lournal of
|assical
nalysis
Volume 21, Number 1 (2023), 9-27 doi:10.7153/jca-2023-21-02

ON THE SPEED OF APPROXIMATION
IN THE CLASSES OF y-INTEGRALS

SIBEL YASEMIN GOLBOL* AND UGUR DEGER

Abstract. The concept of the Y -integrals introduced by A. 1. Stepanets who has brought a new
perspective in the theory of Fourier series, especially in approximation theory. The main objec-
tive of this study is to get the speed of approximation to the functions of the class V-integrals
by generalized Zygmund sums, Woronoi-Norlund and Riesz means, responding to the solution
of the Kolmogorov-Nikol’skii problem under the uniform norm.

1. Introduction

Assume that L := L(0,27) denotes the space of functions that are 27 -periodic
and Lebesgue integrable on [0,27] and let

S[f] = % + Z(akcoskx—i-bksinkx) = ZAk(ﬂx)
k=1 k=0

be the Fourier series of a function f € L where

T
1
ak:ak(f):E/f(t)cosktdt; for k=0,1,2,---,
-

y
1
bkzbk(f):E/f(t)sinktdt; for k=1,2,---.
-7

It is known that C¥ is class of 2r-periodic continuous functions which is ex-
pressed by

f(x)

/s
a 1
3 + n/@(x 1) (r)dt
-

S+ ),
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where W(x) is a certain function that has the Fourier series

Mg

(w1 (k) coskx+ yn(k)sinkx),

k=1

V¥ = (W1, yn) is a pair of arbitrary fixed systems of numbers (k) and y»(k), (k =
1,2,---) [10]. Here, the function 6 is called y-derivative of function f, and is denoted

o T
by f7(), esssup|0(1)] < 1, [ 0(1)ds =0.
t —T

Note that if y;(v) = y(v)cos ﬁTE and y»(v) = w(v)sin ﬂ;, then the classes C¥

coincide with the classes Cl"m. Moreover, if y(v) =v~", then the classes c¥ coincide
with the classes Wl§ .- Weil-Nagy [10].
We are essentially interested in asymptotic equalities for the quantities

En(M,Un(f)) = sup [|f = Un(f)llx (1)
fen

that realize solutions of the corresponding Kolmogorov-Nikol’skii problem. For a given
method U,(f;A) on the class 91 in the space X, this problem is solved if the function
E(n) =E&(n,A;M) is determined in obvious form such that

(M Un(f31)) = ;g};tllf(X) = Un(fix:4)[x =& (n) + O(E(n))

as n — oo, where A = H?Lk(")H is a triangular matrix [10].

The value &,(M,Uy,(f;A)) is examined for different U, (f;A) methods in various
spaces. Especially, some evaluations have been obtained in various subclasses of con-
tinuous functions space according to the Z) (f;x) method which has an important place
in this study, where

§ ao n—1 A
Zi(fix) ==+ Z (1 - (—) )Ak(f;x), s>0
2 A n
are Zygmund sums and Z, (f;x) = 0,(f;x) are known as Fejér sums.

There are many studies focusing on the value &,(,Z))c. Some of these studies
have been conducted by A. Zygmund [13] in case of 9t = W[, r > 0; B. Nagy and S.
A. Teljakovskii [8], [1 1] in case of 9N = ng ., under different conditions on B,s,r; AL

Stepanets [10], D. N. Bushev [1], in case of 1= Cg’ ., under the conditions on function
v(-); A. S. Fedorenko [4, 5] and U. Deger [2, 3] in case of 9t = c¥ under different

conditions on functions v (-) and y»(+).

