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GENERALIZED STATISTICAL RELATIVE UNIFORM
(5 —CONVERGENCE OF TRIPLE SEQUENCES OF FUNCTIONS

MEHMET GURDAL*, SAIME KOLANCI AND OMER KI§I

Abstract. In this paper we have introduced the notion of (5 -convergence in [ -density and U -
statistical relative uniform convergence of triple sequences of functions defined on a compact
subset D of real numbers, where u is finitely additive measure. We introduce the concept
U3 -statistical relative uniform 5 -convergence which inherits the basic properties of uniform 5 -
convergence.

1. Introduction and background

In 1951, Steinhaus [28] and Fast [11] proposed the idea of statistical convergence.
Later, Connor [4] and Fridy [12] demonstrated that convergent sequences are statis-
tically convergent, but the reverse of this does not hold, in general. Following that,
several researchers afterwards examined the topic of statistical convergence from other
aspects (see, for example, [15, 16, 17, 19, 24, 26, 27]. Connor has extended the concept
of statistical convergence in [5], where the asymptotic density is replaced by finitely
additive set function. In this paper, ¢ denotes a finitely additive set function taking val-
ues in [0, 1] defined on a field T of subsets of N such that if |A| < eo,then u(A) =0;
if ACB and u(B) =0, then p(A) =0; u(N) = 1. Such a set function satisfying
the above criteria will be called measure. Connor has provided us with the following
information in [5, 6].

(a) x is u-density convergent to L if there is an A € I such that (x —L) yais a
null sequence and pt (A) = 1 where x4 is the characteristic function of A.

(b) x is u-statistically convergent to L and write st,, — limx = L, provided

Lk EN: [y —L| > e})=0

forevery € > 0.
If T = (t,4) is a nonnegative regular summability method, then 7 is used to gen-
erate a measure as follows:

For each n € N, set u, (A) = E tuixa (k) foreach A C N. Let
k=1

r={ACN:limp, (4) = 0or limp, (4) =1 }.
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Define, ur : T — [0,1] by
Hr (A) = nlij}mun (A) = n@}lw EtnkXA (k) )
k=1

where 7 and I' satisfy the requirements of the preceding definitions. If T is a Cesdro
matrix of order one, the pr -statistical convergence is equivalent to statistical conver-
gence.

Connor [5] has established that (a) implies (b), but not necessarily conversely.
These two definitions are equivalent Connor [5, 6] if u has additive property for null
sets: if given a collection of null sets {A;} jeny C T, there exists a collection {B;}ien C
I' with the properties |A;AB;| < oo for each i € N, B = ifle,- €T, and u(B) =0.
Different classes of p -statistical convergence of sequences have been introduced and
their properties have been studied by Duman and Orhan [9] and Giirdal [14].

The notion of convergence of sequence of function is also considered in measure
theory. Wilczynski [29] studied the statistical convergence of sequences of functions
in 2000. Some classification may also be found in [20]. Moore [21] was the first
who introduced the notion of relative uniform convergence of sequences of functions.
Thereafter, Chittenden [3] studied the notion (which is equivalent to Moore’s definition
as follows:

A sequence of functions (g, ), defined on J = [a,b] converges relatively uniformly
to a limit function g if there is a function y(x), called a scale function such that for
every € > 0, there exists an integer m = m (&) such that

lgn (x) —g(x)| < €|y(x)], uniformly in x on J, Vn > m.

Nowadays many authors prefer to use the notion of relative uniform convergence of
sequences of functions (see e.g. frequently quoted works [7, 8]).

Recently, the concept of statistical convergence for triple sequences was presented
by Sahiner et al. [25], as follows: A function x: NxNxN— R (or C) is called a real
triple sequence. A triple sequence (X, ) is said to be convergent to L in Pringsheim’s
sense if for every € > 0, there exists N (&) € N such that |x,;,, —L| < € whenever
m,n,o > N.

Statistical convergence of any real sequence is identified relatively to absolute
value. While we have known that the absolute value of real numbers is special of
an Orlicz function [23], that is, a function ¢ : R — R in such a way that it is even,
non-decreasing on R™, continuous on R, and satisfying

¢(x) = 0 if and only if x = 0 and ¢ (x) — oo as x — oo.

