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ON THE GROWTH OF MEROMORPHIC SOLUTIONS OF

HOMOGENEOUS AND NON–HOMOGENEOUS LINEAR

DIFFERENCE EQUATIONS IN TERMS OF (p,q)–ORDER

CHINMAY GHOSH ∗ , SUBHADIP KHAN AND ANIRBAN BANDYOPADHYAY

Abstract. In this paper we have studied the growth of meromorphic solutions of higher order
homogeneous and non-homogeneous linear difference equations with entire and meromorphic
coefficients. We have extended and improved some results of Zhou and Zheng (2017) , Belaidi
and Benkarouba (2019) by using (p,q) -order and (p,q) -type.

1. Introduction and definitions

Recently the properties of meromorphic solutions of complex difference equations

Ak(z) f (z+ ck)+Ak−1(z) f (z+ ck−1)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) = 0 (1)

and

Ak(z) f (z+ ck)+Ak−1(z) f (z+ ck−1)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) = F(z) (2)

have become a subject of great interest from the view point of Nevanlinna’s theory and
achieved many valuable results where the coefficients A0,A1, . . . ,Ak �≡ 0 and F �≡ 0
(k � 2) in (1) or (2) are entire or meromorphic functions and ck,ck−1, . . . ,c1 are distinct
nonzero complex numbers.

In 1976 Juneja, Kapoor and Bajpai [10] introduced the idea of (p,q)-order of an
entire function and in 2010 Liu, Tu and Shi [7] modified the definition of the (p,q)-
order to make it more suitable. Laine and Yang, in 2007, considered the equation (1)
when more than one dominant coefficients exist but exactly one has its type strictly
greater than the others ([6], Theorem 5.2.). In 2008 Chiang and Feng [14] investigated
meromorphic solutions of (1) and established a theorem ([14], Theorem 9.2) taking
exactly one coefficient of (1) with maximal order . In 2013, Liu and Mao used hyper
order to establish the case when one or more coefficients of (1) or (2) having infinite
order ([5], Theorem 1.4, Theorem 1.6). Finally in 2017, Zhou and Zheng ([15], The-
orem 1.5) and in 2019, Belaı̈di and Benkarouba ([3], Theorem 1.1–Theorem 1.4) used
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iterated order and iterated type to investigate the solutions of (1) or (2) and obtained
some results which improved and generalized those previous results.

In this article we use the concept of (p,q)-order to investigate meromorphic so-
lutions of (1) and (2). We also extend and improve some results of Zhou and Zheng
[15], Belaı̈di and Benkarouba [3]. Here we consider both cases, when (1) and (2) have
entire coefficients and meromorphic coefficients. We also cover the cases when, either
one of the coefficients have maximal (p,q)-order or more than one coefficients having
maximal (p,q)-order.

Throughout this paper, we assume that the reader is familiar with the fundamental
results and the standard notations of Nevanlinna’s value distribution theory [13].

Next we give some basic definitions which are used to prove our main results.
For all r ∈ R, set exp1 r = er and expp+1 r = exp

(
expp r

)
, p ∈ N. Also for all

sufficiently large values of r, log1 r = logr and logp+1 r = log
(
logp r

)
, p∈N. Further

exp0 r = log0 r = r, exp−1 r = log1 r, exp1 r = log−1 r.

DEFINITION 1. [9] Let p � q � 1 or 2 � q = p+1 be integers. The (p,q)-order
of a transcendental meromorphic function f is defined by

ρ f (p,q) = limsup
r→∞

logp T (r, f )
logq r

.

And if f is a transcendental entire function, then

ρ f (p,q) = limsup
r→∞

logp+1 M(r, f )
logq r

.

Note that 0 � ρ f (p,q) � ∞. Also for a rational function ρ f (p,q) = 0.

DEFINITION 2. [9] A transcendental meromorphic function is said to have index
pair [p,q] if 0 � ρ f (p,q) � ∞ and ρ f (p−1,q−1) is not a non-zero finite number.

DEFINITION 3. [9] The (p,q)-type of a meromorphic function f having non-
zero finite (p,q)-order ρ f (p,q) is defined by

τ f (p,q) = limsup
r→∞

logp−1 T (r, f )(
logq−1 r

)ρ f (p,q) .

And if f is a transcendental entire function, then

τ f (p,q) = limsup
r→∞

logp M(r, f )(
logq−1 r

)ρ f (p,q) .

DEFINITION 4. [9] Let p � q � 1 or 2 � q = p + 1 be integers. The (p,q)-
exponent of convergence of the sequence of poles of a meromorphic function f is
defined by

λ 1
f
(p,q) = limsup

r→∞

logp N(r, f )
logq r

.
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Now we recall that the linear measure of a set S ⊂ (0,+∞) is defined by

m(S) =
∞∫

0

χS (t)dt

and the logarithmic measure of a set S ⊂ (1,+∞) is defined by

lm(S) =
∞∫

1

χS (t)
t

dt,

where χS (t) is the characteristic function of a set S.
The upper density of a set S ⊂ (0,+∞) is defined by

densS = limsup
r→∞

m(S∩ [0,r])
r

and the upper logarithmic density of a set S ⊂ (1,+∞) is defined by

logdensS = limsup
r→∞

lm(S∩ [1,r])
logr

.

2. Preliminary lemmas

In this section we recall and proof some lemmas on which our main results depend.

LEMMA 1. [14] Let f be a meromorphic function, ξ a nonzero complex number,
and let ν > 1, and ε > 0 be given real constants. Then there exists a subset S⊂ (1,+∞)
of finite logarithmic measure, and a constant K depending only on ν and ξ , such that
for all z with |z| = r /∈ S∪ [0,1] , we have∣∣∣∣log

∣∣∣∣ f (z+ ξ )
f (z)

∣∣∣∣
∣∣∣∣� K

(
T (νr, f )

r
+

n(νr)
r

logν r log+ n(νr)
)

,

where n(t) = n(t, f )+n(t, 1
f ).

