0

Gk (t,z)μk (z) ,

and therefore the functions Gk (t,z) , 0 � k � s form a basis of solutions of the ODE
(42) with initial conditions

[∂ n
t Gk]t=0 = δn,k, 0 � n,k � s,

since from (41) we see that [
∂ n
t μ0

(
zet)]

t=0 = μn (z) .

2.2. Modified moments

Let φn (x) denote the falling factorial polynomials defined by φ0 (x) = 1 and

φn (x) =
n−1

∏
k=0

(x− k) , n ∈ N. (43)

Sometimes, the polynomials φn (x) are called “binomial polynomials”, since

φn (x)
n!

=
(

x
n

)
, n ∈ N0. (44)

From the definition (43), we see that

φn+1 (x) = (x−n)φn (x) = xφn (x−1) , n � 0, (45)

and from (24) it follows that the falling factorial polynomials and the Pochhammer
polynomials are related by

φn (x) = (−1)n (−x)n = (x+1−n)n .

The falling factorial polynomials are eigenfuncions of the differential operator
zn∂ n

z since
zn∂ n

z [zx] = znφn (x)zx−n = φn (x) zx. (46)

REMARK 11. Caution must be exercised when using the operators zn∂ n
z and ϑ n

since
ϑ n = (z∂z)

n �= zn (∂z)
n , n > 1.
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PROPOSITION 12. Let the modified moments be defined by

νn (z) = L [φn] , n ∈ N0. (47)

Then, for all n ∈ N0,

νn (z) = zn (a)n
(b+1)n

pFq

(
a+n

b+n+1
;z

)
.

Proof. The results follows from (46) and the formula [59, 16.3.1]

∂ n
z

[
pFq

(
a

b+1
;z

)]
=

(a)n
(b+1)n

pFq

(
a+n

b+n+1
;z

)
. �

Using (27) with Λn (ϑ) = φn (ϑ −1) , we get

ϑ (ϑ +b)φn (ϑ −1)σ (ϑ) [ν0] = z(ϑ +a)φn (ϑ)τ (ϑ) [ν0] ,

and from (45) we conclude that

[(ϑ +b)φn+1 (ϑ)− z(ϑ +a)φn (ϑ)] [ν0] = 0. (48)

Unlike the monomial case, there is no immediate formula that would express products
of the form (ϑ + c)φn (ϑ) in terms of the polynomials φn (ϑ) . Thus, we will find one
next.

Any polynomial u(x) can be represented in the basis of falling factorials using
Newton’s interpolation formula [18]

u(x) =
deg(u)

∑
k=0

Δk [u] (c)
k!

φk (x− c) , (49)

where the forward difference operator Δn (acting on x) is defined by

Δn [ f ] (x) =
n

∑
k=0

(
n
k

)
(−1)n−k f (x+ k) . (50)

We start with a result that may be already known, but we have not been able to
find in the literature.

LEMMA 13. For any function f (x) , we have

Δ j [ fφn] (0) = 0, 0 � j < n, (51)

and
Δn+ j [ fφn] (0)

(n+ j)!
=

Δ j [ f ] (n)
j!

, n, j � 0. (52)
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Proof. Using the definition (50),

Δ j [ fφn] (0) =
j

∑
i=0

(
j
i

)
(−1) j−i f (i)φn (i) ,

and since φn (i) = 0, for i < n, we see that

Δ j [ fφn] (0) = 0, 0 � j < n,

If j � 0, then

Δn+ j [ fφn] (0) =
n+ j

∑
i=n

(
n+ j

i

)
(−1)n+ j−i f (i)φn (i)

=
j

∑
i=0

(
n+ j
n+ i

)
(−1) j−i f (n+ i)φn (n+ i) .

Using (44), we have (
n+ j
n+ i

)
φn (n+ i) =

(n+ j)!
j!

(
j
i

)
,

and therefore

Δn+ j [ fφn] (0) =
(n+ j)!

j!

j

∑
i=0

(
j
i

)
(−1) j−i f (n+ i) =

(n+ j)!
j!

Δ j [ f ] (n) . �

Using (52), we obtain the following Corollary.

COROLLARY 14. If u(x) is a polynomial of degree k, then

u(x)φn (x) =
k

∑
j=0

Δ j [u] (n)
j!

φn+ j (x) . (53)

Proof. Using (49) and (51), we have

u(x)φn (x) =
n+k

∑
j=0

Δ j [uφn] (0)
j!

φ j (x) =
n+k

∑
j=n

Δ j [uφn] (0)
j!

φ j (x)

=
k

∑
j=0

Δn+ j [uφn] (0)
(n+ j)!

φn+ j (x) ,

and the results follows from (52). �

From the previous Corollary, we obtain an explicit recurrence of order s + 1 =
max{p,q+1} for the modified moments νn (z) .
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PROPOSITION 15. Let νn (z) be defined by (47). Then,

q

∑
j=0

Δ j [(x+b)](n+1)
j!