In this study, the results about the speed of approximation which gives the solution
of (1) in case of 9= C¥ for Riesz and Woronoi-Norlund methods will be given under
some certain conditions. Let us remember these methods. The polynomials that have
the form

1 n
Ru(fsx) = P z PmSm(f3%),
n m=0
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and

(fx _anmsmfx)

are called the Riesz means and Woronoi-Norlund means [ 12], respectively, where s, (f;x)
is the nzh partial sum of Fourier series of a function f € L and

Pi=Y p#0 (n>0)
k=0
by P-1 =P_1 =0.
The polynomials that have the form

o(k)
Ze(f + 2 ( o0n) ) (apcoskx + bysinkx), n €N,

have been introduced in [6], [7] and called the generalized Zygmund sums, where ¢ (k)
are the values of a certain function ¢ € F at integer points, and F is the set of all
continuous functions @(u) monotonically increasing to infinity on [1,e0). On the other
hand, let F™ show the class of functions that belong to F and satisfy the conditions
©(u) >0, u>0, such that ¢(0) =0 and @(u) is a function which is concave or convex
on [0,n] for any n=2,3,.... It is obvious that if @(¢) =¢°, s >0, then ¢ € F* and
Z?(f:x) coincide with the classical Zygmund sums.

According to [9], we know that the necessary and sufficient condition for the uni-
form convergence of the polynomials Z7 (f;x) to the function f(x) in the complete
space C is given in the following proposition, where C is the space of 2m-periodic
continuous functions f(¢) with the norm || f||¢c = max |f(2)].

PROPOSITION 1. Let ¢ € F". Then the condition

is necessary and sufficient for the uniform convergence of the polynomials Z,’ (f5x) to
the function f(x) from C[0, 7] space.

Also we note that the method Z! generated by a positive ¢ is saturated in the
space C with saturation orde Ol

The values B
En(CE,Ru)c = sup ||f(x) = Ru(f:x)lc, 2)
rec¥
E(CY,Ny)e = sup [|f(x) = Nu(f33)lle 3)
frec¥
and
E(CY,Z0)c = sup ||f(x) = Z0(f:x)llc (4)

frec¥
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are the main subject of our study that aims at obtaining asymptotic equalities under
different conditions on functions ¢@(-), yi(-) and y»(-), where ||p||c = max|p(x)].

The values of (2) and (3) depend on the functions g;(v) =v'y;(v), i = 1,2, (for
the value (4): gi(v) = @(v)y;(v)) which are convex or concave on v > b > 1. The
functions g;(v), i = 1,2 have five probable cases:

a) gi(v) are convex functions with lim g;(v) = o,
y—s00

b) gi(v) are convex functions with lim g;(v) =C >0,
y—s00

¢) gi(v) are convex functions with lim g;(v) =0,

V—o0

d) gi(v) are concave functions with lim g;(v) =¢ > 0,

V—o0

e) gi(v) are concave functions with lim g;(v) = oe.
y—o0

The problem will only be addressed for the states d) and e). Throughout this paper,
2 denotes the set of continuous positive functions y(r) which is convex downward
for + > 1 and satisfying the conditions tlimy/(t) =0, ie., for A(y,11,0) = y(1) —

2y(152) + y(n),
M = {u/(t),t >1:y(t) > 0,A(y,11,12) 2 0,Vt,10 € [l,oo),tlimu/(t) = 0}.

M shows the subset of functions y(-) from 9 that satisfies the following condition:

/Mdt<oo.
J t

On the other hand 9" denotes the subset of functions from 9 that x [ @dv is

increasing for x > 1.
We also set

My={yeM:0< k(y,r) <K <oVt =1},
where

K(WJ):W,

cn=v (12),

w1 () is the inverse of function v (-), and the constant K may depend on the function

y.
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2. Solution of the Kolmogorov-Nikols’kii problem by the
generalized Zygmund sums

In this section we will give some main results with respect to the generalized Zyg-
mund sums for the states d) and e). Throughout this paper, O(1) indicates a properly
bounded identity with respect to n and W(n) = (wi(n) + w3 (n))'/%.

THEOREM 1. Suppose that ¢ € F™ and is a concave function, Wi € My, Y €
M and g;(v) = o(v)w;(v), i=1,2, are concave functionson v = b > 1 with lim g;(v)
Vy—ro0

=oo or lim gj(v) =c¢ > 0. Then as n — o, we get
y—s00

v 2 (oWl 2 [w() .
E(CY, 20V = / dv+ 2 / dv+0)T(n). 5
(C2.Z0)e 7r§0(n)1 v v+7r v v+o(y(n) )
Before giving the proof of Theorem 1, we need to prove the next propositions.