LEMMA 2. [4] Let f be a transcendental meromorphic function. Let j be a
nonnegative integer and ξ be an extended complex number. Then for a real constant
α > 1, there exists a constant R > 0, such that for all r > R, we have

n(r,ξ , f ( j)) � 2 j +6
logα

T (αr, f ). (3)

LEMMA 3. Let f be a meromorphic function with finite (p,q)-order, ρ f (p,q) =
ρ . Let ξ be a nonzero complex number and ε > 0 be given real constant. Then there
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exists a subset S ⊂ (1,+∞) of finite logarithmic measure such that for all z with |z| =
r /∈ S∪ [0,1] , we have

i)exp
{−rρ−1+ε}�

∣∣∣∣ f (z+ ξ )
f (z)

∣∣∣∣� exp
{
rρ−1+ε} , (4)

for p = q = 1, and

ii)expp

{
−(logq−1 r

)ρ+ε
}

�
∣∣∣∣ f (z+ ξ )

f (z)

∣∣∣∣� expp

{(
logq−1 r

)ρ+ε
}

, (5)

for p � q � 2.

Proof. We prove only second part of the lemma. First part follows from [14].
By Lemma 1, there exists a subset S ⊂ (1,+∞) of finite logarithmic measure, and

a constant K depending only on ν and ξ , such that for all z with |z| = r /∈ S∪ [0,1] ,
we have ∣∣∣∣log

∣∣∣∣ f (z+ ξ )
f (z)

∣∣∣∣
∣∣∣∣� K

(
T (νr, f )

r
+

n(νr)
r

logν r log+ n(νr)
)

, (6)

where n(t) = n(t, f )+n(t, 1
f ). Now using (3) in (6) , we obtain

∣∣∣∣log

∣∣∣∣ f (z+ ξ )
f (z)

∣∣∣∣
∣∣∣∣

� K

(
T (νr, f )

r
+

12
logα

T (ανr, f )
r

logν r log+
(

12
logα

T (ανr, f )
))

� K1

(
T (ηr, f )

logη r
r

logT (ηr, f )
)

, (7)

where K1 > 0 is some constant and we consider η = αν > 1.
Now since f has finite (p,q)-order ρ f (p,q) = ρ , so for given ε, 0 < ε < 2, and

for sufficiently large r we have

T (r, f ) � expp−1

{(
logq−1 r

)ρ+ ε
2
}

(8)

Therefore using (8) in (7) , we obtain∣∣∣∣log

∣∣∣∣ f (z+ ξ )
f (z)

∣∣∣∣
∣∣∣∣

� K1 expp−1

{
logq−1 (ηr)ρ+ ε

2

} logη r
r

expp−2

{(
logq−1 (ηr)

)ρ+ ε
2
}

� expp−1

{(
logq−1 r

)ρ+ε
}

. (9)

Hence from (9) we obtain the required result. �
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LEMMA 4. Let ξ1 and ξ2 be two arbitrary distinct complex numbers and f be
a meromorphic function with finite (p,q)-order, ρ f (p,q) = ρ . Then for given ε > 0,
there exists a subset S ⊂ (1,+∞) of finite logarithmic measure such that for all z with
|z| = r /∈ S∪ [0,1] , we have

i) exp
{−rρ−1+ε}�

∣∣∣∣ f (z+ ξ1)
f (z+ ξ2)

∣∣∣∣� exp
{
rρ−1+ε} ,

for p = q = 1, and

ii) expp

{
−(logq−1 r

)ρ+ε
}

�
∣∣∣∣ f (z+ ξ1)
f (z+ ξ2)

∣∣∣∣� expp

{(
logq−1 r

)ρ+ε
}

,

for p � q � 2.

Proof. We prove only second part of the lemma. First part follows from [14].
For the second part we consider the following expression∣∣∣∣ f (z+ ξ1)

f (z+ ξ2)

∣∣∣∣=
∣∣∣∣ f (z+ ξ2 + ξ1− ξ2)

f (z+ ξ2)

∣∣∣∣ , (ξ1 �= ξ2) .

Now by using Lemma 3, for any given ε > 0 and for all z with |z+ ξ2|= R /∈ S∪ [0,1]
such that lm(S) < ∞, we have

expp

{
−(logq−1 (r)

)ρ+ε
}

� expp

{
−(logq−1 (|z|+ ξ2)

)ρ+ ε
2
}

� expp

{
−(logq−1 R

)ρ+ ε
2
}

�
∣∣∣∣ f (z+ ξ1)
f (z+ ξ2)

∣∣∣∣=
∣∣∣∣ f (z+ ξ2 + ξ1− ξ2)

f (z+ ξ2)

∣∣∣∣
� expp

{(
logq−1 R

)ρ+ ε
2
}

� expp

{(
logq−1 (|z|+ |ξ2|)

)ρ+ ε
2
}

� expp

{(
logq−1 (r)

)ρ+ε
}

,

for z with |z| = r /∈ S∪ [0,1] , where S ⊂ (1,+∞) is a set of finite logarithmic measure.
Hence we obtain the required result. �

LEMMA 5. [11] Let f be a nonconstant meromorphic function. Suppose z1 ∈ C,
δ < 1 and ε > 0. Then for all r outside of a possible exceptional set S with finite
logarithmic measure

∫
S

dr
r < ∞, we have

m

(
r,

f (z+ z1)
f (z)

)
= o

(
(T (r+ |z1| , f ))1+ε

rδ

)
.
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LEMMA 6. [1] Let f be a nonconstant meromorphic function and z1, z2 be
nonzero complex constants. Then for r → +∞ we have

(1+o(1))T (r−|z1| , f ) � T (r, f (z+ z1)) � (1+o(1))T (r+ |z1| , f ) .

Consequently,
ρ f (z+z2) (p,q) = ρ f (p,q) ,

for p � q, p,q ∈ N.

LEMMA 7. [11] Let f be a nonconstant meromorphic function. Suppose z1, z2 ∈
C, such that z1 �= z2, δ < 1, ε > 0. Then

m

(
r,

f (z+ z1)
f (z+ z2)

)
= o

(
{T (r+ |z1− z2|+ |z2| , f )}1+ε

rδ

)

for all r outside of a possible exceptional set S with finite logarithmic measure
∫
S

dr
r <

∞.

