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ON THE SPEED OF APPROXIMATION

IN THE CLASSES OF ψ –INTEGRALS

SİBEL YASEMİN GÖLBOL ∗ AND UǦUR DEǦER

Abstract. The concept of the ψ -integrals introduced by A. I. Stepanets who has brought a new
perspective in the theory of Fourier series, especially in approximation theory. The main objec-
tive of this study is to get the speed of approximation to the functions of the class ψ -integrals
by generalized Zygmund sums, Woronoi-Nörlund and Riesz means, responding to the solution
of the Kolmogorov-Nikol’skii problem under the uniform norm.

1. Introduction

Assume that L := L(0,2π) denotes the space of functions that are 2π -periodic
and Lebesgue integrable on [0,2π ] and let

S[ f ] =
ao

2
+

∞

∑
k=1

(ak coskx+bk sinkx) ≡
∞

∑
k=0

Ak( f ;x)

be the Fourier series of a function f ∈ L where

ak = ak( f ) =
1
π

π∫
−π

f (t)cosktdt; for k = 0,1,2, · · · ,

bk = bk( f ) =
1
π

π∫
−π

f (t)sinktdt; for k = 1,2, · · · .

It is known that Cψ
∞ is class of 2π -periodic continuous functions which is ex-

pressed by

f (x) =
a0

2
+

1
π

π∫
−π

θ (x− t)Ψ(t)dt

=
a0

2
+( f ψ ∗Ψ)(x),
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where Ψ(x) is a certain function that has the Fourier series

∞

∑
k=1

(ψ1(k)coskx+ ψ2(k)sinkx),

ψ = (ψ1,ψ2) is a pair of arbitrary fixed systems of numbers ψ1(k) and ψ2(k) , (k =
1,2, · · ·) [10]. Here, the function θ is called ψ -derivative of function f , and is denoted

by f ψ (·) , esssup
t

|θ (t)| � 1,
π∫

−π
θ (t)dt = 0.

Note that if ψ1(v) = ψ(v)cos
β π
2

and ψ2(v) = ψ(v)sin
β π
2

, then the classes Cψ
∞

coincide with the classes Cψ
β ,∞ . Moreover, if ψ(v) = v−r , then the classes Cψ

∞ coincide
with the classes Wr

β ,∞ -Weil-Nagy [10].
We are essentially interested in asymptotic equalities for the quantities

En(N,Un( f )) = sup
f∈N

‖ f −Un( f )‖X (1)

that realize solutions of the corresponding Kolmogorov-Nikol’skii problem. For a given
method Un( f ;λ ) on the class N in the space X , this problem is solved if the function
ξ (n) = ξ (n,λ ;N) is determined in obvious form such that

En(N,Un( f ;λ )) = sup
f∈N

‖ f (x)−Un( f ;x;λ )‖X = ξ (n)+O(ξ (n))

as n → ∞ , where λ = ||λ (n)
k || is a triangular matrix [10].

The value En(N,Un( f ;λ )) is examined for different Un( f ;λ ) methods in various
spaces. Especially, some evaluations have been obtained in various subclasses of con-
tinuous functions space according to the Zs

n( f ;x) method which has an important place
in this study, where

Zs
n( f ;x) =

a0

2
+

n−1

∑
k=1

(
1−

(
k
n

)s)
Ak( f ;x), s > 0

are Zygmund sums and Z1
n( f ;x) = σn( f ;x) are known as Fejér sums.

There are many studies focusing on the value En(N,Zs
n)C . Some of these studies

have been conducted by A. Zygmund [13] in case of N = Wr
∞ , r > 0; B. Nagy and S.

A. Teljakovskiı́ [8], [11] in case of N =Wr
β ,∞ under different conditions on β ,s,r ; A. I.

Stepanets [10], D. N. Bushev [1], in case of N =Cψ
β ,∞ under the conditions on function

ψ(·) ; A. S. Fedorenko [4, 5] and U. Değer [2, 3] in case of N = Cψ
∞ under different

conditions on functions ψ1(·) and ψ2(·) .
In this study, the results about the speed of approximation which gives the solution

of (1) in case of N = Cψ
∞ for Riesz and Woronoi-Nörlund methods will be given under

some certain conditions. Let us remember these methods. The polynomials that have
the form

Rn( f ;x) =
1
Pn

n

∑
m=0

pmsm( f ;x),
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and

Nn( f ;x) =
1
Pn

n

∑
m=0

pn−msm( f ;x),

are called the Riesz means and Woronoi-Nörlundmeans [12], respectively, where sn( f ;x)
is the nth partial sum of Fourier series of a function f ∈ L and

Pn =
n

∑
k=0

pk �= 0 (n � 0)

by p−1 = P−1 = 0.
The polynomials that have the form

Zϕ
n ( f ;x) =

a0

2
+

n−1

∑
k=1

(
1− ϕ(k)

ϕ(n)