νn+1+ j − z
p

∑
j=0

Δ j [(x+a)](n)
j!

νn+ j = 0. (54)

Proof. Using (53), we have

(x+ c)φn (x) =
m

∑
j=0

Δ j [(x+ c)](n)
j!

φn+ j (x) , c ∈ K
m,

and therefore we can write (48) as[
q

∑
j=0

Δ j [(x+b)](n+1)
j!

φn+1+ j (x)

]
x=ϑ

[ν0] = z

[
p

∑
j=0

Δ j [(x+a)](n)
j!

φn+ j (x)

]
x=ϑ

[ν0] .

Using (15), the result follows. �

Finally, we will study the exponential generating function of the standard mo-
ments.

PROPOSITION 16. (i) The exponential generating function of the modified mo-
ments

εν (t;z) =
∞

∑
n=0

νn (z)
tn

n!

is given by
εν (t;z) = ν0 (z+ zt) . (55)

(ii) The function εν (t;z) is a solution of the linear ODE (in the t variable)

[σ ((t +1)∂t)− zτ ((t +1)∂t)] [y] = 0. (56)

Proof. (i) Using (44) and the binomial theorem, we obtain the exponential gener-
ating function of the falling factorial polynomials

∞

∑
n=0

φn (x)
tn

n!
=

∞

∑
n=0

(
x
n

)
tn = (1+ t)x ,

and using (18), we get (55).
(ii) Since

(1+ t)∂t [y((1+ t)z)] = z(1+ t)y′ ((1+ t)z) = z∂z [y((1+ t)z)] = ϑ [y((1+ t)z)] ,

it follows from (19) that ν0 (z+ zt) is a solution of (56). �
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REMARK 17. The differential equation (56) needs to be understood in an opera-
tional sense, since the coefficients are not constant. For instance, we have

(1+ t)∂t [(1+ t)∂t ] = (1+ t)
(
∂t +(1+ t)∂ 2

t

)
= (1+ t)2 ∂ 2

t +(1+ t)∂t ,

and therefore

[(1+ t)∂t +a1] [(1+ t)∂t +a2] = (1+ t)2 ∂ 2
t +(1+a1 +a2)(1+ t)∂t +a1a2.

It is clear from (54) that the elements of the set {νk : k � s+1} , are linear com-
binations of the first s + 1 modified moments. Thus, we have a representation of the
form

νn (z) =
s

∑
k=0

fn,k (z)νk (z) , (57)

where the coefficients must satisfy the initial conditions

f j,k (z) = δ j,k, 0 � j,k � s.

If we define

Fk (t,z) =
∞

∑
n=0

fn,k (z)
tn

n!
, 0 � k � s,

where fn,k (z) are the coefficients in (57), we see that

ν0 (z+ zt) =
s

∑
k=0

Fk (t,z)νk (z) ,

and therefore the functions Fk (t,z) , 0 � k � s form a basis of solutions of the ODE
(56) with initial conditions

[∂ n
t Fk]t=0 = δn,k, 0 � n,k � s,

since from (55) we see that

[∂ n
t ν0 (z+ zt)]t=0 = νn (z) .

In the next section, we will look at more general polynomial bases that contain the
monomials and falling factorial as particular cases.

2.3. Two-term recurrence relations

Both the monomial polynomials and the falling factorial polynomials satisfy a 2-
term recurrence relation of the form

xΛn (x) = Λn+1 (x)+ κnΛn (x) , (58)

where for the monomials κn = 0 and for the falling factorial polynomials κn = n.
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THEOREM 18. Let the Stieltjes transform of the functional L [71] be defined by

S (ω ;z) = L

[
1

ω − x

]
, (59)

where (as always) L is acting on the variable x. Suppose that {Λn (x)}n�0 is a monic
basis satisfying (58), and λn (z) = L [Λn] . Then, for all n ∈ N

S (ω ;z) =
1

Λn (ω)
L

[
Λn

ω − x

]
+

n−1

∑
k=0

λk (z)
Λk+1 (ω)

.

Proof. From (58), we have

xΛn (x)Λn (ω) = Λn+1 (x)Λn (ω)+ κnΛn (x)Λn (ω)
ωΛn (x)Λn (ω) = Λn (x)Λn+1 (ω)+ κnΛn (x)Λn (ω) ,

and therefore

(x−ω)Λn (x)Λn (ω) = Λn+1 (x)Λn (ω)−Λn (x)Λn+1 (ω) .

Dividing by Λn (ω)Λn+1 (ω) ,

(x−ω)
Λn (x)

Λn+1 (ω)
=

Λn+1 (x)
Λn+1 (ω)

− Λn (x)
Λn (ω)

,

and summing from 0 to n−1, we obtain

(x−ω)
n−1

∑
k=0

Λk (x)
Λk+1 (ω)

=
n−1

∑
k=0

[
Λk+1 (x)
Λk+1 (ω)

− Λk (x)
Λk (ω)

]
=

Λn (x)
Λn (ω)

− Λ0 (x)
Λ0 (ω)

.