LEMMA 8. [9] Let f be a nonconstant meromorphic function with nonzero finite
(p,q)-order ρ f (p,q) and nonzero finite (p,q)-type τ f (p,q) . Then for any given b <
τ f (p,q) , there exists a subset S ⊂ [1,+∞) of infinite logarithmic measure such that for
all r ∈ S, we have

logp−1 T (r, f ) > b
(
logq−1 r

)ρ f (p,q)
.

LEMMA 9. [14] Let α, R, R′ be real numbers such that 0 < α < 1 , R, R′ > 0
and let ξ be a nonzero complex number. Then there exists a positive constant Kα which
depends only on α such that for a given meromorphic function f we have, when |z|= r,
max{1,r+ |ξ |} < R < R′, the estimate

m

(
r,

f (z+ ξ )
f (z)

)
+m

(
r,

f (z)
f (z+ ξ )

)

� 2 |ξ |R
(R− r−|ξ |)2

(
m(R, f )+m

(
R,

1
f

))

+
2R′

(R′ −R)

( |ξ |
R− r−|ξ | +

Kα |ξ |α
(1−α)rα

)(
N
(
R′, f

)
+N

(
R′,

1
f

))
.

LEMMA 10. Let ξ1,ξ2 be two complex numbers such that ξ1 �= ξ2 and suppose
f be of finite (p,q)-order meromorphic function. Consider the (p,q)-order of f as
ρ f (p,q) = ρ < +∞. Then for each ε > 0, we have

i) m

(
r,

f (z+ ξ1)
f (z+ ξ2)

)
= O

(
rρ−1+ε) ,
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for p = q = 1, and

ii) m

(
r,

f (z+ ξ1)
f (z+ ξ2)

)
= O

(
expp−1

[{
logq−1 (r)

}ρ+ε
])

,

for p � q � 2.

Proof. We prove only second part of the lemma. First part follows from [14].
In the second part, for p � q � 2 we first write the following expression as

m

(
r,

f (z+ ξ1)
f (z+ ξ2)

)
� m

(
r,

f (z+ ξ1)
f (z)

)
+m

(
r,

f (z)
f (z+ ξ2)

)

� m

(
r,

f (z+ ξ1)
f (z)

)
+m

(
r,

f (z)
f (z+ ξ1)

)

+m

(
r,

f (z)
f (z+ ξ2)

)
+m

(
r,

f (z+ ξ2)
f (z)

)
. (10)

By Lemma 9 and using the concept given in [[3], lemma 2.9], we obtain from
above

m

(
r,

f (z+ ξ1)
f (z+ ξ2)

)
� 4

⎡
⎢⎢⎢⎢⎢⎣

4|ξ1|r
(r−|ξ1|2)

+ 4|ξ2|r
(r−|ξ2|2)

+6
( |ξ1|

(r−|ξ1|) + |ξ2|
(r−|ξ2|)

)

+
2Kα

(
|ξ1|1−

ε
2 +|ξ2|1−

ε
2
)

εr1−
ε
2

⎤
⎥⎥⎥⎥⎥⎦T (3r, f ). (11)

Now since the (p,q)-order of f is ρ f (p,q) = ρ < +∞, so given 0 < ε < 2, by
definition we have

T (r, f ) � expp−1

{{
logq−1 (r)

}ρ+ ε
2
}

.

Using the above in (11) we obtain

m

(
r,

f (z+ ξ1)
f (z+ ξ2)

)

� 4

⎡
⎢⎢⎢⎢⎢⎣

4|ξ1|r
(r−|ξ1|2)

+ 4|ξ2|r
(r−|ξ2|2)

+6
( |ξ1|

(r−|ξ1|) + |ξ2|
(r−|ξ2|)

)

+
2Kα

(
|ξ1|1−

ε
2 +|ξ2|1−

ε
2
)

εr1−
ε
2

⎤
⎥⎥⎥⎥⎥⎦expp−1

[{
logq−1 (3r)

}ρ+ ε
2
]

� K expp−1

{
logq−1 rρ+ε} , where K > 0 is a constant.

This completes the proof. �
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LEMMA 11. Let D be a complex set satisfying logdens{r = |z| : z ∈ D} > 0 and
let A0(z),A1(z), . . . ,Ak(z) be entire functions of (p,q)-order satisfying max

0� j�k

{
ρAj (p,q)

}
� ρ . If there exists an integer l (0 � l � k) such that for some constants a,b (0 � b <
a) and δ (0 < δ < ρ) sufficiently small with

|Al(z)| � expp

[
a
{
logq−1 (r)

}ρ−δ
]

(12)

and ∣∣Aj(z)
∣∣� expp

[
b
{
logq−1 (r)

}ρ−δ
]
, j = 0,1, . . . ,k, j �= l

as z → ∞ for z ∈ D, then we have ρAl (p,q) = ρ .

Proof. By the stated condition we have ρAl (p,q) � ρ . Let ρAl (p,q) = α < ρ .

Then for given ε and sufficiently large r, by definition we have

|Al(z)| � expp

[{
logq−1 (r)

}α+ε
]

Again by (12) ,

|Al(z)| � expp

[
a
{
logq−1 (r)

}ρ−δ
]
.

Combining the above two for z ∈ D, |z| → +∞, we obtain

expp

[
a
{
logq−1 (r)

}ρ−δ
]

� |Al(z)| � expp

[{
logq−1 (r)

}α+ε
]
,

where ε is arbitrary and 0 < ε < ρ −α −2δ , which is a contradiction as r → +∞.

Hence ρAl (p,q) = ρ . �

LEMMA 12. Let D be a complex set satisfying logdens{r = |z| : z ∈ D} > 0 and
let A0(z),A1(z), . . . ,Ak(z) be entire functions of (p,q)-order satisfying max

0� j�k

{
ρAj (p,q)

}
� ρ . If there exists an integer l (0 � l � k) such that for some constants a,b (0 � b <
a) and δ (0 < δ < ρ) sufficiently small with

T (r,Al) � expp−1

[
a
{
logq−1 (r)

}ρ−δ
]

and
T (r,Aj) � expp−1

[
b
{
logq−1 (r)

}ρ−δ
]
, j = 0,1, . . . ,k, j �= l

as z → ∞ for z ∈ D, then we have ρAl (p,q) = ρ .

Proof. The proof follows from the previous lemma, hence we omit it. �
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3. Main results

Here we state and proof our main results of this paper.