)
(ak coskx+bk sinkx), n ∈ N,

have been introduced in [6], [7] and called the generalized Zygmund sums, where ϕ(k)
are the values of a certain function ϕ ∈ F at integer points, and F is the set of all
continuous functions ϕ(u) monotonically increasing to infinity on [1,∞) . On the other
hand, let F+ show the class of functions that belong to F and satisfy the conditions
ϕ(u) � 0, u � 0, such that ϕ(0) = 0 and ϕ(u) is a function which is concave or convex
on [0,n] for any n = 2,3, . . . . It is obvious that if ϕ(t) = ts , s > 0, then ϕ ∈ F+ and
Zϕ

n ( f ;x) coincide with the classical Zygmund sums.
According to [9], we know that the necessary and sufficient condition for the uni-

form convergence of the polynomials Zϕ
n ( f ;x) to the function f (x) in the complete

space C is given in the following proposition, where C is the space of 2π -periodic
continuous functions f (t) with the norm ‖ f‖C = max

t
| f (t)|.

PROPOSITION 1. Let ϕ ∈ F+. Then the condition

1
ϕ(n)

n−1

∑
k=1

ϕ(n)−ϕ(k)
n− k

� K

is necessary and sufficient for the uniform convergence of the polynomials Zϕ
n ( f ;x) to

the function f (x) from C[0,π ] space.

Also we note that the method Zϕ
n generated by a positive ϕ is saturated in the

space C with saturation order 1
ϕ(n) [9].

The values
En(Cψ

∞ ,Rn)C = sup
f∈Cψ

∞

‖ f (x)−Rn( f ;x)‖C , (2)

En(Cψ
∞ ,Nn)C = sup

f∈Cψ
∞

‖ f (x)−Nn( f ;x)‖C (3)

and
En(Cψ

∞ ,Zϕ
n )C = sup

f∈Cψ
∞

‖ f (x)−Zϕ
n ( f ;x)‖C (4)
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are the main subject of our study that aims at obtaining asymptotic equalities under
different conditions on functions ϕ(·) , ψ1(·) and ψ2(·) , where ‖ρ‖C = max

x
|ρ(x)|.

The values of (2) and (3) depend on the functions gi(v) = vsψi(v) , i = 1,2, (for
the value (4): gi(v) = ϕ(v)ψi(v)) which are convex or concave on v � b � 1. The
functions gi(v) , i = 1,2 have five probable cases:

a) gi(v) are convex functions with lim
v→∞

gi(v) = ∞,

b) gi(v) are convex functions with lim
v→∞

gi(v) = C > 0,

c) gi(v) are convex functions with lim
v→∞

gi(v) = 0,

d) gi(v) are concave functions with lim
v→∞

gi(v) = c > 0,

e) gi(v) are concave functions with lim
v→∞

gi(v) = ∞.

The problem will only be addressed for the states d) and e). Throughout this paper,
M denotes the set of continuous positive functions ψ(t) which is convex downward
for t � 1 and satisfying the conditions lim

t→∞
ψ(t) = 0, i.e., for Δ(ψ , t1,t2) = ψ(t1)−

2ψ( t1+t2
2 )+ ψ(t2),

M =
{

ψ(t), t � 1 : ψ(t) > 0,Δ(ψ ,t1,t2) � 0,∀t1, t2 ∈ [1,∞) , lim
t→∞

ψ(t) = 0
}

.

M′ shows the subset of functions ψ(·) from M that satisfies the following condition:

∞∫
1

ψ(t)
t

dt < ∞.

On the other hand M′′ denotes the subset of functions from M′ that x
∞∫
x

ψ(v)
v dv is

increasing for x � 1.
We also set

M0 = {ψ ∈ M : 0 < κ (ψ ,t) � K < ∞,∀t � 1} ,

where

κ (ψ ,t) =
t

ζ (ψ ,t)− t
,

ζ (ψ ,t) = ψ−1
(

ψ (t)
2

)
,

ψ−1 (·) is the inverse of function ψ (·) , and the constant K may depend on the function
ψ .
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2. Solution of the Kolmogorov-Nikols’kii problem by the
generalized Zygmund sums

In this section we will give some main results with respect to the generalized Zyg-
mund sums for the states d) and e). Throughout this paper, O(1) indicates a properly
bounded identity with respect to n and ψ(n) = (ψ2

1 (n)+ ψ2
2 (n))1/2 .

THEOREM 1. Suppose that ϕ ∈ F+ and is a concave function, ψ1 ∈ M0 , ψ2 ∈
M′ and gi(v) = ϕ(v)ψi(v) , i = 1,2 , are concave functions on v � b � 1 with lim

v→∞
gi(v)

= ∞ or lim
v→∞

gi(v) = c > 0 . Then as n → ∞ , we get

En(Cψ
∞ ,Zϕ

n )C =
2

πϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

dv+
2
π

∞∫
n

ψ2(v)
v

dv+O(1)ψ(n). (5)

Before giving the proof of Theorem 1, we need to prove the next propositions.