Hence,
1

Λn (ω)
Λn (x)
x−ω

=
1

x−ω
+

n−1

∑
k=0

Λk (x)
Λk+1 (ω)

, (60)

since Λ0 (x) = 1.
Applying L to (60), we see that

1
Λn (ω)

L

[
Λn

x−ω

]
= L

[
1

x−ω

]
+

n−1

∑
k=0

λk (z)
Λk+1 (ω)

,

and the result follows. �

REMARK 19. Since

lim
n→∞

Λn (x)
Λn (ω)

= 1,
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we have (at least formally)

S (ω ;z) =
∞

∑
k=0

λk (z)
Λk+1 (ω)

.

The falling factorial case was already considered in [11].

Next, we relate an arbitrary monomial basis to the basis of monomials.

PROPOSITION 20. Suppose that {Λn}n�0 is a monic basis satisfying (58).
(i) If

xn =
n

∑
i=0

ξn,iΛi (x) , (61)

then, the coefficients ξn,i satisfy the recurrence

ξn+1,i = ξn,i−1 + κiξn,i, ξn,n = 1,

with boundary conditions
ξn,i = 0, i /∈ [0,n] .

(ii) If

Λn (x) =
n

∑
i=0

ξ n,ix
i, (62)

then, the coefficients ξ n,i satisfy the recurrence

ξ n+1,i = ξ n,i−1−κnξ n,i,

with boundary conditions

ξ n,n = 1, ξ n,i = 0, i /∈ [0,n] .

Proof. (i) Since Λn (x) is monic, we need ξn,n = 1. Using (58), we get

n+1

∑
i=0

ξn+1,iΛi (x) = xn+1 =
n

∑
i=0

ξn,ixΛi (x)

=
n

∑
i=0

ξn,i [Λi+1 (x)+ κiΛi (x)] =
n+1

∑
i=1

ξn,i−1Λi (x)+
n

∑
i=0

ξn,iκiΛi (x) .

Comparing coefficients, we obtain the result.
(ii) In a similar way, we have

n+1

∑
i=0

ξ n+1,ix
i +

n

∑
i=0

κnξ n,ix
i = Λn+1 (x)+ κnΛn (x)

= xΛn (x) =
n

∑
i=0

ξ n,ix
i+1 =

n+1

∑
i=1

ξ n,i−1x
i,

and the result follows. �
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EXAMPLE 21. If Λn (x) = φn (x) , we get

ξn+1,i = ξn,i−1 + iξn,i, ξn,n = 1,

ξ n+1,i = ξ n,i−1−nξn,i, ξ n,n = 1.

In this case, the coefficients ξn,i are known as Stirling numbers of the second kind, and
the coefficients ξ n,i are known as Stirling numbers of the first kind [64].

Using Newton’s interpolation formula (49), we have

xn =
n

∑
k=0

Δk [xn] (0)
k!

φk (x) ,

and therefore the Stirling numbers of the second kind have the representation [59,
26.8.6] {

n
k

}
=

Δk [xn] (0)
k!

=
1
k!

k

∑
i=0

(−1)k−i
(

k
i

)
in.

Applying L to (61) and (62), we see that

μn =
n

∑
i=0

ξn,iλi, λn =
n

∑
i=0

ξ n,iμi,

and in particular

μn =
n

∑
k=0

{
n
k

}
νk. (63)

3. Transformations of functionals

Let m∈ N0, c∈K
m, and ε ∈ K. If we define the the recurrence operator Θn (c;ε)

by
Θn (c;ε) [ψ ] = (ψ + c)(ψ + ε)n , ψ ∈ K

∞, (64)

we can write (32) as
[Θn+1 (b;0)− zΘn (a;1)] [μ ] = 0. (65)

Similarly, let the recurrence operator ϒn (c) be defined by

ϒn (c) [ψ ] =
m

∑
j=0

Δ j [(x+ c)](n)
j!

ψn+ j, ψ ∈ K
∞. (66)

Then, using (54) and (66), we see that the modified moments νn (z) satisfy the recur-
rence

[ϒn+1 (b)− zϒn (a)] [ν] = 0. (67)

We have ϒn ( /0) [ψ ] = ψn, and from (66), we get

ϒn (c) [ψ ] = ψn+1 +(n+ c)ψn.

In general, we have the following result.
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PROPOSITION 22. The recurrence operators ϒn satisfy the basic recurrence

ϒn (c,γ) = ϒn+1 (c)+ (n+ γ)ϒn (c) . (68)

Proof. From the definition of ϒn, we have

ϒn (c,γ) [ψ ] =
m+1

∑
j=0

Δ j [(x+ c)(x+ γ)] (n)
j!

ψn+ j.

If we use Leibniz rule [37]

Δ j [uv] (n) =
j

∑
i=0

(
j
i

)
Δ j−i [u] (n+ i)Δi [v] (n) ,

we get

Δ j [(x+ c)(x+ γ)](n) = (n+ γ)Δ j [(x+ c)](n)+ jΔ j−1 [(x+ c)](n+1).