THEOREM 1. Let D be a complex set satisfying logdens{r = |z| : z ∈ D}> 0 and
let A0(z) , A1(z) ,. . . ,Ak(z) be entire functions of (p,q)-order satisfying max

0� j�k

{
ρAj (p,q)

}
� ρ . If there exists an integer l (0 � l � k) such that for some constants a,b (0 � b <
a) and δ (0 < δ < ρ) sufficiently small with

|Al(z)| � expp

[
a
{
logq−1 (r)

}ρ−δ
]

(13)

∣∣Aj(z)
∣∣� expp

[
b
{
logq−1 (r)

}ρ−δ
]
, j = 0,1, . . . ,k, j �= l (14)

as z→ ∞ for z ∈D, then every meromorphic solution f (�≡ 0) of equation (1) satisfies
(i) ρ f � ρAl +1, for p = 1, q = 1.
(ii) ρ f (p,q) � ρAl (p,q) , for p � q � 2.

Proof. For p = q = 1, see [3]. We consider the case when p � q � 2.
First let f (�≡ 0) be a meromorphic solution of (1) and if possible let ρ f (p,q) < ρ .
Now divide (1) by f (z+ cl) we get

−Al(z) = Ak(z)
f (z+ ck)
f (z+ cl)

+ . . . +Al−1(z)
f (z+ cl−1)
f (z+ cl)

+ . . .

+A1(z)
f (z+ c1)
f (z+ cl)

+A0(z)
f (z)

f (z+ cl)
. (15)

The above expression can be written as

−1 =
k

∑
j=1, j �=l

A j(z) f (z+ c j)
Al(z) f (z+ cl)

+
A0(z) f (z)

Al(z) f (z+ cl)
.

The above implies

1 �
k

∑
j=1, j �=l

∣∣∣∣Aj(z) f (z+ c j)
Al(z) f (z+ cl)

∣∣∣∣+
∣∣∣∣ A0(z) f (z)
Al(z) f (z+ cl)

∣∣∣∣ . (16)

By Lemma 4 (ii) , for any given ε > 0
(
ε < ρ −ρ f (p,q)−2δ

)
, there exists a

subset S ⊂ (1,+∞) of finite logarithmic measure such that for all |z| = r /∈ S∪ [0,1] ,
we have∣∣∣∣ f (z+ c j)

f (z+ cl)

∣∣∣∣ � expp

[{
logq−1 (r)

}ρ f (p,q)+ε
]

< expp

[{
logq−1 (r)

}ρ−2δ
]

(17)

( j �= l, j = 1,2, . . . ,k)
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and ∣∣∣∣ f (z)
f (z+ cl)

∣∣∣∣� expp

[{
logq−1 (r)

}ρ f (p,q)+ε
]

< expp

[{
logq−1 (r)

}ρ−2δ
]
. (18)

Now D is a complex set satisfying logdens{r = |z| : z ∈ D} > 0 and for |z| →
+∞, we have (13) and (14) . Therefore we set D1 = {r = |z| : z ∈ D} .

Since logdens{r = |z| : z ∈ D} > 0, thus D1 is a set of r with
∫
D1

dr
r = ∞.

Now for z ∈ D1\S∪ [0,1] , substituting (13) ,(14) ,(17) and (18) in (16) , we
obtain

1 � k
expp

[
b
{
logq−1 (r)

}ρ−δ
]

expp

[
a
{
logq−1 (r)

}ρ−δ
] .expp

[{
logq−1 (r)

}ρ−2δ
]
→ 0 as r → ∞.

The above expression leads to a contradiction.
Hence we get ρ f (p,q) � ρ .
Again by Lemma 11 we know ρAl (p,q) = ρ , hence ρ f (p,q) � ρAl (p,q) . �

THEOREM 2. Let D be a complex set satisfying logdens{r = |z| : z ∈ D}> 0 and
let A0(z) , A1(z) ,. . . ,Ak(z) be entire functions satisfying max

0� j�k

{
ρAj (p,q)

}
� ρ . If there

exists an integer l (0 � l � k) such that for some constants a,b (0 � b < a) and δ
(0 < δ < ρ) sufficiently small with

T (r,Al) � expp−1

[{
logq−1 (r)

}ρ−δ
]

(19)

T (r,Aj) � expp−1

[{
logq−1 (r)

}ρ−δ
]
, j = 0,1, . . . ,k, j �= l (20)

as z→ ∞ for z ∈D, then every meromorphic solution f (�≡ 0) of equation (1) satisfies
(i) ρ f � ρAl +1, for p = 1, q = 1 and 0 � kb < a.
(ii) ρ f (p,q) � ρAl (p,q) , for p � q � 2 and 0 � b < a.

Proof. For p = q = 1, see [3]. We consider the case when p � q � 2.
First let f (�≡ 0) be a meromorphic solution of (1) and if possible let ρ f (p,q) < ρ .
Now since A0(z),A1(z), . . . ,Ak(z) are entire, by (15) we have

m(r,Al) = T (r,Al)

�
k

∑
j=0, j �=l

m(r,Aj)+
k

∑
j=1, j �=l

m

(
r,

f (z+ c j)
f (z+ cl)

)

+m

(
r,

f (z)
f (z+ cl)

)
+O(1)

=
k

∑
j=0, j �=l

T (r,Aj)+
k

∑
j=1, j �=l

m

(
r,

f (z+ c j)
f (z+ cl)

)

+m

(
r,

f (z)
f (z+ cl)

)
+O(1). (21)
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For any given ε
(
0 < ε < ρ −ρ f (p,q)−2δ

)
, from Lemma (10) the above im-

plies

T (r,Al) �
k

∑
j=0, j �=l

T (r,Aj)+
k

∑
j=1, j �=l

expp−1

{{
logq−1 (r)

}ρ f (p,q)+ε
}

(22)

+expp−1

{{
logq−1 (r)

}ρ f (p,q)+ε
}

+O(1).