PROPOSITION 2. Let ϕ ∈ F+, ψ1 ∈ M0 and g1(v) = ϕ(v)ψ1(v) be concave
function on v � b � 1 with lim

v→∞
g1(v) = ∞ or lim

v→∞
g1(v) = c > 0 . Then as n → ∞ ,

we have
∞∫

−∞

∣∣∣ 1
π

∞∫
0

τ1(v)cosvtdv
∣∣∣dt = O(1)ψ1(n), (6)

where

τ1(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ(v)ψ1(1)
ϕ(n)

, 0 � v � 1

ϕ(v)ψ1(v)
ϕ(n)

, 1 � v � n

ψ1(v) , v � n

.

PROPOSITION 3. Assume that ϕ ∈ F+, ψ2 ∈M′ and g2(v) = ϕ(v)ψ2(v) is con-
cave function on v � b � 1 with lim

v→∞
g2(v) = ∞ or lim

v→∞
g2(v) = c > 0 . Then as n → ∞ ,

we have

∞∫
−∞

∣∣∣ 1
π

∞∫
0

τ2(v)sinvtdv
∣∣∣dt =

2
πϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

dv+
2
π

∞∫
n

ψ2(v)
v

dv+O(1)ψ2(n), (7)

where

τ2(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ(v)ψ2(1)
ϕ(n)

, 0 � v � 1

ϕ(v)ψ2(v)
ϕ(n)

, 1 � v � n

ψ2(v) , v � n

.
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Proof of Proposition 2. By partial integration, we have

∞∫
0

τ1(v)cosvtdv =
1
t

∞∫
0

(−τ
′
1(v))sinvtdv.

Hence, we can write

∞∫
−∞

∣∣∣ 1
π

∞∫
0

τ1(v)cosvtdv
∣∣∣dt = 2

∞∫
0

∣∣∣ 1
π

∞∫
0

τ1(v)cosvtdv
∣∣∣dt

� 2

∞∫
0

∣∣∣ 1
πt

n∫
0

(−τ
′
1(v))sinvtdv

∣∣∣dt +2

∞∫
0

∣∣∣ 1
πt

∞∫
n

(−τ
′
1(v))sinvtdv

∣∣∣dt. (8)

Now let us estimate first integral on the right side of inequality (8):

2

∞∫
0

∣∣∣ 1
πt

n∫
0

(−τ
′
1(v))sinvtdv

∣∣∣dt

� 2

∞∫
0

∣∣∣ 1
πt

1∫
0

τ
′
1(v)sinvtdv

∣∣∣dt +2

∞∫
0

∣∣∣ 1
πt

n∫
1

τ
′
1(v)sinvtdv

∣∣∣dt. (9)

Since the function τ ′
1(v) is a continuous, nonnegative and nonincreasing function on

interval [0,1] for all t � 0, the following inequality is provided:

1
t

1∫
0

τ
′
1(v)sinvtdv > 0. (10)

For the first integral on the right side of inequality (9), if we consider the statement of
(10) and change the order of integration, we obtain

2
π

∞∫
0

∣∣∣1
t

1∫
0

τ
′
1(v)sinvtdv

∣∣∣dt =
2
π

1∫
0

τ
′
1(v)

∞∫
0

sinvt
t

dtdv = O(1)ψ1(n). (11)

Let us estimate the second integral on right side of (9):

2
π

∞∫
0

∣∣∣1
t

n∫
1

τ
′
1(v)sinvtdv

∣∣∣dt

� 2
π

π∫
0

∣∣∣1
t

n∫
1

τ
′
1(v)sinvtdv

∣∣∣dt +
2
π

∞∫
π

∣∣∣1
t

n∫
1

τ
′
1(v)sinvtdv

∣∣∣dt

=
2
π

π∫
0

|J1|dt +
2
π

∞∫
π

|J1|dt.
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Then we can write the following equality for J1 :

J1 =
1
t

n∫
1

τ
′
1(v)sinvtdv =

1
t

π/t∫
1

τ
′
1(v)sinvtdv+

1
t

n∫

π/t

τ
′
1(v)sinvtdv

= J11 + J12.

Hence, for 0 � t � π and 1 � v � π
t , J11 � 0, and for 0 � t � π and π

t � v � n , J12 � 0

because τ ′
1(v) is nonnegative and nonincreasing on [1,n] . If we consider J1 = J11+J12 ,

we can write

2
π

π∫
0

|J1|dt � 2
π

π∫
0

|J11|dt +
2
π

π∫
0

|J12|dt. (12)

Firstly, we will estimate the first integral on the right side of (12):

2
π

π∫
0

|J11|dt =
2
π

π∫
0

1
t

π/t∫
1

τ
′
1(v)sinvtdvdt =

2
π

∞∫
1

τ
′
1(v)

π/v∫
0

sinvt
t

dtdv

=
2
π

∞∫
1

τ
′
1(v)

π∫
0

sinu
u

dudv = O(1)ψ1(n).

Therefore, we get

2
π

π∫
0

|J11|dt = O(1)ψ1(n). (13)

Now let us estimate the second integral on the rigt side of (12):

2
π

π∫
0

|J12|dt = − 2
π

π∫
0

1
t

n∫

π/t

τ
′
1(v)sinvtdvdt = − 2

π

n∫
1

τ
′
1(v)

π∫

π/v

sinvt
t

dtdv

= − 2
π

n∫
1

τ
′
1(v)

πv∫
π

sinu
u

dudv = O(1)ψ1(n).

