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FUNCTIONS OF (¢, y)-BOUNDED VARIATION AND
ITS DOUBLE WALSH-FOURIER COEFFICIENTS

K. N. DARIT* AND R. G. VYAS

Abstract. In this paper, we have estimated the order of magnitude of double Walsh-Fourier co-
efficients of functions of (¢, y)-bounded variation in the sense of Vitali and Hardy.

1. Introduction

In 1949, N. J. Fine [3] proved using the second mean value theorem that if f is of
bounded variation on [0,1] and if f(m) denotes its (one dimensional) Walsh-Fourier
coefficient, then f(m)=0 (%) ,forall m#0. In2002 F. Méricz [5] estimated the order
of magnitude of double Fourier coefficients with the help of Riemann-Stieltjes integral
of functions of two variables and in 2004 V. Fiilép and F. Méricz [4] estimated the
order of magnitude of multiple Fourier coefficients of functions of bounded variation in
the sense of Vitali and Hardy in a straightforward way without using Riemann-Stieltjes
integral. Also, the order of magnitude of double Fourier coefficients of different classes
of functions of generalized bounded variation were estimated in [1, 2, 7, 8]. In this
paper, we have estimated the order of magnitude of double Walsh-Fourier coefficients
of functions of (¢, y)-bounded variation in the sense of Vitali and Hardy. Our results
with @¢(x) = y(x) = x gives Walsh analogues of the results of F. Méricz [5] and V.
Fiilop and F. Méricz [4, for n = 2], except possibly for the exact constant in their case.

2. Notation and definitions

We consider the Walsh orthonormal system {w,,(x) : m € Ny} defined on the unit
interval I=[0, 1) in the Paley enumeration, where Ny = {0,1,2,...}. To go into some
details, let

1, ifxe [0,3),

J1);

and extend ry(x) for the half-axis [0,e) with period 1.

ro(x) =
—1,ifxe [

8=
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The Rademacher orthonormal system {ry(x) : & € Ny} is defined as
re(x) =ro(2%x), k=1,2,...;x€el.
If

m="Y m2*, each m=0 or 1,
k=0

is the binary decomposition of m € Ny, then
wn(x) = [T (), xel,
k=0

is called the m™ Walsh function in the Paley enumeration.
In particular, we have

wo(x) =1 and wom (x) = ry,(x), m € Ny.

Any x € I can be written as

x=Y x 2D each x,=0 or 1.

k=0

For any x € I\ Q, there is only one expression of this form, where Q is a class of dyadic
rationals in . When x € Q there are two expressions of this form, one which terminates
in 0’s and one which terminates in 1’s.

For any x,y € I their dyadic sum is defined as

xdy=Y Py -yl 27D,
fry

Observe that, for each m € Ny, we have
Wi (X +y) = Wi (x) wn (), x,y€l, x+y¢ Q0.

For a real-valued function f € L'(T*), where T=[0,1] and f is 1-periodic in each
variable, its double Walsh-Fourier series is defined as

f(x7y)N 2 2 f(m7n) Wm(x) W"(y)7

meNyneNy

where the double Walsh-Fourier coefficients f(1,n) are defined by

Fmmy = [ [ £6e) w0 wa(0) dx .

Let ¢ and v be strictly increasing convex functions on [0, ) with ¢(0) = w(0) =
0. A function ¢ is said to be a A, function if there is a constant d > 2 such that
¢(2x) < d¢(x) forall x > 0.
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For I = [a,b] and J = [c,d], define
f(IX]) :f(lvd) —f(I,C) :f(bvd) _f(avd) _f(bvc)+f(a7c)'

A measurable function f defined on a rectangle R*> = [a,b] x [c,d] is said to be of
(¢, ¥)-bounded variation in the sense of Vitali (thatis, f € (¢, y)BV (R?)) if

Vi (f,R?) = f)’ﬁ’, (;1;/ (Z(P(If(lj X Jk)|)>) < oo,
J

where .# and _# are finite collections of non-overlapping subintervals {/;} and {J;}
in [a,b] and [c,d], respectively.

Consider a function f : > - R defined by f(x,y) = g(x) +h(y), where g and h
2

)

are any two arbitrary not necessarily bounded functions from I into R. Then Vio.w) (f,I

= 0. Thus, a function f with V(4 ) (f, E2) < oo need not be bounded.

If f € (¢, y)BV(R?) is such that the marginal functions f(a,.) € BV ([c,d]) and
f(,¢) € 9BV ([a,b]) (refer [9] for the definition of ¢BV ([a,b])) then f is said to be of
(¢, ¥)-bounded variation in the sense of Hardy (that is, f € (¢, w)*BV(R?)).

Note that, for ¢ (x) = y(x) = x classes (¢, y)BV (R?) and (¢, y)*BV (R?) reduce
to classes BVy (R?) (the class of functions of bounded variation in the sense of Vitali
(refer [6, p. 279] for the definition of BVy/(R?))) and BVy(R?) (the class of func-
tions of bounded variation in the sense of Hardy (refer [6, p. 280] for the definition of
BV (R?))), respectively.

3. Main results

We prove the following results.