Substituting (19) and (20) in (22) , we obtain

expp−1

[{
a logq−1 (r)

}ρ−δ
]

�
k

∑
j=0, j �=l

expp−1

[
b
{
logq−1 (r)

}ρ−δ
]
+

k

∑
j=1, j �=l

expp−1

{{
logq−1 (r)

}ρ f (p,q)+ε
}

+expp−1

{{
logq−1 (r)

}ρ f (p,q)+ε
}

+O(1) (23)

� k expp−1

[
b
{
logq−1 (r)

}ρ−δ
]
+ k expp−1

{{
logq−1 (r)

}ρ f (p,q)+ε
}

+O(1). (24)

By (24) it follows

(a−b)
{
logq−1 (r)

}ρ−δ �
{
logq−1 (r)

}ρ f (p,q)+ε +O(1).

Since (a−b) > 0, the above implies

1 �
{
logq−1 (r)

}ρ f (p,q)+ε−ρ+δ

(a−b)
+

O(1)

(a−b)
{
logq−1 (r)

}ρ−δ → 0 as r → +∞,

which is a contradiction.
Again by Lemma 12 it follows that ρAl (p,q) = ρ . Hence we have ρ f (p,q) �

ρAl (p,q) and the theorem is proved. �

THEOREM 3. Let A0(z) , A1(z) ,. . . ,Ak(z) be entire functions and there exists an
integer l (0 � l � k) such that

max
{

ρAj (p,q) : j = 0,1, . . . ,k, j �= l
}

� ρAl (p,q) ,

max
{

τAj (p,q) : ρAj (p,q) = ρAl (p,q)
}

< τAl (p,q),

where 0 < ρAl (p,q) , τAl (p,q) < ∞ and p � q � 1 are integers. Then every meromor-
phic solution ( f �≡ 0) of (1) satisfies ρ f (p,q) � ρAl (p,q) .

Proof. Suppose f (�≡ 0) be a meromorphic solution of the equation (1) .
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Now from (21) by using Lemma 7, for all r outside of a possible exceptional set
S1 with finite logarithmic measure we obtain (see [3])

m(r,Al) = T (r,Al)

�
k

∑
j=0, j �=l

m(r,Aj)+
k

∑
j=1, j �=l

m

(
r,

f (z+ c j)
f (z+ cl)

)
+m

(
r,

f (z)
f (z+ cl)

)
+O(1)

�
k

∑
j=0, j �=l

T (r,Aj)+
k

∑
j=1, j �=l

o

((
T
(
r+
∣∣c j − cl

∣∣+ |cl| , f
))1+ε

rδ

)

+o

(
(T (r+2 |cl| , f ))1+ε

rδ

)
+O(1)

�
k

∑
j=0, j �=l

T (r,Aj)+o

(
(T (r+2 |cl| , f ))1+ε

rδ

)
. (25)

Consider two real numbers b1,b2 such that

max
{

τAj(p,q) : ρAj (p,q) = ρAl (p,q)
}

< b1 < b2 < τAl (p,q).

Now by Lemma 8 there exists a subset S2 ⊂ [1,+∞) of infinite logarithmic mea-
sure such that for all r ∈ S2, we have

logp−1 T (r,Al) > b2
(
logq−1 r

)ρAl
(p,q)

.

Therefore for a sequence {rn} such that rn ∈ S2,rn → ∞ we have

logp−1 T (rn,Al) > b2
(
logq−1 rn

)ρAl
(p,q)

. (26)

Now if we take b = max
{

ρAj (p,q) : j = 0,1, . . . ,k, j �= l
}

< ρAl (p,q) , then for
any given ε

(
0 < ε < ρAl (p,q)−b

)
and sufficiently large rn , we have

T (rn,Aj) � expp−1

{(
logq−1 rn

)b+ε
}

� expp−1

{
b1
(
logq−1 rn

)ρAl
(p,q)

}
. (27)

Again since

max
{

τAj (p,q) : ρAj (p,q) = ρAl (p,q)
}

< τAl (p,q),

Then for sufficiently large rn , we have

T (rn,Aj) � expp−1

{
b1
(
logq−1 rn

)ρAl
(p,q)

}
. (28)

Now for rn ∈ S2\S1, substituting (26) and (27) or (28) into (25) we obtain

expp−1

{
b2
(
logq−1 rn

)ρAl
(p,q)

}
< T (rn,Al)

� k expp−1

{
b1
(
logq−1 rn

)ρAl
(p,q)

}
+o

(
(T (rn +2 |cl| , f ))1+ε

rδ
n

)
.
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The above implies

(1−o(1))expp−1

{
b2
(
logq−1 rn

)ρAl
(p,q)

}
< o

(
(T (rn +2 |cl| , f ))1+ε

rδ
n

)
.

Hence the result follows. �
Next we consider the properties of meromorphic solutions of (2) where A0(z) ,

A1(z) ,. . . ,Ak(z) , F are entire functions.

THEOREM 4. Let A0(z) , A1(z) ,. . . ,Ak(z) be entire functions that satisfy the con-
ditions stated in the Theorem 3 and let F be an entire function. Then the followings
hold

(i) If ρF (p,q) < ρAl (p,q) or ρF (p,q) = ρAl (p,q) ,τF (p,q) � τAl (p,q) , then
every meromorphic solution ( f �≡ 0) of (2) satisfies ρ f (p,q) � ρAl (p,q) .

(ii) If ρF (p,q) > ρAl (p,q) , then every meromorphic solution ( f �≡ 0) of (2)
satisfies ρ f (p,q) � ρF (p,q) .

Proof. We first consider Case (i), when ρF (p,q) < ρAl (p,q) or ρF (p,q) =
ρAl (p,q) , τF (p,q) � τAl (p,q) .

First let f ( �≡ 0) be a meromorphic solution of (2) and divide (2) by f (z+cl) we
get

−Al(z) = Ak(z)
f (z+ ck)
f (z+ cl)

+ . . . +Al−1(z)
f (z+ cl−1)
f (z+ cl)

+ . . . +A1(z)
f (z+ c1)
f (z+ cl)

+A0(z)
f (z)

f (z+ cl)
− F(z)

f (z+ cl)
.