Hence, we have

2
π

π∫
0

|J12|dt = O(1)ψ1(n). (14)

Owing to (13) and (14), we obtain

2
π

π∫
0

|J1|dt = O(1)ψ1(n). (15)
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Now we will estimate that

2
π

∞∫
π

|J1|dt = O(1)ψ1(n).

For this purpose, we take into account the function

φx(t) =
n∫

x

μ(v)sinvtdv, x > 0, t > 0, (16)

where μ(v) is nonnegative and nonincreasing function for all v � 1. The function
φx(t) is a continuous function for every fixed t . Further, on each interval between the
successive zeros vk and vk+1 of the function sinvt , the function φx(t) has one simple
zero xk [p. 227, [10]]. Therefore let’s suppose that x

′
k is zero the nearest from the right

of the point 1. In view of this, if we set μ(v) = τ ′
1(v) on interval [1,n] in (16), we have

J1 =
1
t

x
′
k∫

1

τ
′
1(v)sinvtdv.

Hence the following result is obtained:

2
π

∞∫
π

|J1|dt � 2
π

∞∫
π

1
t

1+ 2π
t∫

1

|τ ′
1(v)|dvdt � 2

π

∞∫
π

2π
t2

|τ ′
1(1)|dt = O(1)ψ1(n)

2
π

∞∫
π

|J1|dt = O(1)ψ1(n).

Therefore from (15) and (2), we get

2
π

∞∫
0

∣∣∣1
t

n∫
1

τ
′
1(v)sinvtdv

∣∣∣dt = O(1)ψ1(n).

Thus for the first integral on the right side of (8) we get that

2

∞∫
0

∣∣∣ 1
πt

n∫
0

τ
′
1(v)sinvtdv

∣∣∣dt = O(1)ψ1(n). (17)

Now we will show that

2

∞∫
0

∣∣∣ 1
πt

∞∫
n

τ
′
1(v)sinvtdv

∣∣∣dt = O(1)ψ1(n). (18)
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Firstly by partial integration we have

1
t

∞∫
n

τ
′
1(v)sinvtdv =

1
t2

[
− τ

′
1(n+0)cosnt−

∞∫
n

(−τ
′′
1 (v))cosvtdv

]
.

We know that τ ′′
1 (v) > 0. Then we get

∣∣∣1
t

∞∫
n

τ
′
1(v)sinvtdv

∣∣∣ � 1
t2

[
|τ ′

1(n+0)cosnt|+
∣∣∣

∞∫
n

τ
′′
1 (v)cosvtdv

∣∣∣]

� 1
t2

[|ψ ′
1(n)|+ |ψ ′

1(n)|] =
2
t2
|ψ ′

1(n)|.

Hence since ψ1 ∈ M0 , we obtain

1
π

∫

t� 1
n

∣∣∣1
t

∞∫
n

τ
′
1(v)sinvtdv

∣∣∣dt � 1
π

∫

t� 1
n

2
t2
|ψ ′

1(n)|dt = O(1)ψ1(n). (19)

After this estimation we will show that

1
π

∫

t� 1
n

∣∣∣1
t

∞∫
n

τ
′
1(v)sinvtdv

∣∣∣dt = O(1)ψ1(n).

By partial integration, we obtain

∞∫
n

τ1(v)cosvtdv = −ψ1(n)
sinnt

t
− 1

t

∞∫
n

τ
′
1(v)sinvtdv.

∣∣∣1
t

∞∫
n

τ
′
1(v)sinvtdv

∣∣∣ � ψ1(n)
∣∣∣ sinnt

t

∣∣∣+
∣∣∣

∞∫
n

τ1(v)cosvtdv
∣∣∣.

From here, we have

1
π

∫

t� 1
n

∣∣∣1
t

∞∫
n

τ
′
1(v)sinvtdv

∣∣∣dt � 2
π

ψ1(n)

1
n∫

0

∣∣∣sinnt
t

∣∣∣dt +
2
π

1
n∫

0

∣∣∣
∞∫

n

τ1(v)cosvtdv
∣∣∣dt.

1
n∫
0

∣∣ sinnt
t

∣∣dt � K1 and owing to similar estimation of the integral in [3] we know that

2
π

1
n∫

0

∣∣∣
∞∫

n

τ1(v)cosvtdv
∣∣∣dt = O(1)ψ1(n).
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Thus we find that ∫

t� 1
n

∣∣∣ 1
πt

∞∫
n

τ
′
1(v)sinvtdv

∣∣∣dt = O(1)ψ1(n).

Therefore, the proof of proposition is completed. �

Proof of Proposition 3. τ2(v) is nonnegative continuous function on interval [0,∞)
and is increasing on intervals [0,n] and

lim
v→∞

τ2(v) = lim
v→∞

τ ′2(v) = 0.