Since

m+1

∑
j=0

jΔ j−1 [(x+ c)](n+1)
j!

ψn+ j

=
m+1

∑
j=1

Δ j−1 [(x+ c)](n+1)
( j−1)!

ψn+ j =
m

∑
j=0

Δ j [(x+ c)] (n+1)
j!

ψn+ j+1,

we conclude that

m+1

∑
j=0

Δ j [(x+ c)(x+ γ)](n)
j!

ψn+ j

= (n+ γ)
m

∑
j=0

Δ j [(x+ c)] (n)
j!

ψn+ j +
m

∑
j=0

Δ j [(x+ c)](n+1)
j!

ψn+1+ j

and the result follows. �
If m = 2, (68) gives

ϒn (c1,c2) [ψ ] = ϒn+1 (c1) [ψ ]+ (n+ c2)ϒn (c1) [ψ ]
= ψn+2 +(n+1+ c1)ψn+1 +(n+ c2) [ψn+1 +(n+ c1)ψn] ,

and hence

ϒn (c1,c2) = S 2
n +(2n+ c1 + c2 +1)Sn +(n+ c1)(n+ c2) .

Note that

ϒn (c1,c2) = (Sn +n+ c1)(Sn +n+ c2) = ϒn (c1)◦ϒn (c2) ,
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where clearly
ϒn (c1)◦ϒn (c2) = ϒn (c2)◦ϒn (c1) .

Using induction, it follows that

ϒn (c) = (Sn +n+ c), c ∈ K
m,

and
ϒn (c) = ϒn (c1)◦ϒn (c2)◦ · · · ◦ϒn (cm) , c ∈ K

m. (69)

REMARK 23. We have

(a1Sn +b1n+ c1)(a2Sn +b2n+ c2)− (a2Sn +b2n+ c2) (a1Sn +b1n+ c1)
= (a1b2−a2b1)Sn,

so in general caution must be exercised when composing linear terms involving Sn.

In the remaining of the paper, we will use the notation

Φn = Θn+1 (b;0)− zΘn (a;1) , (70)

and
Ψn = ϒn+1 (b)− zϒn (a) , (71)

which allow us to write the recurrences for the standard and modified moments as
Φn [μ ] = 0 and Ψn [ν] = 0 respectively.

For p̃, q̃ ∈ N0 and α ∈ K
p̃, β ∈ K

q̃,we define the moment transformation Ωα
β by

Ωα
β [λ0] = C (α,β ) p+ p̃Fq+q̃

(
a,α

b+1,β ;z

)
, (72)

where C (α,β ) is a constant. Clearly, Ωα
β [λ0] is a solution of the hypergeometric ODE

[ϑ (ϑ + β −1)(ϑ +b)− z(ϑ + α)(ϑ +a)] [y] = 0. (73)

From (32) and (73), we see that the transformed standard moments Ωα
β [μ ] satisfy the

recurrence
[Θn+1 (b,β −1;0)− zΘn (a,α;1)] [ψ ] = 0 (74)

while (67) and (73) give a recurrence for the transformed modified moments Ωα
β [ν]

[ϒn+1 (b,β −1)− zϒn (a,α)] [ψ ] = 0. (75)

REMARK 24. It may seem that the definition of Ωα
β (72) is ambiguous, because

the constant C (α,β ) is not fixed. But since the recurrences (74) and (75) are homoge-
neous, they are not affected by a multiplicative constant .
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Comparing (74) with (70), we can define

Ωα
β [Φn] = Θn+1 (b,β −1;0)− zΘn (a,α;1) , (76)

in the sense that
Ωα

β [Φn]
[
Ωα

β [μ ]
]

= 0.

Similarly, from (75) and (71) we conclude that the operator

Ωα
β [Ψn] = ϒn+1 (b,β −1)− zϒn (a,α) (77)

satisfies
Ωα

β [Ψn]
[
Ωα

β [ν]
]

= 0.

PROPOSITION 25. Let Sn be the shift operator defined in (12). If c ∈ K, we
have:

(i)
Ωc

c [Φn] = (Sn + c−1)◦Φn. (78)

(ii)
Ωc+1

c [Φn]◦ (Sn + c) = (Sn + c−1)(Sn + c)◦Φn. (79)

(iii)
Ωc

c+1 [Φn] = Φn ◦ (Sn + c) . (80)

(iv)
Ωc

c [Ψn] = (Sn +n+ c)◦Ψn. (81)

(v)
Ωc+1

c [Ψn]◦ (Sn +n+ c) = (Sn +n+ c+1)(Sn +n+ c)◦Ψn. (82)

(vi)
Ωc

c+1 [Ψn] = Ψn ◦ (Sn +n+ c). (83)

Proof. (i) If we consider the composition (Sn + c)◦Φn, we see that

(Sn + c)◦Φn [ψ ] = (Sn + c)
[
(ψ +b)ψn+1− z(ψ +a)(ψ +1)n

]
= (ψ +b)ψn+2− z(ψ +a)(ψ +1)n+1 + c(ψ +b)ψn+1− zc(ψ +a)(ψ +1)n

= (ψ + c)(ψ +b)ψn+1− z(ψ + c+1)(ψ +a)(ψ +1)n ,

and comparing with (76) we obtain

(Sn + c)◦Φn [ψ ] =
(
Ωc+1

c+1 [Φn]
)
[ψ ] .