THEOREM 3.1. If ¢ and y are Ny, f € ((p,y/)BV(Ez)ﬁLl (Ez) and k = (m,n) €

N2, then
fk) = 0<<z>‘1 (%w‘l (%))) (3.1)

Proof. For fixed it,v € Ny, let hy = 5 and hy = 5k . Put

g(x,y) = f ([x,x+hy] x [y,y+ho]) forall (x,y) € i

Since wy, (h1) = —1 for 2* <m < 2+ and w,(hy) = —1 for 2V <n < 2V"!, we have
glmm) = [ [63) i) wi(y) dv dy

= [ [ 0w () = w4 )

~ Wi (X Fh)Wn (¥) +win (xR wa(y+h2) }
= {1 = wy(h2) = Wi (1) + Wi (h1)wa(h2) } f(m,n)
= 4f(m,n)
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and

2 1 1 1
oot [ (] e o
1 1 101 1 1 1
Z//]1‘2f<_x+2_“7x+2_’4+2“+1:| |:y+2v7y+2v+2v+1:|>‘dxdy
< 2

1 .2 3 ) .3 died
_Z//ﬁzf XS s | X P ey x dy.
Similarly, we get

dx dy

5 4 5
2u+17 SR yreny Rl Ve g R e

and in general we have

fomnl < 7 [ 1Al axay

< [ L IAfi(x,y)| dx dy,
I

where

.27 - (2j+ 1) . 2k - (2k+1)
Afjk(xa}’):f<[x+2u+1’x+ 2u+1 x +2v+1’y+ v+l

forall j=1,...,2% andforall k=1,...,2".
For ¢ > 0, using Jensen’s inequality for integrals, we have

d(elimn)) < [ [ oeiafulxy)) dxay
Summing both the sides of the above inequality over j from 1 to 2, we get
QH
20(clfmm) < [ [, 6(clafutey)]) dxd.
j=1
Again, using Jensen’s inequality for integrals, we have
QH
v o(clfmm) < [ [w (2 q><c|Af,,»k<x,y>>> dx dy.
j=1
Summing both the sides of the above inequality over k from 1 to 2V, we get

"y g (el fmmp) < [ [, 2w<2¢ (el ) >> dx dy

V(q),l[/)(cfa]I )a (3.2)
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where ¢f € (¢,w)BV(T) for c € (0,1].
Since ¢ and y are convex and ¢(0) = y(0) =0, for ¢ € (0,1] we have ¢(cx) <
cd(x) and y(cx) < cy(x), and hence we can choose sufficiently small ¢ € (0,1] such

that V(M,)(cf,ﬁz) < 3. Thus, in view of inequality (3.2), we get

fmm)l < 1o (%w‘l (1)) |

This completes the proof of theorem. [J

COROLLARY 3.2. If ¢ and y are Ay and a measurable function f € (¢, l//)*BV(ﬁ2),
then (3.1) holds true.

Proof. Forany f € (¢, y) BV(T),

f ey < [£(10,x] < [0,¥])[ +1£(0,y) = f(0,0)[ +[f(x,0) = f(0,0)[ +1/(0,0)]|

<7 W Vg (1)) 407 (Ve (£(0,.),1) + 97 (Vo ((.,0),T))
+1/(0,0)]

implies f is bounded on T. Since (¢, y)*BV (I ) (¢, yv)BV(I ) the corollary fol-
lows from Theorem 3.1. [

COROLLARY 3.3. If ¢ and y are As, f € (¢,)*BV(T) and k = (m,0) € N3
is such that m # 0, then
. 1
fk)=0 <¢1 (Q» : (3.3)

Proof. For fixed u,v € Ng, let hy = Put

uH

) =2
glx,y) = f(x,y)— f(x+hy,y) forall (x,y) eI".
Since wy,(h1) = —1 for 2% <m < 2#*1 we have
&(m,0) // g(x,y) w(x) dx dy = // S W (x) = win(x+h1)} dx dy
= {1=wn(h1)}f(m,0) =2/ (m,0)

and

dx dy

A 1 1
Fn0l< 3 [ felrn s (v 5i)
! 1 N B
25//ﬁ2f< +2ﬂ,y) f<x+2—”+ﬁ,y)
1 .2 3
- 5//12 f<X+WaY> —f<x+2u+1,y> ‘ dx dy.

dx dy
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.5
< 2'u+1 7y) f<x+ Way> ‘ dXdy

fomo)l < 3 [ [L1asen) avay

< [ [o1afiey) vy
Afj(x,y) = f <X+

2j (241
zﬂﬂ,y) f(er TS 7y>
forall j=1,...,2".

For ¢ > 0, using Jensen’s inequality for integrals, we have

Similarly, we get

and in general we have

where

$(cl im0 < [ [ oelafey) dxdy.

Summing both the sides of the above inequality over j from 1 to 2", we get

21 ¢ (c|f(m,0))) // Z¢C|Af,xy dx dy

As ¢ is satisfying A, condition and is increasing implies
o(a+b) < ¢(2max{a,b}) <d(¢(a)+ ¢(b)), forany a,b > 0.

Therefore, forany 0 <y <1,

Vo(f(on).D) < dly ™ (Vo (£, 1)) + Ve (£(,0),D)).

Thus, in view of (3.4), we get

24 (el fm,0)]) < dly~ V(e T*)) + Vo (cf(.,0), I). (3.5)

Since ¢ is convex and ¢(0) =0, for ¢ € (0,1] we have (p(cx) c(x), and hence we

can choose sufficiently small ¢ € (0, 1] such that Vy (cf,1") < w () and Vi (cf(.,0),I)
< 4 7 - Thus, in view of inequality (3.5), we get

A 1 /1
Fnol< o (1),
c m
This completes the proof of corollary. [

Similarly, one gets the analogue of the above corollary, which is stated below.
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COROLLARY 3.4. If ¢ and y are Ay, f € (¢,w)*BV (L) and k = (0,n) € N2

is such that n # 0, then
-ofe (1)

REMARK 3.5. Our results with ¢(x) = y(x) = x gives Walsh analogues of the
results of F. Moricz [5] and V. Fiilop and F. Moricz [4, for n = 2], except possibly for
the exact constant in their case.
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