By applying two times partial integration, we have

1
π

∞∫
0

τ2(v)sinvtdv

=
1

πt2

[
(τ

′
2(1−0)− τ

′
2(1+0))sint +(τ

′
2(n−0)− τ

′
2(n+0))sinnt

−
( 1∫

0

τ
′′
2 (v)sinvtdv+

n∫
1

τ
′′
2 (v)sinvtdv+

∞∫
n

τ
′′
2 (v)sinvtdv

)]
. (20)

From (20), since g2(v) = ϕ(v)ψ2(v) is increasing, we get

∣∣∣ 1
π

∞∫
0

τ2(v)sinvtdv
∣∣∣ � −2ψ ′

2(n)
πt2

. (21)

Hence, accordingly (21) we obtain

∫

|t|�π/2

∣∣∣ 1
π

∞∫
0

τ2(v)sinvtdv
∣∣∣dt = 2

∞∫

π/2

∣∣∣ 1
π

∞∫
0

τ2(v)sinvtdv
∣∣∣dt �

∞∫

π/2

−2ψ ′
2(n)

πt2
dt

=
−8ψ ′

2(n)
π2 = O(1)ψ2(n). (22)

By partial integration, we have

1
π

∞∫
0

τ2(v)sinvtdv =
1
π

n∫
0

τ2(v)sinvtdv+
1
π

∞∫
n

τ2(v)sinvtdv

=
1
πt

(
− τ2(v)cosvt|n0 +

n∫
0

τ ′2(v)cosvtdv
)

+
(
− τ2(v)cosvt|∞n +

∞∫
n

τ ′2(v)cosvtdv
)

=
1
πt

( n∫
0

τ ′2(v)cosvtdv+
∞∫

n

τ ′2(v)cosvtdv
)
. (23)



ON THE SPEED OF APPROXIMATION 19

To estimate the integral on right hand of (23), first of all we will consider integrals on
[0,n] and show that

π/2∫

π/2n

∣∣∣1
t

n∫
0

τ ′2(v)cosvtdv
∣∣∣dt =

1
ϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

dv+O(1)ψ2(n). (24)

In this case, let us represent the function under the integral sign in left part of (24) in
such form:

1
t

n∫
0

τ ′2(v)cosvtdv =
1
t

π/2t∫
0

τ ′2(v)cosvtdv+
1
t

n∫

π/2t

τ ′2(v)cosvtdv

:= I1(t)+ I2(t). (25)

In order to prove (24) it will suffice to prove following equalities

π/2∫

π/2n

|I1(t)|dt =
1

ϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

dv+O(1)ψ2(n) (26)

and

π/2∫

π/2n

|I2(t)|dt � O(1)ψ2(n). (27)

As the function τ ′2(v) is nonnegative and nonincreasing on [0,n] , then I1(t) � 0,
t ∈ [π/2n,π/2], and I2(t) � 0, t ∈ [π/2n,π/2]. Therefore changing the order of inte-
gration, we obtain

π/2∫

π/2n

|I1(t)|dt =

π/2∫

π/2n

1
t

π/2t∫
0

τ ′2(v)cosvtdvdt

=
1∫

0

π/2∫

π/2n

cosvt
t

dtdτ2(v)+
n∫

1

π/2v∫

π/2n

cosvt
t

dtdτ2(v)

=
1∫

0

πv/2∫

πv/2n

cosz
z

dzdτ2(v)+
n∫

1

π/2∫

πv/2n

cosz
z

dzdτ2(v)
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=
(

τ2(v)

πv/2∫

πv/2n

cosz
z

dz
)
|10−

1∫
0

τ2(v)
v

(
cos

πv
2

− cos
πv
2n

)
dv

+
(

τ2(v)

π/2∫

πv/2n

cosz
z

dz
)
|n1 +

n∫
1

τ2(v)
v

cos
πv
2n

dv

=
1

ϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

cos
πv
2n

dv+O(1)ψ2(n). (28)

Now let’s show that

1
ϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

cos
πv
2n

dv =
1

ϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

dv+O(1)ψ2(n). (29)

For proof of (29) we will obtain necessary estimation of following difference

1
ϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

(
1− cos

πv
2n

)
dv

=
2

ϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

v
sinπv/4n

πv/4n
π
4n

sin
πv
4n

dv

� 2ϕ(n)ψ2(n)
ϕ(n)

π
4n

n∫
1

sin
πv
4n

dv � O(1)ψ2(n).

