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NECESSARY AND SUFFICIENT TAUBERIAN CONDITIONS UNDER

WHICH STATISTICALLY LOGARITHMIC CONVERGENCE

FOLLOWS FROM STATISTICALLY LOGARITHMIC SUMMABILITY

NERGIZ ÇINAR AND İBRAHIM ÇANAK ∗

Abstract. Let (sn) be a sequence of complex numbers. The sequence (τn) of n -th logarithmic
means of (sn) is defined by τn = 1

�n
∑n

k=1
sk
k where �n = ∑n

k=1
1
k ∼ logn . It is well known that

if a bounded sequence (sn) is statistically logarithmic convergent to s , then it is statistically
logarithmic summable to the same number. However, the converse of this implication is not true
in general. In this paper, we obtain conditions, so called Tauberian conditions, under which the
converse implication holds.

1. Introduction

The concept of statistical convergence was introduced by Fast [2]. A sequence
(sn) is said to be statistically convergent to s if for every ε > 0,

lim
m→∞

1
m
|{n � m : |sn − s| � ε}| = 0. (1)

In this case, we write
st − lim

n→∞
sn = s. (2)

Here |S| means the number of elements of the set S .
The concept of statistically logarithmic convergence, which is a generalization

of the concept of statistical convergence, was introduced by Alghamdi et al. [1]. A
sequence (sn) is said to be statistically logarithmic convergent to s if for every ε > 0,

lim
m→∞

1
�m

∣∣∣∣
{

n � m :
1
n
|sn − s| � ε

}∣∣∣∣ = 0, (3)

where �m = ∑m
k=1

1
k ∼ logm . In this case, we write

stl − lim
n→∞

sn = s. (4)

For more results on the statistical convergence and statistically logarithmic conver-
gence, we refer to [6] and [7], respectively.
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The n -th logarithmic mean of the sequence (sn) is defined by

τn =
1
ln

n

∑
k=1

sk

k
. (5)

We say that a sequence (sn) is statistically logarithmic summable to s if

stl − lim
n→∞

τn = s. (6)

Alghamdi et al. [1] proved that statistical convergence implies statistically log-
arithmic convergence, but converse is not true in general. They also proved that if a
sequence (sn) is bounded, then

stl − lim
n→∞

sn = s implies stl − lim
n→∞

τn = s. (7)

But the converse of the implication (7) is not true in general. In this paper, our aim is to
obtain conditions under which the converse of the implication (7) is satisfied.

2. Lemmas

We need the following lemmas for the proof of main results. The first lemma gives
the representation for the difference sn − τn .

LEMMA 1. ([5]) For λ > 1 and sufficiently large n,

sn − τn =
�[nλ ]

�[nλ ]− �n
(τ[nλ ]− τn)− 1

�[nλ ] − �n

[nλ ]

∑
k=n+1

sk − sn

k
. (8)

The following lemma shows that the statistical logarithmic limit relation is linear.
A similar relation is given for the statistical convergence by Moricz [4].

LEMMA 2. If stl − limn→∞ sn = s and stl − limn→∞ tn = t , then

stl − lim
n→∞

(sn + tn) = s+ t (9)

and if c is a constant, then
stl − lim

n→∞
(csn) = cs. (10)

Proof. The proof depends on the following lines:{
n � m :

1
n
|(sn + tn)− (s+ t)|� ε

}
⊆

{
n � m :

1
n
|sn − s|� ε

2

}

∪
{

n � m :
1
n
|tn− t|� ε

2

}
(11)
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and for a constant c �= 0,

1
n
|csn− cs| � ε ⇔ 1

n
|sn − s|� ε

|c| . � (12)

The following lemma plays a crucial role in the proof of main results.

LEMMA 3. If a sequence (sn) is statistically logarithmic summable to s, then

stl − lim
n→∞

τ[nλ ] = s (13)

for all λ > 1 .

Proof. It is clear that for each ε > 0,{
n � m :

1

[nλ ]
|τ[nλ ] − s| � ε

}
⊆

{
n � [mλ ] :

1
n
|τn − s| � ε

}
. (14)

It follows from (14) that

1
�m

∣∣∣∣
{

n � m :
1

[nλ ]
|τ[nλ ] − s| � ε

}∣∣∣∣ � λ
�[mλ ]

∣∣∣∣
{

n � [mλ ] :
1
n
|τn − s| � ε

}∣∣∣∣ .
Hence, (13) follows from the statistically logarithmic summability of (sn) to s . �

The next lemma show that if a sequence (sn) is statistically logarithmic summable
to s , then the sequence of its moving logarithmic means is statistically logarithmic
summable to the same number.

LEMMA 4. If a sequence (sn) is statistically logarithmic summable to s, then

stl − lim
n→∞

1
�[nλ ] − �n

[nλ ]

∑
k=n+1

sk

k
= s (15)

for all λ > 1 .

Proof. If λ > 1 and n is large enough in the sense that �[nλ ] > �n , then

1
�[nλ ] − �n

[nλ ]

∑
k=n+1

sk

k
= τn +

�[nλ ]

�[nλ ] − �n
(τ[nλ ] − τn) (16)

Since for large enough n ,
�[nλ ]

�[nλ ] − �n
� 2λ

λ −1
, (17)

(15) follows from (16), (17) and Lemma 2 and Lemma 3. �
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3. Main results

For a sequence of complex numbers, we prove the following two-sided Tauberian
theorem. Namely, we give necessary and sufficient Tauberian condition under which
statistically logarithmic convergence of a sequence follows from its statistically loga-
rithmic summability.