The result follows after shifting c.
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(ii) Using (78), we have

(Sn + c−1)(Sn + c)◦Φn [ψ ] =
(

Ωc,c+1
c,c+1 [Φn]

)
[ψ ]

= (ψ + c−1)(ψ + c)(ψ +b)ψn+1− z(ψ + c)(ψ + c+1)(ψ +a)(ψ +1)n

=
[
(ψ + c−1)(ψ +b)ψn+1− z(ψ + c+1)(ψ +a)(ψ +1)n

]
(ψ + c) ,

and we obtain (79).
(iii) Note that

Ωc
c+1 [Φn [ψ ]] = (ψ + c)(ψ +b)ψn+1− z(ψ + c)(ψ +a)(ψ +1)n

=
[
(ψ +b)ψn+1− z(ψ +a)(ψ +1)n

]
(ψ + c) ,

and therefore (80) is true.
(iv) Similarly, we have

(Sn +n+ c)◦Ψn = ϒn+2 (b)− zϒn+1 (a)+ (n+ c)ϒn+1 (b)− z(n+ c)ϒn (a)
= ϒn+1 (b,c−1)− zϒn (a,c) ,

and comparing with (77) we obtain (81).
(v) Using (69), we get

(Sn +n+ c+1)(Sn +n+ c)◦Ψn = Ωc,c+1
c,c+1 [Ψn]

= ϒn+1 (b,c−1,c)− zϒn (a,c,c+1) = [ϒn+1 (b,c−1)− zϒn (a,c+1)]◦ϒn (a,c) ,

and (82) follows.
(vi) Finally,

Ωc
c+1 [Ψn] = ϒn+1 (b,c)− zϒn (a,c) = [ϒn+1 (b)− zϒn (a)]◦ϒn (c) ,

and we see that (83) is true. �
It follows that the special cases α = β and α = β ± 1 lead to some interesting

transformations. We will study them in detail in the next sections.

3.1. The Christoffel transformation

The Christoffel transformation is defined by

λC
0 = Ω−ω+1

−ω [λ0] .

From (73), we see that λC
0 (z;ω) is a solution of the ODE

[(ϑ −ω −1)ϑ (ϑ +b)− z(ϑ −ω +1)(ϑ +a)] [y] = 0, (84)

and admits the hypergeometric representation

λC
0 (z;ω) = −ω p+1Fq+1

(
a,−ω +1
b+1,−ω ;z

)
. (85)
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The reason for choosing this particular solution is the identity

−ω
(−ω +1)x

(−ω)x
= x−ω , (86)

which shows that the linear functional LC associated to λC
0 is given by

LC [u] = L [(x−ω)u] , u ∈ K [x] . (87)

This transformation was introduced by Elwin Bruno Christoffel (1829–1900) in his
pioneering work [16].

Clearly we must have

λC
0 = LC [x−ω ] = (ϑ −ω)[λ0] �= 0,

and since the operator ϑ −ω annihilates any multiple of zω , we need

λ0 (z;ω) �= ηzω , η ∈ K.

From (58) and (87), we get

λC
n = LC [Λn] = L [(x−ω)Λn] = λn+1 +(κn−ω)λn,

and in particular
μC

n = μC
n+1−ωμC

n , (88)

and
νC

n = νC
n+1 +(n−ω)νC

n . (89)

Note that,
λC

0 = μC
1 −ωμC

0 = νC
1 −ωνC

0 . (90)

From (76), we see that the standard moments μC
n satisfy the recurrence

ΦC
n

[
μC

n

]
= 0,

where

ΦC
n [μ ] = (μ −ω −1)(μ +b)μn+1− z(μ −ω +1)(μ +a)(μ +1)n ,

and from (77), we see that the modified moments νC
n satisfy the recurrence

ΨC
n

[
νC

n

]
= 0,

where

ΨC
n = ϒn+2 (b)+ (n−ω)ϒn+1 (b)− zϒn+1 (a)− z(n−ω +1)ϒn (a) . (91)
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REMARK 26. Using (79), we obtain

(Sn −ω −1)(Sn −ω)◦ΦC
n = ΦC

n ◦ (Sn−ω) ,

and therefore

ΦC
n

[
μC

n+1−ωμC
n

]
= ΦC

n ◦ (Sn −ω)[μ ]

= (Sn−ω −1)(Sn−ω)◦Φn [μ ] = 0 = ΦC
n [μ ] ,

in agreement with (88).
Similarly, using (82), we see that

(Sn +n−ω +1)(Sn +n−ω)◦Ψn = ΨC
n ◦ (Sn +n−ω),

and hence

ΨC
n [νn+1 +(n−ω)νn] = ΨC

n ◦ (Sn +n−ω)[ν]

= (Sn +n−ω +1)(Sn +n−ω)◦Ψn [ν] = 0 = ΨC
n

[
νC] ,

in agreement with (91).