PROPOSITION 2. Let @ € FT, yy € My and g1(v) = ¢(v)y1(v) be concave
Sfunction on v = b > 1 with lim g|(v) = or limg;(v) =c¢ > 0. Then as n — oo,
y—ro0 y—r00

we have - N
1
/’Eo/ﬁ(v)cosvtdv di = 0(1)yi (n), ©)
where
o)y (1) C0<v<l
o(n)
() =< o)y (v) y<n
om)
vi(v) ,v=n

PROPOSITION 3. Assume that ¢ € F, y, € M and g>(v) = o(v)ya(v) is con-
cave functionon v > b > 1 with lim g»(v) = or lim g2(v) =c¢ > 0. Then as n — oo,
y—so00 y—so00

we have
/'%O/Tz(v) sinvtdv‘dt - n(pz(n)l/ (P(V>:}V2(V)dv+%/WZT(V)dv—i-O(I)le(n), o
where
eMva(l)
o) 7T
n) =1 0w | _
o(n) ' h
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Proof of Proposition 2. By partial integration, we have

= oo

1 /
/T1 Ycosvidy = ;/(—Tl(v))sinvtdv.

0 0

Hence, we can write

= oo =

1 1
/‘—/11( )cosvtdv‘dt 2/)—/1’1 )cosvtdv)dt
T T

—oo 0 0

=

/I / —n(v Slnvtdv'dt—i—z/‘—/ g ) sinviar|dr. ()

n

Now let us estimate first integral on the right side of inequality (8):

/ ’ / )sin vtdv‘dt
n

=3 1
2/)%/7 smvtdv)dt-l—2/‘—/’cl( )sinvzdv|dt. )
0 0

1

Since the function T;(v) is a continuous, nonnegative and nonincreasing function on
interval [0, 1] for all 7 > 0, the following inequality is provided:

~ | —

—/ ' (v)sinvedv > 0. (10)
0

For the first integral on the right side of inequality (9), if we consider the statement of
(10) and change the order of integration, we obtain

1 S

1 .
H/T smvtdv‘dt i/ri(v)/SII;ththZO(l)y/l(n). (11)
0

0 0

oo

=/

0

Let us estimate the second integral on right side of (9):

2 71
—/) /’L’l smvtdv‘dt
T t
0 1
T n

2 1
E/‘;/Tl( smvtdv'dt—i— /' / v)sinvtdv|dt
0 1
- —/\J1|dt+ /|Jl\dt

N
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Then we can write the following equality for J; :

T/t

n n
1 ' 1 ' 1 '
Ji = ?/Tl (v)sinvtdv = ?/Tl (v) sinvtdv—f—;/rl (v)sinvedv
1 1 T/t

=Ju+J12-

15

Hence,for0<r<mand 1 <v<<Z F.Ju = O,andfor0<r<m and <v<n,J;p <0
because ”L’; (v) is nonnegative and nonincreasing on [1,n]. If we cons1der Ji=Ju+J)12,

we can write

2 7 2 7 2 |
—/\Jl|df< —/|111|df+—/|112\dl~
T T T

0 0 0

Firstly, we will estimate the first integral on the right side of (12):

T TZ?/t

2 7 N
l
;/\J11|dt —/ / v)sinvtdvdt = / / siny
0 1 0

=

=§/ﬁw/?ﬂdd—ou%my

Therefore, we get
/i

2 [1nilar = 001y o).

0

Now let us estimate the second integral on the rigt side of (12):

n y
2 / invt
/ ialdi = —= / - / 7 (v)sinvedvdt = — = / 7 (v) / S drav

0 1 /v
2 n v
’ sinu
1 T

Hence, we have

2 [1ald = 0y (o).

0
Owing to (13) and (14), we obtain

%!hwzommm»

12)

13)

(14)

15)
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Now we will estimate that
5 %
= [ 11lde = 0(1yyi ).
T

For this purpose, we take into account the function
n
(1) :/u(v) sinvtdv, x>0, t >0, (16)
X

where p(v) is nonnegative and nonincreasing function for all v > 1. The function
¢x(¢) is a continuous function for every fixed 7. Further, on each interval between the
successive zeros v; and v, 1 of the function sinvz, the function ¢,(¢) has one simple
zero xi [p. 227, [10]]. Therefore let’s suppose that x;{ is zero the nearest from the right

of the point 1. In view of this, if we set i(v) = 7,(v) on interval [1,n] in (16), we have

i
X

1 /
Ji= 7/ 1 (v) sinvedy.