Hence by combining (28) and (29), we get (26). Now we will obtain (27). Since
I2(t) � 0, t ∈ [π/2n,π/2], then we have

π/2∫

π/2n

|I2(t)|dt = −
π/2∫

π/2n

1
t

n∫

π/2t

τ ′2(v)cosvtdv

= −
n∫

1

τ ′2(v)
π/2∫

π/2v

cosvt
t

dtdv = −
n∫

1

τ ′2(v)
πv/2∫

π/2

cosz
z

dzdv

� 2ci
(π

2

) n∫
1

τ ′2(v)dv = 2ci
(π

2

)(
ψ2(n)− ϕ(1)ψ2(1)

ϕ(n)

)
� O(1)ψ2(n). (30)

Therefore taking into account (26) and (30), we get (24). Now we will estimate integral
on interval [n,∞) on right hand of (23). Taking into account that τ2(v) is a convex
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function with lim
v→∞

τ2(v) = 0 on interval [n,∞) , by partial integration, we get

1
πt

∣∣∣
∞∫

n

τ ′2(v)cosvtdv
∣∣∣ =

1
πt2

∣∣∣(τ ′2(v)sinvt|∞n )−
∞∫

n

τ ′′2 (v)sinvtdv
∣∣∣

� 2
πnt2

(
− nψ ′

2(n)
ψ2(n)

)
ψ2(n) <

2Kψ2(n)
πnt2

. (31)

According to (31), we obtain

π/2∫

π/2n

∣∣∣ 1
πt

∞∫
n

τ ′2(v)cosvtdv
∣∣∣dt �

π/2∫

π/2n

2Kψ2(n)
πnt2

dt = O(1)ψ2(n). (32)

Taking into account to (24) and (32), we have

∫

π/2n�|t|�π/2

∣∣∣ 1
π

∞∫
0

τ2(v)sinvtdv
∣∣∣dt =

2
πϕ(n)

n∫
1

ϕ(v)ψ2(v)
v

dv+O(1)ψ2(n). (33)

Now let’s investigate in neighborhood of origin: Since τ2(v) = ψ2(v) on [n,∞) , in
[page 226, [10]], there exist a > 0 for all n � 1, such that we have

∫

|t|�a/n

∣∣∣ 1
π

∞∫
n

τ2(v)sinvtdv
∣∣∣dt =

2
π

∞∫
n

ψ2(v)
v

dv+O(1)ψ(n). (34)

After that we obtain

2
1
π

∣∣∣
π/2n∫

a/n

∞∫
n

τ2(v)sinvtdv
∣∣∣dt � 2

π

π/2n∫

a/n

∣∣∣
∞∫

n

ψ2(v)sinvtdv
∣∣∣dt (35)

� 2
π

π/2n∫

a/n

n+ 2π
t∫

n

ψ2(v)dvdt � O(1)ψ2(n).

Finally, we will estimate following integral:

π/2n∫

−π/2n

∣∣∣ 1
π

n∫
0

τ2(v)sinvtdv
∣∣∣dt = 2

π/2n∫
0

∣∣∣ 1
π

n∫
0

τ2(v)sinvtdv
∣∣∣dt.

By considering that τ2(v) is a continuous increasing function on interval [0,n] , we have
τ2(v) � ψ2(n) . Hence, we obtain

π/2n∫

−π/2n

∣∣∣ 1
π

n∫
0

τ2(v)sinvtdv
∣∣∣dt � 2ψ2(n)

π

π/2n∫
0

ndt = O(1)ψ2(n). (36)
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Therefore, by using (24), (32) and (36), for n � 1, we get (7). �

Proof of Theorem 1. Similar to the statement in [2], it is known that

En(Cψ
∞ ,Zϕ

n )C =
∞∫

−∞

|τ̂n(t)|dt + γ(n), (37)

where γ(n) � 0,

|γ(n)| = O(
∫

|t|� π
2

|τ̂n(t)|dt)

and

τ̂n(t) =
1
π

∞∫
0

τ1(v)cosvtdv+
1
π

∞∫
0

τ2(v)sinvtdv.

Now we are going to prove the Theorem 1 by using (37) and Propositions 2–3. Firstly,
let us estimate γ(n). Taking into account that

|γ(n)| � O(1)
∫

|t|� π
2

|τ̂n(t)|dt � O(1)
∫

|t|� π
2

∣∣∣ 1
π

∞∫
0

τ1(v)cosvtdv
∣∣∣dt

+O(1)
∫

|t|� π
2

∣∣∣ 1
π

∞∫
0

τ2(v)sinvtdv
∣∣∣dt := γ1 + γ2

and since we know that γ1 = O(1)ψ1(n) and γ2 = O(1)ψ2(n) from (8), (17), (18) and
(22), it turns out that |γ(n)| � O(1)ψ(n). Finally, we have (5) by applying Proposi-
tions 2–3 to (37). �

3. Some results with respect to Riesz and Woronoi-Nörlund means

In this section, we are going to give some asymptotic results with respect to
Woronoi-Nörlund and Riesz means taking into account of the results in Section 2. First

of all, let us consider some notations. Assume that ψ ∈ M and α(t) =
ψ(t)

t|ψ ′(t)| for

t � 1. If lim
t→∞

α(t) exists, let us show this limit by α0(ψ) df= lim
t→∞

α(t) . Thus, we have

seen that in case ϕ(n) = ns , s > 0, Theorem 1 gives us the following results which
coincide with the results in [2].