THEOREM 1. If a sequence (sn) of complex numbers is statisticaly logarithmic
summable to s, then it is statistically logarithmic convergent to s if and only if

inf
λ>1

limsup
m→∞

1
�m

∣∣∣∣∣∣
⎧⎨
⎩n � m :

∣∣∣∣∣∣
1

�[nλ ] − �n

[nλ ]

∑
k=n+1

sk − sn

kn

∣∣∣∣∣∣ � ε

⎫⎬
⎭

∣∣∣∣∣∣ = 0 (18)

for each ε > 0 .

Proof. Necessity. Assume that both (4) and (6) are satisfied. Applying Lemma 2
and Lemma 4 yields

stl − lim
n→∞

1
�[nλ ] − �n

[nλ ]

∑
k=n+1

sk − sn

k
= 0 (19)

for λ > 1.
Sufficiency. Assume that conditions (6) and (18) are satisfied. In order to prove

that (4), it is sufficient to prove that

stl − lim
n→∞

(sn − τn) = 0. (20)

It follows from Lemma 1 that for any ε > 0,

{
n � m :

1
n
|sn − τn| � ε

}
⊆

{
n � m :

l[nλ ]

l[nλ ] − ln
· 1
n

∣∣∣τ[nλ ]− τn

∣∣∣ � ε/2

}

∪
⎧⎨
⎩n � m :

∣∣∣∣∣∣
1

l[nλ ] − ln

[nλ ]

∑
k=n+1

sk − sn

kn

∣∣∣∣∣∣ � ε/2

⎫⎬
⎭ (21)

By Lemma 2, Lemma 3 and (17), we have

limsup
m→∞

1
�m

∣∣∣∣∣
{

n � m :
l[nλ ]

l[nλ ] − ln
· 1
n

∣∣∣τ[nλ ] − τn

∣∣∣ � ε/2

}∣∣∣∣∣ = 0. (22)

Given δ > 0, by (18) there exists some λ > 1 such that

limsup
m→∞

1
�m

∣∣∣∣∣∣
⎧⎨
⎩n � m :

∣∣∣∣∣∣
1

l[nλ ] − ln

[nλ ]

∑
k=n+1

sk − sn

kn

∣∣∣∣∣∣ � ε/2

⎫⎬
⎭

∣∣∣∣∣∣ � δ . (23)
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Combining (21)–(23) yields

limsup
m→∞

1
�m

∣∣∣∣
{

n � m :
1
n
|sn− τn| � ε

}∣∣∣∣ � δ . (24)

Since δ > 0 is arbitrary, we have

lim
m→∞

1
�m

∣∣∣∣
{

n � m :
1
n
|sn − τn| � ε

}∣∣∣∣ = 0 (25)

for every ε > 0. This proves (20). By Lemma 2, (4) follows from (6) and (20). �

A sequence (sn) of complex numbers is said to be statisticaly logarithmic slowly
oscillating [3] if for each ε > 0,

inf
λ>1

limsup
m→∞

1
�m

∣∣∣∣∣
{

n � m : max
n<k�[nλ ]

1
n
|sk − sn| � ε

}∣∣∣∣∣ = 0. (26)

It is clear that condition (18) follows from (26). Thus, we have the following corollary.

COROLLARY 1. Let (sn) be a sequence of complex numbers which is statistically
logarithmic summable to s. If (sn) is statistically logarithmic slowly oscillating, then
it is statistically logarithmic convergent to s.

Proof. It follows from the inequality∣∣∣∣∣∣
1

�[nλ ] − �n

[nλ ]

∑
k=n+1

sk − sn

kn

∣∣∣∣∣∣ � max
n<k�[nλ ]

1
n
|sk − sn|,

that for any ε > 0,⎧⎨
⎩n � m :

∣∣∣∣∣∣
1

�[nλ ]− �n

[nλ ]

∑
k=n+1

sk − sn

kn

∣∣∣∣∣∣ � ε

⎫⎬
⎭ ⊆

{
n � m : max

n<k�[nλ ]

1
n
|sk − sn| � ε

}
. (27)

Now, it is clear by (27) that (26) implies (18). Thus, the proof follows from Theorem
18. �

COROLLARY 2. Let (sn) be a sequence of complex numbers which is statistically
logarithmic summable to s. If there exists a positive constant M such that for every n
large enough,

(n logn) |sn − sn−1| � M, (28)

then it is statistically logarithmic convergent to s.
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Proof. Assume that (28) holds for n > n0 . For given ε > 0, choose λ = 1+ ε
M .

If n0 < n < k � [nλ ] or equivalently logn0 < logn < logk � λ logn , we have

|sk − sn| �
k

∑
i=n+1

|si − si−1| � M
k

∑
i=n+1

1
i log i

� M
k

∑
i=n+1

1
i

� M(λ −1) logn,

or dividing by n , we have

1
n
|sk − sn| � M(λ −1)

logn
n

� M(λ −1) = ε.

So, the set {
n0 < n � m : max

n<k�[nλ ]

1
n
|sk − sn| � ε

}

is empty. Thus, condition (26) is satisfied and the proof follows from Corollary 1. �
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Department of Mathematics

Ege University
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