1

Hence the following result is obtained:

w 142

2 7 2 71 , 2 Tom
= fnlar<= [+ [ 1ldvar < = [ i lde=0(1wi(n)
(9 V3 1 (9

2 [inlde = 0w n).

Therefore from (15) and (2), we get

%7'%/"11(\2) sinvtdv‘dt =0(1)y(n).

0 1

Thus for the first integral on the right side of (8) we get that

n

27)%/1;(V)Sinvtdv‘dtzO(l)llll(n). 17)
0 0

Now we will show that

27’%71{(V)sinwdv‘dz: o(1) w1 (n). (18)
0 n
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Firstly by partial integration we have

1 - ! 1 ! "
—/Tl(v) sinvtdv = t—z{—rl(n+0)cosnt—/(—q (v))cosvtdv}

n

n

We know that Tf(v) > 0. Then we get

1 r 1
_/ smvtdv < —2{|Tl(n+0)cosnt|+‘/q cosvtde

t
< I+ ¥ )] = 31w

Hence since y; € 9, we obtain

1 2.
- / ’ /1:1 Jsinwiav|ar < — [ Z|yim)ldr = 0(1)ya ). (19)
/n 12%
After this estimation we will show that
/ ‘ /1'1 Jsinvidv|dr = O(1)yi (n).
By partial integration, we obtain
7 smnt 1 T
/’L’l (v)cosvrdy = — - ?/ v)sinvtdv.
n
1 7 / innt 7
)?/Tl(v)sinvtdv‘ < Wl(n)‘sn;n ‘—i— ‘/rl(v)cosvtdv).
n n
From here, we have
1
2 [ smnt
—/) /‘L’l smvtdv‘dt nu/l(n)/ /‘/Tl cosvtdv‘dt
<t 0
5“"” ’dt K; and owing to similar estimation of the integral in [3] we know that

1
n
J
0

%/n’/wﬁ(v)cosvtdv dt=0(1)yi(n).
0 n
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Thus we find that

/’ / v)sinvedv|di = O(1)y (n).

\n

Therefore, the proof of proposition is completed. [

Proof of Proposition 3. T,(v) is nonnegative continuous function on interval [0, o)
and is increasing on intervals [0,7] and

lim 7,(v) = lim 75 (v) = 0.

y—o0 y—ro0

By applying two times partial integration, we have

8-

/Tz sinvtdv
0

- L2 [(T;(l -0)- T;(l +0))sin7 + (T;(n—O) - ‘L'é(n—l—O))sinnt
1

/ s1nvtdv+/1'2 s1nvtdv+/12 smvtdv)} (20)

0

From (20), since g2(v) = @(v)y»(v) is increasing, we get

l T (v)sinvtdy| < M 2D
7 [ mOysinseas

mt?
0

Hence, accordingly (21) we obtain

=3 =3

o oy
/ l/1’2 smvtdv’dt = 2/ ’—/Tg )smvtdv‘dt /Lzz(n)dt
no nt

[t|l=m/2 /2 0 /2
—8y,(n
= 23 o(1)ya(n). (22)
T
By partial integration, we have

Lo L[ Lo
—/Tg(v)smvtdv: —/TQ(V) smvtdv—i——/‘rz(v)smvtdv

) ) T

1 h e
- ( — To(v) cosvr g+ / 7(v) cosvtdv) + (— T (v) cos v, + / 7(v) cosvtdv)

TL'l‘

1 n
= (/Tﬁ( )cosvtdv+/1'2 cosvtdv) (23)
0
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To estimate the integral on right hand of (23), first of all we will consider integrals on
[0,n] and show that

/2 n

/ ‘ /Tz cosvtdv’dt (ln)/¢(V)‘lf/2(v)dv+0(l)l//2(n). (24)
1

7/2n

In this case, let us represent the function under the integral sign in left part of (24) in
such form:

n /2t n
%/Tﬁ(v)cosvtdv = % / Tﬁ(v)cosvtdv—i—% / 75 (v) cosvtdv
0 0 /2
=1(1)+ L) (25)