Using (41) and (88), we obtain the exponential generating function of the trans-
formed standard moments

∞

∑
n=0

μC
n (z;ω)

tn

n!
= μC

0

(
zet ;ω

)
= (μ1−ωμ0)

(
zet) ,

while from (55) and (89) we get the exponential generating function of the transformed
modified moments

∞

∑
n=0

νC
n (z;ω)

tn

n!
= νC

0 (z+ zt;ω) = (ν1 −ων0)(z+ zt) .

3.2. The Geronimus transformation

The Geronimus transformation is defined by

λ G
0 = Ω−ω

−ω+1 [λ0] , ω /∈ N0.

From (73), we see that λ G
0 (z;ω) is a solution of the ODE

ϑ (ϑ +b)(ϑ −ω)[y] = z(ϑ +a)(ϑ −ω) [y] , (92)

and admits the hypergeometric representation

λ G
0 (z;ω) = −ω−1

p+1Fq+1

(
a,−ω

b+1,−ω +1
;z

)
. (93)
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REMARK 27. The function zω is also a solution of (92), and therefore we could
define (as some authors do)

λ G
0 (z;ω) = −ω−1

p+1Fq+1

(
a,−ω

b+1,−ω +1
;z

)
+ ηzω

where η is an arbitrary constant .

The identity (86) shows that the linear functional LG associated to λ G
0 is given by

LG [u] = L

[
u(x)
x−ω

]
, u ∈ K [x] , (94)

and

λ G
0 (z;ω) = L

[
1

x−ω

]
(z) = −S (ω ;z) , (95)

where S (ω ;z) is the Stieltjes transform of the functional L defined in (59). Since

(ϑ −ω)
[
λ G

0

]
= L

[
(x−ω)

1
x−ω

]
= L [1] = λ0,

we need
S (ω ;z) �= ηzω , η ∈ K.

This transformation was introduced by Yakov Lazarevich Geronimus (1898–1984) in
his groundbreaking article [32].

PROPOSITION 28. The moments of the linear transformation LG defined by (94)
have the integral representation

λ G
n (z;ω) =

1∫
0

t−ω−1λn (zt)dt, n ∈ N0. (96)

Proof. If we use the integral representation [59, 16.5.2]

p+1Fq+1

(
a,α
b,β ;z

)
=

Γ(β )
Γ(α)Γ(β −α)

1∫
0

tα−1 (1− t)β−α−1
pFq

(
a
b

;zt

)
dt,

in (93), we obtain

λ G
0 (z;ω) =

1∫
0

t−ω−1λ0 (zt)dt. (97)

Extending (97), we obtain (96). �
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REMARK 29. Note that if we use (13) in (96) and formally integrate term by term,
we get

λ G
n (z;ω) =

∞

∑
x=0

Λn (x)
(a)x

(b+1)x

zx

x!

1∫
0

tx−ω−1dt =
∞

∑
x=0

Λn (x)
x−ω

(a)x

(b+1)x

zx

x!
,

in agreement with (94).

From (58) and (94), we see that

λ G
n+1 +(κn−ω)λ G

n = LG [(x−ω)Λn (x)] = L [Λn (x)] = λn,

and in particular
μG

n+1−ωμG
n = μn, (98)

and
νG

n+1 +(n−ω)νG
n = νn. (99)

Using (60), we get

λ G
n (z;ω) = Λn (ω)

[
λ G

0 (z;ω)+
n−1

∑
k=0

λk (z)
Λk+1 (ω)

]
,

where care needs to be exercised if Λk (ω) = 0 for some k.

REMARK 30. From (80), we have

ΦG
n [μ ] = Φn ◦ (Sn−ω)[μ ] , (100)

in agreement with (98), since

Φn
[
μG

n+1−ωμG
n

]
= Φn ◦ (Sn −ω)

[
μG]= ΦG

n

[
μG]= 0 = Φn [μ ] .

From (83), we get ΨG
n

[
νG
]
= 0, where

ΨG
n = Ψn ◦ (Sn +n−ω), (101)

in agreement with (99), since

Ψn
[
νG

n+1 +(n−ω)νG
n

]
= Ψn ◦ (Sn +n−ω)

[
νG]= ΨG

n

[
νG]= 0 = Ψn [ν] .

