
Journal of
Classical

Analysis

Volume 21, Number 1 (2023), 1–7 doi:10.7153/jca-2023-21-01

FUNCTIONS OF (φ ,ψ)–BOUNDED VARIATION AND

ITS DOUBLE WALSH–FOURIER COEFFICIENTS

K. N. DARJI ∗ AND R. G. VYAS

Abstract. In this paper, we have estimated the order of magnitude of double Walsh-Fourier co-
efficients of functions of (φ ,ψ) -bounded variation in the sense of Vitali and Hardy.

1. Introduction

In 1949, N. J. Fine [3] proved using the second mean value theorem that if f is of
bounded variation on [0,1] and if f̂ (m) denotes its (one dimensional) Walsh-Fourier
coefficient, then f̂ (m)=O

(
1
m

)
, for all m �= 0. In 2002 F. Móricz [5] estimated the order

of magnitude of double Fourier coefficients with the help of Riemann-Stieltjes integral
of functions of two variables and in 2004 V. Fülöp and F. Móricz [4] estimated the
order of magnitude of multiple Fourier coefficients of functions of bounded variation in
the sense of Vitali and Hardy in a straightforward way without using Riemann-Stieltjes
integral. Also, the order of magnitude of double Fourier coefficients of different classes
of functions of generalized bounded variation were estimated in [1, 2, 7, 8]. In this
paper, we have estimated the order of magnitude of double Walsh-Fourier coefficients
of functions of (φ ,ψ)-bounded variation in the sense of Vitali and Hardy. Our results
with φ(x) = ψ(x) = x gives Walsh analogues of the results of F. Móricz [5] and V.
Fülöp and F. Móricz [4, for n = 2], except possibly for the exact constant in their case.

2. Notation and definitions

We consider the Walsh orthonormal system {wm(x) : m ∈ N0} defined on the unit
interval I = [0,1) in the Paley enumeration, where N0 = {0,1,2, . . .} . To go into some
details, let

r0(x) =

⎧⎨
⎩

1, if x ∈ [0, 1
2

)
,

−1, if x ∈ [ 1
2 ,1
)
;

and extend r0(x) for the half-axis [0,∞) with period 1.
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The Rademacher orthonormal system {rk(x) : k ∈ N0} is defined as

rk(x) = r0(2kx), k = 1,2, . . . ; x ∈ I.

If

m =
∞

∑
k=0

mk2
k, each mk = 0 or 1,

is the binary decomposition of m ∈ N0 , then

wm(x) =
∞

∏
k=0

rmk
k (x), x ∈ I,

is called the mth Walsh function in the Paley enumeration.
In particular, we have

w0(x) = 1 and w2m(x) = rm(x), m ∈ N0.

Any x ∈ I can be written as

x =
∞

∑
k=0

xk 2−(k+1), each xk = 0 or 1.

For any x ∈ I\Q , there is only one expression of this form, where Q is a class of dyadic
rationals in I . When x∈Q there are two expressions of this form, one which terminates
in 0’s and one which terminates in 1’s.

For any x,y ∈ I their dyadic sum is defined as

x� y =
∞

∑
k=0

|xk − yk| 2−(k+1).

Observe that, for each m ∈ N0, we have

wm(x� y) = wm(x) wm(y), x,y ∈ I, x� y /∈ Q.

For a real-valued function f ∈ L1(I2) , where I = [0,1] and f is 1-periodic in each
variable, its double Walsh-Fourier series is defined as

f (x,y) ∼ ∑
m∈N0

∑
n∈N0

f̂ (m,n) wm(x) wn(y),

where the double Walsh-Fourier coefficients f̂ (m,n) are defined by

f̂ (m,n) =
∫ ∫

I
2
f (x,y) wm(x) wn(y) dx dy.

Let φ and ψ be strictly increasing convex functions on [0,∞) with φ(0) = ψ(0) =
0. A function φ is said to be a Δ2 function if there is a constant d � 2 such that
φ(2x) � dφ(x) for all x � 0.



FUNCTIONS OF (φ ,ψ)-BOUNDED VARIATION 3

For I = [a,b] and J = [c,d] , define

f (I× J) = f (I,d)− f (I,c) = f (b,d)− f (a,d)− f (b,c)+ f (a,c).

A measurable function f defined on a rectangle R2 = [a,b]× [c,d] is said to be of
(φ ,ψ)-bounded variation in the sense of Vitali ( that is, f ∈ (φ ,ψ)BV (R2)) if

V(φ ,ψ)( f ,R2) = sup
I ,J

(
∑
k

ψ

(
∑
j

φ(| f (I j × Jk)|)
))

< ∞,

where I and J are finite collections of non-overlapping subintervals {I j} and {Jk}
in [a,b] and [c,d] , respectively.

Consider a function f : I
2 → R defined by f (x,y) = g(x)+h(y) , where g and h

are any two arbitrary not necessarily bounded functions from I into R . Then V(φ ,ψ)( f ,I
2)

= 0. Thus, a function f with V(φ ,ψ)( f ,I
2) < ∞ need not be bounded.