In order to prove (24) it will suffice to prove following equalities

/2 n
E/M 1 (1) |dr = (p(ln)l/‘P(V):”z(v>dv+0(1)w2(n) (26)
and
/2
| 1@ < 0wa(n). @
w/2n

As the function 7j(v) is nonnegative and nonincreasing on [0,n], then I;(¢) > 0,
t€[m/2n,m/2], and L(t) <0, t € [x/2n,7/2]. Therefore changing the order of inte-
gration, we obtain

/2 /2 w2t
/ 1 (0)]de = / % / 2, (v) cos vedvt
/2n /2n 0
1 /2 n w2
_ / / Cof” did(v) + / / Cofw did(v)
0 7/2n 1 7/2n

/2 n w2

1
:/ / %dzdrz +//%dd12

0 7v/2n 1 7v/2n
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/2

1
cosz (v v v
= <172(v) / 7dz> |(1)—/ 2‘() )(cos7—00s5>dv
0

v/2n
/2 n
T 4
+(TQ(V) / %d1>|’f+/ 2(V>cos—vdv
v
nv/2n 1

Now let’s show that

n

L fomw) v 1 [o0)y()
(P(”)I/ v cos%dv— / v dv+O0(1)yn(n).

o(n) /

For proof of (29) we will obtain necessary estimation of following difference

(p(ln) 1/ qo(v)zfz(v) (1 _cos%>d‘/

2 nqo(v)ufz(v) sintv/4n m | mv
_(p(n)/ v ’ mv/4n 4ns1n4ndv

1

20m)ya(n) & [ 7
Wﬂ/smﬂd\/i O(1)yn(n).

1

<

Hence by combining (28) and (29), we get (26). Now we will obtain (27).

L(t) <0,t € [n/2n,7/2], then we have

/2 /2 n

/ o (1)]dt = — / ; / 2 (v) cosvidv

w/2n w/2n w2t

n 77/2 n 71'\//2

__ / () / COISV’ didv = — / () / 082 yedv
Z

1 /2 1 /2

n

<2ai(3) [ s0rar =2ai(Z) (v L2EL) < o1y,
1

(28)

(29)

Since

(30)

Therefore taking into account (26) and (30), we get (24). Now we will estimate integral
on interval [n,e) on right hand of (23). Taking into account that 7,(v) is a convex
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function with lim 7,(v) =0 on interval [n, o), by partial integration, we get

y—ro0

=

17, 1
E'/‘@(v)cosvtdv' = F‘(TZ )sinve|})) / v)sinvtdy

2 (1 nyy(n) 2Ky (n)
b nnt2< v, (n) ) (n) 2 S
According to (31), we obtain
71?/2 = /2
/ ) /12 Jcoswidv|dr < / M%ﬁn)dz:ou)%(n). (32)
n
™/2n /2n

Taking into account to (24) and (32), we have

n

/ ‘P(V)z’z(v) dv+0(1)ya(n).  (33)

1

’%/TQ(V) sinvtdv’dt =
0

2
no(n)

/2n<|t|<m/2

Now let’s investigate in neighborhood of origin: Since 7 (v) = y»(v) on [n,°), in
[page 226, [10]], there exist a > 0 for all n > 1, such that we have

=

/ )%/Tz(v) sinvrdv|dr = %]"’2v(v>dv+0(1)w(n), (34)

[t|<a/n n

After that we obtain

/21 oo T/2n oo
—‘ / /12 smvtdv‘dt / /1//2 )sinvtdv|dt (35)
a/n n a/n n
) n/2nn+ 28
<= / / s (V)dvdi < O(1)y(n).
a/n n

Finally, we will estimate following integral:

n/2n | n m/2n 1 n
/ ‘;/Tz(v)sinvtdv‘dt =2 / ’E/Tg(v)sinvtdv dr.
—7/2n 0 0 0

By considering that 7,(v) is a continuous increasing function on interval [0,n], we have
7 (v) < ya(n). Hence, we obtain

w/2n n /2n

/ ‘%/Tg(v)sinvtdv‘dt < 2y2(n) / ndt = O(1)yn(n). (36)

4
—7/2n 0 0
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Therefore, by using (24), (32) and (36), for n > 1, we get (7). U

Proof of Theorem 1. Similar to the statement in [2], it is known that

=3

6(CEZ0e = [ 180l + 1), @7

where y(n) <0,

and

() = %/‘n(v) cosvtdv + %/TQ(V) sinvtdv.