Using (41) and (95), we obtain the exponential generating function of μG
n

∞

∑
n=0

μG
n (z;ω)

tn

n!
= λ G

0

(
zet ;ω

)
= −S

(
ω ;zet) ,

and for the transformed modified moments νG
n we get

∞

∑
n=0

νG
n (z;ω)

tn

n!
= λ G

0 (z+ zt;ω) = −S (ω ;z+ zt) .
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3.3. The Uvarov transformation

Let’s consider the composite transformations (Christoffel-Geronimus)(
Ω−ω

1−ω ◦Ω1−ω
−ω
)
[λ0] ,

and (Geronimus-Christoffel) (
Ω1−ω

−ω ◦Ω−ω
1−ω
)
[λ0] .

We see that in either case, the transformed first moment is a solution of the ODE

(ϑ −ω)(ϑ −ω −1)ϑ (ϑ +b) [y] = z(ϑ −ω)(ϑ −ω +1)(ϑ +a)[y] , (102)

which can be written as

(ϑ −ω)(ϑ −ω −1)[σ (ϑ)− zτ (ϑ)] [y] = 0. (103)

LEMMA 31. The linear combination

λU
0 (z;ω) = λ0 (z)+ ηzω , η ∈ K, (104)

is a solution of (103).

Proof. Clearly, λ0 is a solution of (103). If we set y(z) = zω , we have

[σ (ϑ)− zτ (ϑ)] [zω ] = σ (ω)zω − τ (ω)zω+1, (105)

and therefore

(ϑ −ω)(ϑ −ω −1)[σ (ϑ)− zτ (ϑ)] [zω ]

= (ϑ −ω)(ϑ −ω −1)
[
σ (ω)zω − τ (ω) zω+1]= 0.

Thus, (104) is a solution of (103). �
We define the Uvarov transformation by

LU [u] = L [u]+ ηu(ω)zω , u ∈ K [x] ,

which is well defined as long as

λ0 (z) �= −ηzω .

This transformation was introduced by Vasiliı̆ Borisovich Uvarov (1929–1997) in his
monumental paper [73].

From (78), we see that

ΦU
n = (Sn −ω −1)(Sn −ω)◦Φn, (106)

and from (81), we have

ΨU
n = (Sn +n−ω +1)(Sn +n−ω)◦Ψn. (107)

If σ (ω) = 0 or τ (ω) = 0, we obtain some reduced cases.
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PROPOSITION 32. Suppose that σ (ω) = 0. Then,
(i) The transformed moment λU

0 satisfies the reduced ODE

(ϑ −ω −1)[σ (ϑ)− zτ (ϑ)]
[
λU

0

]
= 0. (108)

(ii) The transformed first moment λU
0 is given by

λU
0 = Ω−ω

−ω [λ0] . (109)

(iii) The transformed standard moments μU
n satisfy the reduced recurrence

ΦU
n [ψ ] = 0,

where
ΦU

n = (Sn −ω −1)◦Φn. (110)

(iv) The transformed modified moments νU
n satisfy the reduced recurrence

ΨU
n [ψ ] = 0,

where
ΨU

n = (Sn +n−ω)◦Ψn. (111)

Proof. (i) If σ (ω) = 0, then we see from (105) that

[σ (ϑ)− zτ (ϑ)] [zω ] = −τ (ω)zω+1

and (108) follows.
(ii) Comparing (108) with (73), we can interpret λU

0 as (109).
(iii) From (78) and (109), we get (110).
(iv) Using (81) in (109) gives (111). �

PROPOSITION 33. Suppose that τ (ω) = 0. Then,
(i) The transformed first moment λU

0 satisfies the reduced ODE

(ϑ −ω) [σ (ϑ)− zτ (ϑ)]
[
λU

0

]
= 0. (112)

(ii) The transformed first moment λU
0 is given by

λU
0 = Ω1−ω

1−ω [λ0] . (113)

(iii) The transformed standard moments μU
n satisfy the reduced recurrence

ΦU
n [ψ ] = 0,

where
ΦU

n = (Sn−ω)◦Φn. (114)

(iv) The transformed modified moments νU
n satisfy the reduced recurrence

ΨU
n [ψ ] = 0,

where
ΨU

n = (Sn +n−ω +1)◦Ψn. (115)
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Proof. (i) If τ (ω) = 0, then we see from (105) that

[σ (ϑ)− zτ (ϑ)] [zω ] = σ (ω)zω ,

and (112) follows.
(ii) Comparing (112) with (73), we can interpret λU

0 as (113).
(iii) From (78) and (113), we get (110).
(iv) Using (81) in (113) gives (111). �
Finally, we have

λU
n = LU [Λn] = λn + ηΛn (ω) zω , (116)

from which we obtain the exponential generating functions of μU
n (z;ω)

∞

∑
n=0

μU
n (z;ω)

tn

n!
= μ0

(
zet)+ η

(
zet)ω

,

and νU
n (z;ω)

∞

∑
n=0

νU
n (z;ω)

tn

n!
= ν0 (z+ zt)+ η (z+ zt)ω .