COROLLARY 1. Let ψ1 ∈ M , ψ2 ∈ M′ and gi(v) = vsψi(v) , s > 0 , i = 1,2 , be
concave functions on v � b � 1 with lim

v→∞
gi(v) = ∞ . If α0(ψ2) = ∞ , then as n → ∞ ,

we have

En(Cψ
∞ ,Zs

n)C =
2
π

∞∫
n

ψ2(v)
v

dv+O(1)ψ2(n).



ON THE SPEED OF APPROXIMATION 23

COROLLARY 2. Let ψ1 ∈ M , ψ2 ∈ M′ and gi(v) = vsψi(v) , s > 0 , i = 1,2 , be
concave functions on v � b � 1 with lim

v→∞
gi(v) = ∞ or lim

v→∞
gi(v) = ci � 0 . If α0(ψ2) =

1/s then as n → ∞ , we have

En(Cψ
∞ ,Zs

n)C =
2

πns

n∫
1

vs−1ψ2(v)dv+O(1)ψ2(n).

COROLLARY 3. Let ψ1 ∈ M , ψ2 ∈ M′ and gi(v) = vsψi(v) , s > 0 , i = 1,2 , be
concave functions on v � b � 1 with lim

v→∞
gi(v) = ∞ . If α0(ψ2) ∈ (1/s,∞) , then as

n → ∞ , we have

En(Cψ
∞ ,Zs

n)C = O(1)ψ2(n).

Under the perspective of these results, we will give some results related to (2) and
(3) by taking into account of the results given in [2], [4].

THEOREM 2. Assume that ψ1 ∈ M , ψ2 ∈ M′′ and gi(v) = vψi(v) , i = 1,2 , are
concave functions on v � b � 1 with lim

v→∞
gi(v) = ∞ and α0(ψ2) = ∞ . Let (n+1)pn =

O(Pn) and
n−1
∑

m=1
| Δpm |= O(Pnn−1). Then as n → ∞ , we have

En(Cψ
∞ ,Rn)C = O(1)

{
2
π

∞∫
n

ψ2(v)
v

dv+ψ2(n)
}

, (38)

where Δpm := pm − pm+1 .

Proof. We know that the following equality is satisfied:

f (x)−Rn( f ;x) =
1
Pn

n

∑
m=0

pm( f (x)− sm( f ;x)).

By Abel’s transformation and taking norm, it turns out that

‖ f (x)−Rn( f ;x)‖C

� 1
Pn

( n−1

∑
m=0

(m+1) | Δpm | ‖ f −σm( f )‖C +(n+1)pn‖ f −σn( f )‖C

)
.

According to Corollary 1, we know that

‖ f −σm( f )‖C =
2
π

∞∫
m

ψ2(v)
v

dv+O(1)ψ2(m).
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By using this asymptotic equality, we have

‖ f (x)−Rn( f ;x)‖C

� 1
Pn

( n−1

∑
m=0

(m+1) | Δpm |
( 2

π

∞∫
m

ψ2(v)
v

dv+O(1)ψ2(m)
)

+(n+1)pn

( 2
π

∞∫
n

ψ2(v)
v

dv+O(1)ψ2(n)
))

= O(1)
1
Pn

( n−1

∑
m=1

m | Δpm |
( 2

π

∞∫
m

ψ2(v)
v

dv+O(1)ψ2(m)
)

+(n+1)pn

( 2
π

∞∫
n

ψ2(v)
v

dv+O(1)ψ2(n)
))

= O(1)
1
Pn

n−1

∑
m=1

m | Δpm |
( 2

π

∞∫
m

ψ2(v)
v

dv+O(1)ψ2(m)
)

+O(1)
1
Pn

n−1

∑
m=1

m | Δpm | O(1)ψ2(m)

:= J1 + J2.

Since g(m) = mψ2(m) is increasing with lim
m→∞

g(m) = ∞ and using the relation

n−1
∑

m=1
| Δpm |= O(n−1Pn), we get

J2 :=
1
Pn

n−1

∑
m=1

mψ2(m) | Δpm |� 1
Pn

nψ2(n)
n−1

∑
m=1

| Δpm |= O(ψ2(n)).

And also,

J1 :=
1
Pn

n−1

∑
m=1

m | Δpm |
( 2

π

∞∫
m

ψ2(v)
v

dv+O(1)ψ2(m)
)

� 1
Pn

n−1

∑
m=1

m | Δpm | 2
π

∞∫
m

ψ2(v)
v

dv

� 2
π

1
Pn

(
n

∞∫
n

ψ2(v)
v

dv
) n−1

∑
m=1

| Δpm |= O(1)
2
π

∞∫
n

ψ2(v)
v

dv.

Taking into account J1 and J2 we obtain (38). �

THEOREM 3. Assume that ψ1 ∈ M , ψ2 ∈ M′ and gi(v) = vψi(v) , i = 1,2 , are
concave functions on v � b � 1 with lim

v→∞
gi(v)= ∞ or lim

v→∞
gi(v)= ci � 0 and α0(ψ2) =
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1 . Let (n+1)pn = O(Pn) and
n−1
∑

m=1
| Δpm |= O(Pnn−1). Then as n → ∞ , we get

En(Cψ
∞ ,Rn)C = O(1)

{
2

πn

n∫
1

ψ2(v)dv+ ψ2(n)
}

. (39)

Proof. According to Corollary 2, it is known that

‖ f −σm( f )‖C =
2

πm

m∫
1

ψ2(v)dv+O(1)ψ2(m).