The above expression can be written as

−Al(z) =
k

∑
j=1, j �=l

A j(z)
f (z+ c j)
f (z+ cl)

+A0(z)
f (z)

f (z+ cl)
− F(z)

f (z+ cl)
. (29)

Now for any given ε > 0 and sufficiently large r, using Lemma (6) and Lemma
(7) in (29) we obtain (see [3])

T (r,Al) = m(r,Al(z)) � m

(
r,

F(z)
f (z+ cl)

)
+

k

∑
j=0, j �=l

m(r,Aj(z))

+
k

∑
j=1, j �=l

m

(
r,

f (z+ c j)
f (z+ cl)

)
+m

(
r,

f (z)
f (z+ cl)

)
+O(1)

� T (r,F)+
k

∑
j=0, j �=l

T (r,Aj(z))+2T (r+ |cl | , f (z))

+o

(
(T (r+2 |cl| , f ))1+ε

rδ

)
, (30)
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for r → ∞, r /∈ S1, where S1 is a set of finite logarithmic measure.
Consider two real numbers b1,b2 such that

max
{

τAj(p,q) : ρAj (p,q) = ρAl (p,q)
}

< b1 < b2 < τAl (p,q).

Now by Lemma (8) there exists a subset S2 ⊂ [1,+∞) of infinite logarithmic
measure such that for all r ∈ S2,we have

logp−1 T (r,F) � b1
(
logq−1 r

)ρAl
(p,q)

.

Therefore for a sequence {rn} such that rn ∈ S2,rn → ∞ we have

logp−1 T (rn,F) � b1
(
logq−1 rn

)ρAl
(p,q)

. (31)

Now for rn ∈ S2\S1, substituting (26) , (27) or (28) and (31) into (30) we obtain

expp−1

{
b2
(
logq−1 rn

)ρAl
(p,q)

}
< T (rn,Al)

� (k+1)expp−1

{
b1
(
logq−1 rn

)ρAl
(p,q)

}
+3(T (2rn, f ))2 . (32)

By (32) first part of the theorem is proved.

Case (ii) : Consider ρF (p,q) > ρAl (p,q) and let let f (�≡ 0) be a meromorphic
solution of (2) .

Now for any given ε > 0 and sufficiently large r, using Lemma (6) and Lemma
(7) in (29) we obtain (see [3])

T (r,F) �
k

∑
j=0

T (r,Aj(z))+
k

∑
j=1

T (r, f (z+ c j))+T(r, f (z))+O(1)

�
k

∑
j=0

T (r,Aj(z))+ (2k+1)T(2r, f (z))+O(1). (33)

Now by definition of the (p,q)-order there exists a sequence {rn} such that rn →
∞ and for any given ε

(
0 < 2ε < ρF (p,q)−ρAl (p,q)

)
, we have

T (rn,F) � expp−1

{(
logq−1 rn

)ρF (p,q)−ε
}

(34)

and for j = 0,1, . . . ,k

T (rn,Aj(z)) � expp−1

{(
logq−1 rn

)b+ε
}

� expp−1

{(
logq−1 rn

)ρAl
(p,q)+ε

}
, (35)

where b = max
{

ρAj (p,q) : j = 0,1, . . . ,k, j �= l
}

< ρAl (p,q) .
Substituting (34) and (35) into (33) we obtain

expp−1

{(
logq−1 rn

)ρF (p,q)−ε
}

� (k+1)expp−1

{(
logq−1 rn

)ρAl
(p,q)+ε

}
(36)

+(2k+1)T(2r, f (z)).
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By (36) second part of the theorem is proved. �
Next two theorems, i.e. Theorem 5 and Theorem 6 are based on linear difference

equation with meromorphic coefficients. In Theorem 5 we take homogeneous linear
difference equation with one coefficient having maximal (p,q)-order.

THEOREM 5. Let A j(z)( j = 0,1, . . . ,k) be meromorphic functions. If there exits

an Am(z) (0 � m � k) such that

λ 1
Am

(p,q) < ρAm (p,q) < ∞,

and max{ρAj (p,q) : j = 0,1, . . . ,k, j �= m} < ρAm (p,q)

then for every nonzero meromorphic solution f (z) of (1) satisfies ρ f (p,q)� ρAm (p,q) .

Proof. Let f be a meromorphic solution of (1) and put c0 = 0. We divide (1) by
f (z+ cm) and we get

−Am(z) =
k

∑
j=0, j �=m

Aj(z) f (z+ c j)
f (z+ cm)

. (37)

Now from Lemma 7 for any ε > 0 we get,

m

(
r,

f (z+ c j)
f (z+ cm)

)
� o

(
{T (r+3C, f )}1+ε

rδ

)
, j = 0,1, . . . ,k, j �= m,

where C = max0��k{
∣∣c j
∣∣ : j = 0,1, . . . ,k}, r /∈ S1 where S1 is chosen as Lemma 7.

Using the above result, from (37) we get ,

T (r,Am)
= m(r,Am)+N(r,Am)

�
k

∑
j=0, j �=m

m(r,Aj)+
k

∑
j=0, j �=m

m

(
r,

f (z+ c j)
f (z+ cm)

)
+N(r,Am)+O(1)

�
k

∑
j=0, j �=m

T (r,Aj)+o

(
{T (r+3C, f )}1+ε

rδ

)
+N(r,Am)+O(1)

�
k

∑
j=0, j �=m

T (r,Aj)+{T (2r, f )}2 +N(r,Am)+O(1) (38)

for r /∈ S1.
Now we denote, ρ = ρAm (p,q) , ρ1 = max{ρAj (p,q) : j = 0,1, . . . ,k; j �= m}.

Then clearly ρ1 < ρ .
For that ε we have

T (r,Am) > expp−1

{
(logq−1 r)ρ1−ε} (39)
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for sufficiently large r with r ∈ S2, where S2 be a set with infinite logarithmic measure.
And for j �= m, for that ε we have

T (r,Aj) � expp−1

{
(logq−1 r)ρ1+ε} (40)

for sufficiently large r.
Again by the definition of λ 1

Am
(p,q) , we have for the above ε and for sufficiently

large r

N(r,Am) � expp−1

{
(logq−1 r)λ+ε

}
(41)

taking λ 1
Am

(p,q) = λ .