Further, an Orlicz function (5 :R—R is ~said to satiﬁgfy the A\, condition, if there
exists an positive real number M such that ¢ (2x) < M.¢(x) forevery x € R*. Rao and
Ren discuss several key applications of Orlicz functions in numerous domains such as
economics, stochastic problems, and so on in [23]. The reader may also consult the new
monograph [2] and the work [10] on different methods for systematically generalizing
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Orlicz sequence spaces and investigating numerous structural characteristics of such
spaces. For the normed sequence spaces and related topics, the reader can refer to
the textbooks [1] and [22]. Now, we can give some examples of Orlicz functions, by
Example 1:

EXAMPLE 1. (I) For afixed r € N, the function ¢ : R — R defined as ¢ (x) = |x|”
is an Orlicz function.

(I) The function ¢ : R — R defined as ¢ (x) = x2 is an Orlicz function satisfying
the /\, condition.

(III) The function ¢ : R — R defined as ¢ (x) = e/l — |x| — 1 is an Orlicz function
not satisfying the A, condition.

(IV) The function ¢ : R — R defined as ¢(x) = x> is not an Orlicz function.

Let (5 :R — R be an Orlicz function. A triple sequence x = (X, is said to be
statistically ¢ -convergentto L if for each € >0,

. 1 ~
lim — {mgp,ngqmgr:¢(xm,m—L)>g}’:0,
Pigsr—e° pqr

Inspired by these literature, in this paper, we investigate the idea of p; -statistical
relative uniform ¢ -convergence. Moreover, we observe that p3 -statistical uniform ¢ -
convergence inherits the essential features of uniform ¢ -convergence. Related results
are contained in [13]

2. Main result

Let D = [a,1] C R, where 0 < a <1 and (fum) be a triple sequence of real
functions on D. Now, some definitions used in this paper are given.

DEFINITION 1. Let 5 :R — R be an Orlicz function. (fyno) (5 -converges L3 -
density pointwise to f iff for a given € > 0 and for all x € D, there exists K, € T,
U (Ky) =1 and there exists N = N (&,x) € K such that

(0 (fmrm (x) —f(x)) <é&
whenever m > N, n> N, o> N and (m,zz,o) €k,.
In this case we write fyno — f (,ug’ - density) on D.

DEFINITION 2. Let ¢ : R — R be an Orlicz function. (fimno) ¢ -converges [i3-
density uniform to f iff for a given € > 0, and there exists K € T', u (K) =1 and there
exists N = N (&) € K such that

0 (funo (x) = f (x)) <&
forallm >N, n> N, o> N and (m,n,0) € K and for every x € D.
In this case we write fino = f (/.13 -densny) onD.
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DEFINITION 3. Let ¢ : R — R be an Orlicz function. (fm,) ¢-converges i3 -
density relatively uniform to f iff there exists a function y(x) called scale function
such that |y (x)| > 0 for a given € > 0 there exists K € I', u (K) =1 and there exists
N=N(¢e) €K suchthatforallm >N, n>N, o >N and (m,n,0) € K foreach x€ D,

(s

In this case we will write f,.0 = f(D;7) <,u3¢ - density) .

DEFINITION 4. Let 5 :R — R be an Orlicz function. (fymo) (5 -converges L3 -
statistically pointwise to f iff every € > 0 and for each x € D,

u ({(m,n,o) EN® 1 6 (fomo (¥) — £ (x)) = e}) —0.
In this case we write fino — f (,ug7 -stat) onD.

DEFINITION 5. Let ¢ : R — R be an Orlicz function. The triple sequence (fno)
of bounded functions on D (E -convergence i3 -statistically uniform to f* iff sty, —
lim || fiuno — f||5 = 0, where the norm ||.|| is the usual supremum norm on B (D), the
space of bounded functions on D.

In this case we write fmo = f (u;p - stat) on D.

DEFINITION 6. Let 5 :R — R be an Orlicz function. (fymo) 65 -converges rela-
tively uniform to f if there exists a function y(x) such that for every € > 0, there exists
an integer N such that for every n > N, the inequality ¢ (fumo (x) — f (x)) <6 (y(x))
holds uniformly in x. The sequence (f,uno) is said to 5 -converge uniformly relative to
the scale function y(x) or more simply, relatively uniformly.