0 0
Now we are going to prove the Theorem 1 by using (37) and Propositions 2-3. Firstly,
let us estimate y(n). Taking into account that

oo

y(n)| < O(1) / 14.(0)]dt < O(1) / ‘%/Tl(v)cosvtdvdt

>3 =% 0

1) / )%772(v)sinvtdv)dt =7+P

f=z 0

and since we know that y; = O(1)y;(n) and y» = O(1)yn(n) from (8), (17), (18) and
(22), it turns out that |y(n)| < O(1)y(n). Finally, we have (5) by applying Proposi-
tions 2-3 to (37). U

3. Some results with respect to Riesz and Woronoi-Noérlund means

In this section, we are going to give some asymptotic results with respect to
Woronoi-Norlund and Riesz means taking into account of the results in Section 2. First
t
V//( ) for
1y’ (1)]

t>1.1If tlim o(t) exists, let us show this limit by o (y) gflim o(t). Thus, we have

of all, let us consider some notations. Assume that ¥ € 9t and o(r) =

seen that in case @(n) =n®, s > 0, Theorem 1 gives us the following results which
coincide with the results in [2].

COROLLARY 1. Let w1 €M, ypo € M and gi(v) =v'yi(v), s >0, i=1,2, be
concave functions on v = b > 1 with lim g;(v) = e. If ap(yr) = oo, then as n — o,
y—r00

we have

&(CY.Z8)¢ /l”2 dv+0(1)ya(n).
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COROLLARY 2. Let w1 €M, yo € M and gi(v) =v'yi(v), s >0, i=1,2, be
concave functions on v = b > 1 with lim g;(v) =0 or lim g;(v) =¢; 2 0. If ap(yn) =
y—ro0 y—r00

1/s then as n — o, we have
2 n
E(CY.20)¢ = ﬁ/vf—lw(v)dw o) ya(n).
1

COROLLARY 3. Let y; € M, yr € M and gi(v) =v'y;(v), s >0, i=1,2, be
concave functions on v = b > 1 with lim g;(v) = eo. If op(yn) € (1/s,00), then as
y—r00

n — oo, we have

& (CY.Zy)c = 0(1)ya(n).

Under the perspective of these results, we will give some results related to (2) and
(3) by taking into account of the results given in [2], [4].

THEOREM 2. Assume that y; € M, yo € M and gi(v) = vy;(v), i = 1,2, are
concave functions on v = b > 1 with lim g;(v) = oo and op(yr) =eo. Let (n+1)p, =
y—r00

n—1
O(P,) and 'Y, | Apm |= O(P,n1). Then as n — oo, we have
1

L R)e 0] 2 [ aviyaio | a9

where Apy, = pm — Pm+1-

Proof. We know that the following equality is satisfied:

FO) —Rulfo2) = 3 pu(f () — sl fi))-

By m=0
By Abel’s transformation and taking norm, it turns out that

1 f(x) = Ru(f32)llc

n—1

< g (S 04018 1 o+ 6t Dl £ au(1le)

According to Corollary 1, we know that

7ol == (L av 1 01)ya(m)
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By using this asymptotic equality, we have

| f(x) = Ru(f5)llc
(imﬂ | Apm | /"’2 dv-+ 0(1)ya(m) )

+(n+1)p /"’2 dv+0(1)ya(n) ) )

D mlanl (3 22

nml

Lav +0(1)ya(m))

m

+n+1)p (n/ ()dv+0( Dya(n) ) )

:Om}in”zlmmm /"’2 dv+0(1)ys(m))
+o(1>;n"zlm|Apmo<> 2(m)

=J1+ ).
Since g(m) = my,(m) is increasing with lim g(m) = o and using the relation

2 | Apm |= O(n'P,), we get

m=1

n—1

= LS ) |8 1< )3 | = 0w

"m 1 n m=1

And also,

I = Piilm | A | (%]O"’Z(”)dv+0(1>ufz(m>)

nm=1 m v
]l 2 Tya(v)
< - Apm | = d
anz,"lm‘ P |7r/ % Y
2 (v 2 [ya(v)
g Apw |=0(1) = [ P2 gy,
/ 2| pu|=0()= [y