Now, using all the above relations (39)–(41) and chosing ε such that 0 < ε <
1
2 min{ρ −ρ1,ρ −λ} , we have from (38)

expp−1

{
(τ − ε)(logq−1 r)ρ} < O

(
expp−1

{
(logq−1 r)ρ1+ε})+3{T (2r, f )}2

+expp−1

{
(logq−1 r)λ+ε

}
+O(1)

⇒ 3{T (2r, f )}2 > O
(
expp−1

{
(logq−1 r)ρ+ε})

for sufficiently large r and r ∈ S2\S1.
Which implies, ρ f (p,q) � ρ . �

In the next theorem we consider non-homogeneous linear difference equation
which may have more than one coefficient with the maximal (p,q)-order. For those
type of equations we need to consider the (p,q)-type among the coefficients having
maximal (p,q)-order.

THEOREM 6. Let A j(z)( j = 0,1, . . . ,k) and F(z) be meromorphic functions. If
there exits an Am(z)(0 � m � k) such that

λ 1
Am

(p,q) < ρAm (p,q) < ∞,

max{ρAj (p,q) : j = 0,1, . . . ,k, j �= m} � ρAm (p,q)

and

max{τAj (p,q) : ρAj (p,q) = ρAm (p,q) , j = 0,1, . . . ,k, j �= m} < τAm (p,q) < ∞,

then the following cases arise:
i) If ρF (p,q) < ρAm (p,q) , or ρF (p,q) = ρAm (p,q) and τF (p,q) �= τAm (p,q) ,

then every nonzero meromorphic solution f (z) of (2) satisfies

ρ f (p,q) � ρAm (p,q) .

ii) If ρF (p,q) > ρAm (p,q) then every nonzero meromorphic solution f (z) of (2)
satisfies ρ f (p,q) � ρF (p,q) .
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Proof. Let f be a meromorphic solution of (2). We divide (2) by f (z+ cm) and
we get

−Am(z) =
k

∑
j=0, j �=m

Aj(z) f (z+ c j)
f (z+ cm)

− F(z)
f (z+ cm)

. (42)

Now from Lemma 6 and Lemma 7, for any ε > 0 we get,

m

(
r,

f (z+ c j)
f (z+ cm)

)
� o

(
{T (r+3C, f )}1+ε

rδ

)
, j = 0,1, . . . ,k, j �= m,

and m

(
r,

1
f (z+ cm)

)
� T

(
r,

1
f (z+ cm)

)
= T (r, f (z+ cm))+O(1) � (1+O(1))T (r+C, f ) .

where C = max0��k{
∣∣c j
∣∣ : j = 0,1, . . . ,k}, r /∈ S1 where S1 is chosen as Lemma 7.

Using these from (42) we get ,

T (r,Am) = m(r,Am)+N(r,Am)

�
k

∑
j=0, j �=m

m(r,Aj)+
k

∑
j=0, j �=m

m

(
r,

f (z+ c j)
f (z+ cm)

)
+m(r,F)

+m

(
r,

1
f (z+ cm)

)
+N(r,Am)+O(1)

�
k

∑
j=0, j �=m

T (r,Aj)+o

(
{T (r+3C, f )}1+ε

rδ

)
+T (r,F)

+(1+O(1))T (r+C, f )+N(r,Am)+O(1)

�
k

∑
j=0, j �=m

T (r,Aj)+3{T (2r, f )}2 +T (r,F)+N(r,Am)+O(1) (43)

for r /∈ S1.
Now denote, ρ = ρAm (p,q) , ρ1 = max{ρAj (p,q) : j = 0,1, . . . ,k, ρAj (p,q) < ρ} ,

τ = τAm (p,q) and τ1 = max{τAj (p,q) : j = 0,1, . . . ,k, j �= m, ρAj (p,q) = ρ}.
Then clearly

ρ1 < ρ and τ1 < τ

by the given hypothesis.
From Lemma 9 for that ε we have

T (r,Am) > expp−1

{
(τ − ε)(logq−1 r)ρ} (44)

for sufficiently large r with r ∈ S2, where S2 is a set with infinite logarithmic measure.
Again if for some j, ρAj (p,q) < ρ , then for that ε we have

T (r,Aj) � expp−1

{
(logq−1 r)ρ1+ε} (45)

for sufficiently large r.
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And for those j, j �= m and ρAj (p,q) = ρ , for that ε we have

T (r,Aj) � expp−1

{
(τ1 + ε)(logq−1 r)ρ} (46)

for sufficiently large r.
Again by the definition of λ 1

Am
(p,q) , we have for the above ε and for sufficiently

large r

N(r,Am) � expp−1

{
(logq−1 r)λ+ε

}
(47)

taking λ 1
Am

(p,q) = λ .

Now for the proof of the first part, we take ρF (p,q) < ρ , then for that ε we have

T (r,F) � expp−1

{
(logq−1 r)ρF (p,q)+ε

}
(48)

for sufficiently large r.
Now, using all the above relations (44)–(48) and chosing ε such that 0 < ε <

1
2 min{ρ −ρ1, τ − τ1, ρ −λ , ρ −ρF (p,q)} , we have from (43)

expp−1

{
(τ − ε)(logq−1 r)ρ}

< O
(
expp−1

{
(logq−1 r)ρ1+ε})+O

(
expp−1

{
(τ1 + ε)(logq−1 r)ρ})

+3{T (2r, f )}2 + expp−1

{
(logq−1 r)ρF (p,q)+ε

}
+ expp−1

{
(logq−1 r)λ+ε

}
+O(1)

⇒ 3{T (2r, f )}2 > O
(
expp−1

{
(logq−1 r)ρ+ε})

for sufficiently large r and r ∈ S2\S1.
Which implies, ρ f (p,q) � ρ .
Next we suppose that ρF (p,q) = ρ and τF (p,q) < τ, then for the above ε we

have
T (r,F) � expp−1

{
(τF (p,q)+ ε)(logq−1 r)ρ} (49)

for sufficiently large r.
Now, using relations (44)–(47) and (2), such that for choosen ε where

0 < ε <
1
2

min{ρ −ρ1,τ − τ1,ρ −λ ,τ − τF (p,q)} ,

we have from (43)

expp−1

{
(τ − ε)(logq−1 r)ρ}< O

(
expp−1

{
(logq−1 r)ρ1+ε})

+O
(
expp−1

{
(τ1 + ε)(logq−1 r)ρ})+3{T (2r, f )}2

+expp−1

{
(τF (p,q)+ ε)(logq−1 r)ρ}+ expp−1

{
(logq−1 r)λ+ε

}
+O(1)