_ ltis observed that uniform (E -convergence is the special case of relatively uniform
¢ -convergence in which scale function is a nonzero constant.

Now, in this section, we introduced the following definition and established the
article’s outcomes.

DEFINITION 7. Let 5 :R — R be an Orlicz function. (fymo) (5 -converges L3 -
statistically relatively uniform to f if and only if there exists a function y(x) such that
¢ (7(x)) > 0 called scale function y(x) such that for every € >0,

i mno) €1 s (Pl ) e <o

In this case we will write fi.0 = f (D7) <;,Lf -st) .
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LEMMA 1. Let (5 :R — R be an Orlicz function. (finno) (5 -converges | -density
uniformly on D implies funo = f(D;7) (,uép -density) on D, which implies fuyno =

f(Dsy) (ug’; -st) :

In general, the converse of Lemma 1 does not necessarily hold, as was seen by the
following example:

EXAMPLE 2. Define fyno : [0,1] — R by

0, x=0,
Jmno (x) = 2m*n20%x x 7& 0.

T+m3n303x2°

Define
(x) = I, x=0,
T=11 xe(0,1].
_ ) ¢ . _ . ¢
Then, fimo — f = 0(D;Y) (u3 -densny). Hence, fiumo — f = 0(D;Y) (u3 -st) .

But (fumo) is not 1 -statistical uniformly ¢ -convergentto f = 6 in [0,1], where 6 is
the zero function.

THEOREM 1. Let (5 : R — R be an Orlicz function and the triple sequence of
Sunctions (funo)be each continuous on D, a compact subset of R and let | be a

measure with additive property for null sets. If funo = f(D;7) <[.13¢ -st) on D and

Y(x) is continuous, then f is continuous on D.

Proof. By hypothesis D is a compact subset of R and for each (m,n,0) € N3,
Jfmno is a continuous function. Thus it is clear that for each (m,n,0) € N3, Sfomo 18

¢ -bounded on D. Hence, there exists M > 0 where M = SUPyep {5 (fmno (x))} such
that ¢ (fyumo (x)) < M. N

Also, y(x) continuous implies it is ¢ -bounded. So there exists G > 0 such that
¢ (y(x)) <G . Let, L=max(M,G) and fyumo = f(D;7) (uf-st). Then for every

e>0,
{omnr 20 cps (S5 E) > i} -0

Let, xo € D. Since, fumo is continuous for each n € N at xo € D, there exists a 6>0
such that ¢ (x —xo) < & implies ¢ (fiuno (X) — finno (X0)) < §, for each x € D.
Thus for all x € D, for which |x — x| < § we have
O (f (x) = £ (x0)) < O (f (X) = fiuno (x)) + & (fonno (X) — fono (o))
+ ¢ (finno (x0) — f (x0))

<£+£+E—£
33 3
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Since, xo € D is arbitrary, so f is continuouson D. [J

We may get the following conclusion from the aforementioned cases:

COROLLARY 1. Let ¢ : R — R be an Orlicz function and all functions (funo) be

continuous on a compact subset D of R. If fumo = f (D7) <‘u§> -density) on D, then
f is continuous on D.

THEOREM 2. A necessary and sufficient condition for a real valued continuous
Sfunction f on D be the 3-st relative uniform limit of a sequence of real valued con-
tinuous functions (funo) is that there exists a sequence (Dpg,) of subsets of D such
that D = U Dpyr and the restricted functions qur‘ Dy COTVETSES ,uf -st relative

p.a,;r=1,1,1
uniformly to f.

Proof. Let, (fumo) be @-convergent i3 -statistically relative uniform to f. To
prove that qur‘ Dpar ¢ -converges Usz-st relative uniformly to f. By hypothesis, there
exists a scale function y(x) such that ¢ (y(x)) > 0 and for every £ > 0, we have

o < supi (LT 2 e <0

By definition of restriction function, we have

fmno\Dmm, (x) = funo (x) , V% € Dino-
Also, D,.0 € D shows that

u {(m,n,o) eN*: sup $<f7mna (xi—f(x)) > 8}

XEDpno Y x)
st g (1)

and, so we get

u{(m7n7o)€N3: sup $<M) 26}:0.