Taking into account J; and J, we obtain (38). U

THEOREM 3. Assume that vy € M, yo € M and gi(v) = vy;(v), i =1,2, are
concave functions on v = b > 1 with lim g;(v) =0 or lim g;(v) =¢; >0 and op(yr) =
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1. Let (n+1)p, = O(P,) and 2 | App |= O(Bun™"). Then as n — oo, we get

_ 2 7
éon(CZ,Rn)c:0(l){E/l//g(v)dv+ l//z(n)}. (39)
1
Proof. According to Corollary 2, it is known that

7= on(lle = — [ yal)dv+0()ys(m).
1

By using it, we write

1 (%) = Ru(f3x)llc

(2 (m+1) | Ap | ( %/mw(vwku)%(m))

F(n+1)p /sz )dv+0(1)ys(n)) )
< Pin(:gm | Apm | (%/WQ(V)CZV‘F 0(1)l//2(m)>
e+ 1)p /sz )dv+0(1)ys(n)) )
:_zm| pm\—/w v+ LS | Apm | O () = 1o+ v

nml nml

Now let us evaluate these last two statements. Since g;(v) = vy;(v), i = 1,2, are
concave functions on v > b > 1 under the conditions of theorem, we obtain that

= Zm% ) | Apw |< —nl[/z 2 | Apm |= O(y2(n))

"ml m=1

and

n—1
hi= =S ] pm|—/w np/w Jav 3., | Ap|

"ml m=1

D= [y
1

Therefore, we get (39) from I, and ;. [

N
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THEOREM 4. Assume that y; € M, yp, € M and g(v) =vy;(v), i =1,2, are
concave functions on v = b > 1 with lim g;(v) = o and on(yn) € (1,00). Let (n+
y—r00

1)pn=O(P,) and 2 | Apm |= O(P,n™1). Then as n — oo, we have

&(CY,Ry)c = 0(1)ys(n). (40)
Proof. We know that
|| f = 0om(f)llc =O0(1)y2(m)

from Corollary 3. By considering this and hypothesis of Theorem 4, we get the desired
result given below:

M [

1/ () = Ra(f32) [l < m+1 | Apm | (O ()Wz('”ﬂ))+(n+l)Pn(O(l)Wz(n))>

" |

m
n

Il
- o

(3
(2

N
S| =

L||[\4

m | Apn | (O(1)ya(m)) + (n+ Dpa(O()ya(n)

N
DU

g | 8 | Y2lon) + - (1-+ Dp,0(1) yan)

< 5 0()nyn(n Z | Apm [ +0(1)ya(n) < O(y2(n)). O

m=1

Q’|~

The subsequent results are related to the Woronoi-Norlund means. Since the
proofs of the next three results are similar to the proofs of the above results, we will
omit them.

THEOREM 5. Assume that y; € M, yo € M and gi(v) = vy;(v), i = 1,2, are
concave functions on v = b > 1 with lim g;(v) = oo and op(yr) =eo. Let (n+1)p, =
y—r00

n—1
O(P,) and 'Y, | Appn—m |= O(n='P,). Then as n — oo, we have
m=1

(CY No)e /"’2 dv+0(1)yn(n).

THEOREM 6. Assume that y; € M, yp, € M and g(v) =vy;(v), i =1,2, are
concave functionson v = b > 1 with lim g,-(v) =ooor lim g;(v) =¢; 20 and op(yr) =
y—r00

1. Let (n+1)p, = O(P,) and 2 | AmpPn—m |= O(n~'B,). Then as n — o, we have

m=

n

£(CENe = = [ vy +0(1)ya(n).
1
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THEOREM 7. Assume that v, € M, v, € M and g;(v)

=vyi(v), i=1,2, are
concave functions on v = b > 1 with lim g;(v) = e and op(yn) €
y—ro0

(L,00). Let (n+

n—1
Dp,=0(PR,) and Y | Appnm |= O(n~'P,). Then as n — o, we have
m=1
E(CY,Ny)c = O(1) s (n).
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