⇒ 3{T (2r, f )}2 > O
(
expp−1

{
(logq−1 r)ρ+ε}) ,

for sufficiently large r and r ∈ S2\S1.
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Which implies, ρ f (p,q) � ρ .
For the last case of first part we take, ρF (p,q) = ρ and τF (p,q) > τ, then by

Lemma 9, and for the above ε we have

T (r,F) > expp−1

{
(τF (p,q)− ε)(logq−1 r)ρ} (50)

for sufficiently large r and r ∈ S3, where S3 is chosen as Lemma 9.
Again by the definition of τAm (p,q) , we have for the above ε and for sufficiently

large r
T (r,Am) � expp−1

{
(τ + ε)(logq−1 r)ρ} . (51)

Now from (2) and Lemma 6 it follows that

T (r,F) �
k

∑
j=0, j �=m

T (r,Aj)+T (r,Am)+ (k+2)T(2r, f ) (52)

for sufficiently large r
Now, using relations (44), (45) and (50)–(52) and choosing ε such that 0 < ε <

1
2 min{ρ −ρ1,τ − τ1,τF (p,q)− τ} , we have

expp−1

{
(τF (p,q)− ε)(logq−1 r)ρ}

< O
(
expp−1

{
(logq−1 r)ρ1+ε})+O

(
expp−1

{
(τ1 + ε)(logq−1 r)ρ})

+O
(
expp−1

{
(τ + ε)(logq−1 r)ρ})+(k+2)T(2r, f )

⇒ (k+2)T(2r, f ) > O
(
expp−1

{
(logq−1 r)ρ+ε}) ,

for sufficiently large r and r ∈ S3\S1.
It follows that, ρ f (p,q) � ρ .
For the second part of the theorem, we take ρF (p,q) > ρ = ρAm (p,q) .
If possible we suppose that ρ f (p,q) < ρF (p,q) , then from (2) we get

ρ p
q Ak(z) f (z+ ck)+Ak−1(z) f (z+ ck−1)+ · · ·+A1(z) f (z+ c1)+A0(z) f (z) < ρ p

q (F(z))

which is a contradiction.
Hence we have ρ f (p,q) � ρF (p,q) . �

4. Examples

In this section we provide some examples which illustrate few of our main results.
First consider an example corresponding to the Theorem 1.

EXAMPLE 1. Consider the difference equation

A2(z) f (z+2π)+A1(z) f (z+ π)+A0(z) f (z) = 0, (53)

where
A2 (z) = exp

{
4πz+ π2} , A1 (z) = 1,
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A0 (z) = −exp{−3πz}− exp

{
−πz

2
− π2

4

}
.

We have
ρA2 (2,2) = ρA0 (2,2) = 1 and ρA1 (2,2) = 0.

Therefore
1 = max

0� j�1

{
ρAj (2,2)

}
� ρ = 1.

Choose
D =

{
z ∈ C : z = reiθ ,r ∈ [1,+∞[ ,

π
6

� θ � π
3

}
,

a complex set satisfying logdens{r = |z| : z ∈ D} > 0.
Thus we get sufficiently small δ (0 < δ < ρ = 1) for which

|A2(z)| =
∣∣exp

{
4πz+ π2}∣∣

=
∣∣exp

{
4πrcosθ + π2}∣∣

�
∣∣exp

{
πr+ π2}∣∣

� exp2

{
(logr)1−δ

}
,

|A1(z)| = 1 � exp2

{
1
2
.(logr)1−δ

}
and

|A0(z)| =
∣∣∣∣−exp{−3πz}− exp

{
−πz

2
− π2

4

}∣∣∣∣
= exp{−3πrcosθ}+ exp

{
−πrcosθ

2
− π2

4

}

� exp

{
−πr

2
− π2

4

}
� exp2

{
1
2
.(logr)1−δ

}

as z → ∞ for z ∈ D.

The meromorphic function f (z) = e
−
(

z2
2

)
tanz is a solution of (53).

Thus all conditions of Theorem 1 are satisfied with a = 1 and b = 1
2 and we get

1 = ρ f (2,2) � ρA2 (2,2) = 1.

EXAMPLE 2. For Theorem 4 (i) , we consider the meromorphic function

f (z) =
cosz

z
.

Then f (z) satisfies the difference equation

A2(z) f (z+2π)+A1(z) f (z+ π)+A0(z) f (z) = F(z),
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where
A2 (z) = (z+2π)expz, A1 (z) = (z+ π)expz,

A0 (z) = zexpz2 and F(z) = coszexpz2.

We have
ρA2 (2,2) = ρA1 (2,2) = ρA0 (2,2) = 1 = ρF (2,2)

and
τA2(2,2) = τA1(2,2) = 1, τA0(2,2) = τF (2,2) = 2.

Therefore
1 = max

{
ρAj (2,2) : j = 1,2

}
� ρA0 (2,2) = 1,

1 = max
{

τAj (2,2) : ρAj (2,2) = ρA0 (2,2)
}

< τA0(2,2) = 2,

ρA0 (2,2) = 1 = ρF (2,2) and τF(2,2) = 2 � τA0(2,2) = 2.

Thus all conditions of Theorem 4 (i) are satisfied and we get

1 = ρ f (2,2) � ρA0 (2,2) = 1.

For Theorem 5 we consider the following example:

EXAMPLE 3. Consider the difference equation

A2(z) f (z+2)+A1(z) f (z+1)+A0(z) f (z) = 0, (54)

where

A2 (z) = 1, A1 (z) = 1, A0 (z) = −exp{4z+4}− exp{2z+1} .

We have
ρA2 (2,2) = ρA1 (2,2) = 0, ρA0 (2,2) = 1

and
λ 1

A2
(2,2) = λ 1

A1
(2,2) = λ 1

A0
(2,2) = 0.

Therefore
0 = λ 1

A0
(2,2) < ρA0 (2,2) = 1

and
0 = max{ρA2 (2,2) ,ρA1 (2,2)} < ρA0 (2,2) = 1.

The function f (z) = ez2 is a solution of (54).
Thus all conditions of Theorem 5 are satisfied and we get

1 = ρ f (2,2) � ρA0 (2,2) = 1.
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