If f ∈ (φ ,ψ)BV (R2) is such that the marginal functions f (a, .) ∈ φBV ([c,d]) and
f (.,c) ∈ φBV ([a,b]) (refer [9] for the definition of φBV ([a,b])) then f is said to be of
(φ ,ψ)-bounded variation in the sense of Hardy (that is, f ∈ (φ ,ψ)∗BV (R2)).

Note that, for φ(x) = ψ(x) = x classes (φ ,ψ)BV (R2) and (φ ,ψ)∗BV (R2) reduce
to classes BVV (R2) (the class of functions of bounded variation in the sense of Vitali
(refer [6, p. 279] for the definition of BVV (R2))) and BVH(R2) (the class of func-
tions of bounded variation in the sense of Hardy (refer [6, p. 280] for the definition of
BVH(R2))), respectively.

3. Main results

We prove the following results.

THEOREM 3.1. If φ and ψ are Δ2 , f ∈ (φ ,ψ)BV (I
2
)∩L1(I

2
) and k = (m,n) ∈

N
2 , then

f̂ (k) = O

(
φ−1

(
2
m

ψ−1
(

1
n

)))
. (3.1)

Proof. For fixed μ ,ν ∈ N0 , let h1 = 1
2μ+1 and h2 = 1

2ν+1 . Put

g(x,y) = f ([x,x�h1]× [y,y�h2]) for all (x,y) ∈ I
2
.

Since wm(h1) =−1 for 2μ � m < 2μ+1 and wn(h2) =−1 for 2ν � n < 2ν+1 , we have

ĝ(m,n) =
∫ ∫

I
2
g(x,y) wm(x) wn(y) dx dy

=
∫ ∫

I
2
f (x,y){wm(x)wn(y)−wm(x)wn(y�h2)

−wm(x�h1)wn(y)+wm(x�h1)wn(y�h2)}
= {1−wn(h2)−wm(h1)+wm(h1)wn(h2)} f̂ (m,n)
= 4 f̂ (m,n)
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and

| f̂ (m,n)| � 1
4

∫ ∫
I
2

∣∣∣∣ f
([

x,x� 1
2μ+1

]
×
[
y,y� 1

2ν+1

])∣∣∣∣ dx dy

=
1
4

∫ ∫
I
2

∣∣∣∣ f
([

x� 1
2μ ,x� 1

2μ � 1
2μ+1

]
×
[
y� 1

2ν ,y� 1
2ν � 1

2ν+1

])∣∣∣∣ dx dy

=
1
4

∫ ∫
I
2

∣∣∣∣ f
([

x� 2
2μ+1 ,x� 3

2μ+1

]
×
[
y� 2

2ν+1 ,y� 3
2ν+1

])∣∣∣∣ dx dy.

Similarly, we get

| f̂ (m,n)|� 1
4

∫ ∫
I
2

∣∣∣∣ f
([

x� 4
2μ+1 ,x� 5

2μ+1

]
×
[
y� 4

2ν+1 ,y� 5
2ν+1

])∣∣∣∣ dx dy

and in general we have

| f̂ (m,n)| � 1
4

∫ ∫
I
2
|Δ f jk(x,y)| dx dy

�
∫ ∫

I
2
|Δ f jk(x,y)| dx dy,

where

Δ f jk(x,y) = f

([
x� 2 j

2μ+1 ,x� (2 j +1)
2μ+1

]
×
[
y� 2k

2ν+1 ,y� (2k+1)
2ν+1

])

for all j = 1, . . . ,2μ and for all k = 1, . . . ,2ν .
For c > 0, using Jensen’s inequality for integrals, we have

φ(c| f̂ (m,n)|) �
∫ ∫

I
2

φ(c|Δ f jk(x,y)|) dx dy.

Summing both the sides of the above inequality over j from 1 to 2μ , we get

2μφ(c| f̂ (m,n)|) �
∫ ∫

I
2

2μ

∑
j=1

φ(c|Δ f jk(x,y)|) dx dy.

Again, using Jensen’s inequality for integrals, we have

ψ(2μφ(c| f̂ (m,n)|)) �
∫ ∫

I
2

ψ

(
2μ

∑
j=1

φ(c|Δ f jk(x,y)|)
)

dx dy.

Summing both the sides of the above inequality over k from 1 to 2ν , we get

2νψ(2μφ(c| f̂ (m,n)|)) �
∫ ∫

I
2

2ν

∑
k=1

ψ

(
2μ

∑
j=1

φ(c|Δ f jk(x,y)|)
)

dx dy

� V(φ ,ψ)(c f ,I
2), (3.2)
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where c f ∈ (φ ,ψ)BV (I
2
) for c ∈ (0,1] .

Since φ and ψ are convex and φ(0) = ψ(0) = 0, for c ∈ (0,1] we have φ(cx) �
cφ(x) and ψ(cx) � cψ(x), and hence we can choose sufficiently small c ∈ (0,1] such

that V(φ ,ψ)(c f ,I
2) � 1

2 . Thus, in view of inequality (3.2), we get

| f̂ (m,n)| � 1
c

φ−1
(

2
m

ψ−1
(

1
n

))
.