XEDno Y (.X )

Conversely, let each qu,‘Dqu $ -converges 3-st relative uniformly to f. We

established that (fn0) 5 -converges U3 -statistical relative uniform to f. Here, D =

U1 | 1qu,. Therefore,
psqr=1,1,

xeD

< i u{(m,n,0)6N3: sup 5(@)28}

m,n,0=1,1,1, XEDmno X

=
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Since {(m,n,o) eN3: SUPeD,0 5 (W) > s} =0, it follows that

) < supi (0T ) 2 e <0

This completes the proof. [l

C(u,ru) will be used throughout to represent the space of all continuous -
statistical relative uniform (5 -convergent sequences of real functions formed on D,
where the scale function is continuous. Now we may define a norm for this class of
sequences as follows:

Let (fimo) € C(u,ru) denote

B 9 (fomo (x))
oo}l = sup MR

ey

Now we will demonstrate the following outcome.

THEOREM 3. Let (5 :R — R be an Orlicz function. The class of sequences C (1, ru)
is a Banach space with respect to the norm defined by (1).

Proof. First we established that C(u,ru) is a normed linear space. Let (fiuno),

(gmna)
€ C(u,ru) and

N1) || (finno)|| = 0 and ||(fiuno)|| = O iff fiuno = 0, for each m,n,0 € N

O ((frnno + gmno) (x))
N2) |[(fino) + (8mno)ll = |(fnno + gmno)|| = sup  sup
m,n,0>1||x||<1 Hx” Y(x)
xeD

O (fono (X)) 5 (mno (x))

< sup  sup + sup sup
= m,n,0>1||x||<1 ”x” Y(x) m,n,0>1||x||<1 ”x” Y(x)
xeD xeD

= ”(ﬁnno)H + H(gmno)H :

N3) ot (fomo)l| = sup sup 2L&Ime @) g 1010 (o ()

mno>1|x<t [lxl|¢ (Y(x))  mmoztjxi<t (X[ @ (v(x))
xeD xeD
= |OC| H(fmno)H .
In order to show that C (i, ru) is complete with respect to the above norm, we start
with a Cauchy sequence <f(’""0)> , where ") = (foun101+ frsnsors finsnyoss - - ) - Then

by definition of Cauchy sequence, for a given € > 0, there exists a positive integer
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ng € N such that forall m > 9 >ng, n>1>ng, 0 > K > ny
H(f(m"”)> (me>H<£ Ym >0 >ng,n>1>ng,0>K>=ng

a((ﬁﬂi"iai - fﬁililfi) (x))

= sup sup <eE.
i>1 |x<1 [ 1y ()l
xeD
= q) ((fmini()i: fl?il,'K',’) ()C)) < 87 Wlth Hx” < 1
X[l ¢ (v (x))

which clearly implies that
O ((fommor = forn) () < ellxll @ (v(x)) <e. 2)

Thus, (finne (X)) is a triple Cauchy sequence of reals, hence it is ¢ -convergent. Let
1My 0—s00 fingnio; (X) = fi(x), for all x € D with ||x|| < 1.Keeping m,n,o fixed and
letting ©,1, K — o in (2) we have

O ((fmnios = 1) (%)) < e |lxll @ (y(x) <e, ©)

for all m,n,o > ng. So, we get

sup a((ﬁﬂi"iai - fl) (x)) <&
ki

and

lim  sup @ ((fumo — fi) (x)) = 0.

m,n,0——co Ixll<1

xeD
Thus, fpno; — f; uniformly on {x € D : ||x|| < 1}, implying (fp.n0;) ¢ -converges
relatively uniformly to f;. Hence, we have

fm,—n,—o,- = fl (D; 7) <.Llf-st> .

Thus, there exists a scale function (x) such that ¢ ((x)) > 0 and for every & > 0, we

have
u{(m,n,0)6N3 sup(b(M)/s} 0,

xeD ’)/(x

where ||x|| < 1. On the other hand, from (3), we get

sup sup q)((fmi”i:ji — fi) (%)) .
21 s [x]l ¢ (7 (x))

So, we obtain H (f(’""a)> — (f)H < €, Vm,n,0 > ny. Notice that

(f) = {(f) - (f(mna)> } + (f(m"0)> eC(u,ru).
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Hence, we have (f(m””>> — (f) in (C(u,ru),|.||) as desired. O
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