3.4. Truncated linear functionals

Let N ∈ N0 and the truncated functional LT be defined by

LT [u] =
N

∑
x=0

u(x)
(a)x

(b+1)x

zx

x!
, u ∈ K [x] , (117)

as long as

λ T
0 (z) =

N

∑
x=0

(a)x
(b+1)x

zx

x!
�= 0.

REMARK 34. If τ (N) = 0, then the functional (13) is already a truncated func-
tional, since

(−N)x = 0, x > N.

Therefore, we assume that τ (N) �= 0.

LEMMA 35. The first transformed moment λ T
0 (z) satisfies the ODE

(ϑ −N−1)[σ (ϑ)− zτ (ϑ)] [y] = 0. (118)

Proof. Using the Pearson equation (21), we have

[σ (ϑ)− zτ (ϑ)]
[
λ T

0

]
=

N

∑
x=0

[
σ (x)ρ (x) zx − τ (x)ρ (x)zx+1]

=
N

∑
x=0

σ (x)ρ (x) zx −
N+1

∑
x=1

τ (x−1)ρ (x−1)zx = −τ (N)ρ (N)
zN+1

N!
,
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and since the operator ϑ −N − 1 annihilates any multiple of zN+1, the result fol-
lows. �

Using (11) in (118), we obtain

(ϑ −N−1)σ (ϑ)
[
λ T

0

]
= z(ϑ −N)τ (ϑ)

[
λ T

0

]
,

and therefore we have
λ T

0 = Ω−N
−N [λ0] , N ∈ N0. (119)

PROPOSITION 36. The first transformed moment λ T
0 (z) can be represented as a

Laplace transform

λ T
0 (z) =

zN+1

N!
(a)N

(b+1)N

∞∫
0

q+1Fp

(−N,−b−N
1−a−N

;(−1)q+p+1 t

)
e−ztdt. (120)

Proof. If we use the formula [59, 16.2.4]

N

∑
k=0

(a)k
(b)k

zk

k!
=

zN

N!
(a)N

(b)N
q+2Fp

(
−N,1−b−N,1

1−a−N
;
(−1)q+p+1

z

)
, (121)

we obtain the hypergeometric representation

λ T
0 =

zN

N!
(a)N

(b+1)N
q+2Fp

(
−N,−b−N,1

1−a−N
;
(−1)q+p+1

z

)
. (122)

Using the integral representation [59, 16.5.3]

p+1Fq

(
a,α
b

;
x
z

)
=

zα

Γ(α)

∞∫
0

tα−1
pFq

(
a
b

;xt

)
e−ztdt (123)

with α = 1, we obtain (120). �
From (78) and (119), we get

ΦT
n = (Sn−N−1)◦Φn, (124)

while (81) gives
ΨT

n = (Sn +n−N)◦Ψn. (125)

PROPOSITION 37. The transformed modified moments νT
n (z) have the integral

representation

νT
n (z) =

(a)N

(b+1)N

zN+1

(N−n)!

∞∫
0

q+1Fp

(
n−N,−b−N

1−a−N
;(−1)q+p+1 t

)
e−ztdt. (126)
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Proof. Note that since

N

∑
x=0

φn (x)
(a)x

(b+1)x

zx

x!
=

N

∑
x=n

(a)x
(b+1)x

zx

(x−n)!
=

N−n

∑
x=0

(a)x+n

(b+1)x+n

zx+n

x!
,

we have

νT
n (z) = zn (a)n

(b+1)n

N−n

∑
x=0

(a+n)x
(b+1+n)x

zx

x!
. (127)

Thus, we can use (121) and obtain

νT
n (z) =

(a)N
(b+1)N

zN

(N−n)! q+2Fp

(
n−N,−b−N,1

1−a−N
;
(−1)q+p+1

z

)
. (128)

In particular,

νT
N (z) =

(a)N

(b+1)N
zN , νT

n (z) = 0, n > N. �

REMARK 38. Using (123) and (128), we get the integral representation (126).

4. Conclusion

We have studied the linear functionals characterized by the hypergeometric differ-
ential equation satisfied by the first moment λ0 (z)

[ϑq(ϑ)− zp(ϑ)] [λ0] = 0, p,q ∈ K [x] .

We obtained recurrence relations for the moments on the monomial and falling factorial
polynomial bases .

We note that one could use the generating function (41) and the ODE it satisfies
(42), as a different way of analyzing the standard moments μn (z) . Similarly, one could
study the modified moments νn (z) using (55) and (56).

We are currently working on further applications of our results to study some prop-
erties of the orthogonal polynomials themselves (representations, recurrence-relation
coefficients, generating functions, etc).
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[28] A. J. DURÁN, Christoffel transform of classical discrete measures and invariance of determinants
of classical and classical discrete polynomials, J. Math. Anal. Appl. 503 (2), Paper No. 125306, 29
(2021).
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[50] F. MARCELLÁN AND L. SALTO, Discrete semi-classical orthogonal polynomials, J. Differ. Equations
Appl. 4 (5), 463–496 (1998).
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