By using it, we write

‖ f (x)−Rn( f ;x)‖C

� 1
Pn

( n−1

∑
m=0

(m+1) | Δpm |
( 2

πm

m∫
1

ψ2(v)dv+O(1)ψ2(m)
)

+(n+1)pn

( 2
πn

n∫
1

ψ2(v)dv+O(1)ψ2(n)
))

� 1
Pn

( n−1

∑
m=1

m | Δpm |
( 2

πm

m∫
1

ψ2(v)dv+O(1)ψ2(m)
)

+(n+1)pn

( 2
πn

n∫
1

ψ2(v)dv+O(1)ψ2(n)
))

=
1
Pn

n−1

∑
m=1

m | Δpm | 2
πm

m∫
1

ψ2(v)dv+
1
Pn

n−1

∑
m=1

m | Δpm | O(1)ψ2(m) := I2 + I1.

Now let us evaluate these last two statements. Since gi(v) = vψi(v) , i = 1,2, are
concave functions on v � b � 1 under the conditions of theorem, we obtain that

I1 :=
1
Pn

n−1

∑
m=1

mψ2(m) | Δpm |� 1
Pn

nψ2(n)
n−1

∑
m=1

| Δpm |= O(ψ2(n))

and

I2 :=
1
Pn

n−1

∑
m=1

m | Δpm | 2
πm

m∫
1

ψ2(v)dv � 2
πPn

n∫
1

ψ2(v)dv
n−1

∑
m=1

| Δpm |

� O(1)
2

πn

n∫
1

ψ2(v)dv.

Therefore, we get (39) from I2 and I1 . �
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THEOREM 4. Assume that ψ1 ∈ M , ψ2 ∈ M′ and gi(v) = vψi(v) , i = 1,2 , are
concave functions on v � b � 1 with lim

v→∞
gi(v) = ∞ and α0(ψ2) ∈ (1,∞) . Let (n +

1)pn = O(Pn) and
n−1
∑

m=1
| Δpm |= O(Pnn−1). Then as n → ∞ , we have

En(Cψ
∞ ,Rn)C = O(1)ψ2(n). (40)

Proof. We know that

‖ f −σm( f )‖C = O(1)ψ2(m)

from Corollary 3. By considering this and hypothesis of Theorem 4, we get the desired
result given below:

‖ f (x)−Rn( f ;x)‖C � 1
Pn

( n−1

∑
m=0

(m+1) | Δpm | (O(1)ψ2(m))+ (n+1)pn(O(1)ψ2(n))
)

� 1
Pn

( n−1

∑
m=1

m | Δpm | (O(1)ψ2(m))+ (n+1)pn(O(1)ψ2(n))
)

� 1
Pn

n−1

∑
m=1

m | Δpm | ψ2(m)+
1
Pn

(n+1)pnO(1)ψ2(n)

� 1
Pn

O(1)nψ2(n)
n−1

∑
m=1

| Δpm | +O(1)ψ2(n) � O(ψ2(n)). �

The subsequent results are related to the Woronoi-Nörlund means. Since the
proofs of the next three results are similar to the proofs of the above results, we will
omit them.

THEOREM 5. Assume that ψ1 ∈ M , ψ2 ∈ M′′ and gi(v) = vψi(v) , i = 1,2 , are
concave functions on v � b � 1 with lim

v→∞
gi(v) = ∞ and α0(ψ2) = ∞ . Let (n+1)pn =

O(Pn) and
n−1
∑

m=1
| Δmpn−m |= O(n−1Pn). Then as n → ∞ , we have

En(Cψ
∞ ,Nn)C =

2
π

∞∫
n

ψ2(v)
v

dv+O(1)ψ2(n).

THEOREM 6. Assume that ψ1 ∈ M , ψ2 ∈ M′ and gi(v) = vψi(v) , i = 1,2 , are
concave functions on v � b � 1 with lim

v→∞
gi(v)= ∞ or lim

v→∞
gi(v)= ci � 0 and α0(ψ2) =

1 . Let (n+1)pn = O(Pn) and
n−1
∑

m=1
| Δmpn−m |= O(n−1Pn). Then as n → ∞ , we have

En(Cψ
∞ ,Nn)C =

2
πn

n∫
1

ψ2(v)dv+O(1)ψ2(n).
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THEOREM 7. Assume that ψ1 ∈ M , ψ2 ∈ M′ and gi(v) = vψi(v) , i = 1,2 , are
concave functions on v � b � 1 with lim

v→∞
gi(v) = ∞ and α0(ψ2) ∈ (1,∞) . Let (n +

1)pn = O(Pn) and
n−1
∑

m=1
| Δmpn−m |= O(n−1Pn). Then as n → ∞ , we have

En(Cψ
∞ ,Nn)C = O(1)ψ2(n).
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