This completes the proof of theorem. �

COROLLARY 3.2. If φ and ψ are Δ2 and a measurable function f ∈ (φ ,ψ)∗BV (I2) ,
then (3.1) holds true.

Proof. For any f ∈ (φ ,ψ)∗BV(I2) ,

| f (x,y)| � | f ([0,x]× [0,y])|+ | f (0,y)− f (0,0)|+ | f (x,0)− f (0,0)|+ | f (0,0)|
� φ−1(ψ−1(V(φ ,ψ)( f ,I

2)))+ φ−1(Vφ ( f (0, .),I))+ φ−1(Vφ ( f (.,0),I))
+ | f (0,0)|

implies f is bounded on I
2
. Since(φ ,ψ)∗BV (I2) ⊂ (φ ,ψ)BV (I2) , the corollary fol-

lows from Theorem 3.1. �

COROLLARY 3.3. If φ and ψ are Δ2 , f ∈ (φ ,ψ)∗BV (I2) and k = (m,0) ∈ N
2
0

is such that m �= 0 , then

f̂ (k) = O

(
φ−1

(
1
m

))
. (3.3)

Proof. For fixed μ ,ν ∈ N0 , let h1 = 1
2μ+1 . Put

g(x,y) = f (x,y)− f (x�h1,y) for all (x,y) ∈ I
2
.

Since wm(h1) = −1 for 2μ � m < 2μ+1 , we have

ĝ(m,0) =
∫ ∫

I
2
g(x,y) wm(x) dx dy =

∫ ∫
I
2
f (x,y){wm(x)−wm(x�h1)} dx dy

= {1−wm(h1)} f̂ (m,0) = 2 f̂ (m,0)

and

| f̂ (m,0)| � 1
2

∫ ∫
I
2

∣∣∣∣ f (x,y)− f

(
x� 1

2μ+1 ,y

)∣∣∣∣ dx dy

=
1
2

∫ ∫
I
2

∣∣∣∣ f
(

x� 1
2μ ,y

)
− f

(
x� 1

2μ � 1
2μ+1 ,y

)∣∣∣∣ dx dy

=
1
2

∫ ∫
I
2

∣∣∣∣ f
(

x� 2
2μ+1 ,y

)
− f

(
x� 3

2μ+1 ,y

)∣∣∣∣ dx dy.
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Similarly, we get

| f̂ (m,0)| � 1
2

∫ ∫
I
2

∣∣∣∣ f
(

x� 4
2μ+1 ,y

)
− f

(
x� 5

2μ+1 ,y

)∣∣∣∣ dx dy

and in general we have

| f̂ (m,0)| � 1
2

∫ ∫
I
2
|Δ f j(x,y)| dx dy

�
∫ ∫

I
2
|Δ f j(x,y)| dx dy,

where

Δ f j(x,y) = f

(
x� 2 j

2μ+1 ,y

)
− f

(
x� (2 j +1)

2μ+1 ,y

)
for all j = 1, . . . ,2μ .

For c > 0, using Jensen’s inequality for integrals, we have

φ(c| f̂ (m,0)|) �
∫ ∫

I
2

φ(c|Δ f j(x,y)|) dx dy.

Summing both the sides of the above inequality over j from 1 to 2μ , we get

2μφ(c| f̂ (m,0)|) �
∫ ∫

I
2

2μ

∑
j=1

φ(c|Δ f j(x,y)|) dx dy

� Vφ (c f (.,y),I). (3.4)

As φ is satisfying Δ2 condition and is increasing implies

φ(a+b) � φ(2max{a,b}) � d(φ(a)+ φ(b)), for any a,b � 0.

Therefore, for any 0 < y � 1,

Vφ ( f (.,y),I) � d[ψ−1(Vφ ( f ,I
2))+Vφ( f (.,0),I)].

Thus, in view of (3.4), we get

2μφ(c| f̂ (m,0)|) � d[ψ−1(Vφ (c f ,I
2))+Vφ (c f (.,0),I)]. (3.5)

Since φ is convex and φ(0) = 0, for c ∈ (0,1] we have φ(cx) � cφ(x) , and hence we

can choose sufficiently small c∈ (0,1] such that Vφ (c f ,I
2)� ψ

(
1
4d

)
and Vφ (c f (.,0),I)

� 1
4d . Thus, in view of inequality (3.5), we get

| f̂ (m,0)| � 1
c

φ−1
(

1
m

)
.

This completes the proof of corollary. �
Similarly, one gets the analogue of the above corollary, which is stated below.
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COROLLARY 3.4. If φ and ψ are Δ2 , f ∈ (φ ,ψ)∗BV(I
2
) and k = (0,n) ∈ N

2
0

is such that n �= 0 , then

f̂ (k) = O

(
φ−1

(
1
n

))
.

REMARK 3.5. Our results with φ(x) = ψ(x) = x gives Walsh analogues of the
results of F. Móricz [5] and V. Fülöp and F. Móricz [4, for n = 2], except possibly for
the exact constant in their case.
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