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SQUARE–FREE FACTORIZATION OF

MIXED TRIGONOMETRIC–POLYNOMIALS

CHEN SHIPING ∗ AND GE XINYU

Abstract. This paper proposes a procedure to square-free factorization of mixed trigonometric-
polynomials and some examples are presented to show the effectiveness of the algorithm.

1. Introduction

In recent years, a class of transcendental functions named mixed trigonometric-
polynomial (denoted as MTP simply) and defined by the formula F(x)= ∑aixpi sinqi(x)
cosri(x) attract more and more scholars’ attention [1, 3, 12, 10, 11, 7, 2, 13, 19, 4, 16, 8,
20,18,17,9], which frequently occur in applications in physics, numerical analysis and
engineering, where ai ∈ R , pi,qi,ri ∈ N∪{0} . There have been numerous research
studies on the MTP inequalities and the real root isolation for the MTPs already, while
the problem of the general positivity of a real function over an interval is an unde-
cidable problem [7]. To tackle the problem of proving MTP inequalities, a so-called
‘Natural Approach’ introduced in [2,13], approximates sin(x) and cos(x) by their Tay-
lor polynomials and reduce the problem of proving an MTP inequality to the problem
of proving some polynomial (or rational function) inequalities. Chen and Liu [19] pro-
vided a complete algorithm proving MTP inequalities and discussed systematically, for
the first time, the termination of the algorithm. Notably, a recent breakthrough is the
development and implementation of an algorithm capable of ‘isolating’ all the real roots
of an MTP, and as a direct application, an algorithm proving MTP inequalities over any
interval (bounded or not) with end-points in Q∪{+∞,−∞} can then be derived [4]. In
other word, the general positivity of MTPs is a decidable problem at the intervals with
rational or infinite endpoints.

As the algorithms for the MPTs will work well if their roots are all simple and the
algorithms in computer algebra often depend on the methods for the square-free decom-
position of functions, the square-free factorization of MTP is an especially important
topic.

Factorization of trigonometric functions is a classic field and the following meth-
ods or tools are commonly used. The first is the quotient ring Q[s,c]/〈s2 + c2−1〉 , but
it is not a unique factorization domain and so, the factorization is not unique in general,
furthermore, it is still needed to decide whether each factor has multiple roots [14].
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The second is using Tan-half angle substitutions, sin(x) = 2t
1+t2

, cos(x) = 1−t2

1+t2
, to

transform the trigonometric polynomial to a rational expression, where t = tan( x
2 ) and

x �= (2k + 1)π for k ∈ N [14, 6, 15]. The third is reducing the trigonometric func-
tions to polynomials in the complex field Q(I)[e,e−1] by Euler Theorem [15], where
e denotes eIx . This scheme requires g(e) ∈ Q(I)[e,e−1] be even or odd function of
e . Besides, the above methods can deal with the trigonometric polynomials with form
f (sin(x),cos(x)) only, where f (x,y) ∈ R[x,y] or Q[x,y] .

In this paper, we will present a procedure to decompose the mixed trigonometric-
polynomials with the form f (x,sin(x),cos(x)) , where f ∈A[x,y,z] , i.e. the monomials
contain one variable and trigonometric functions applied to the same variable, and the
domain is (0,+∞) or (−∞,+∞) without excluding any special point. By Euler For-
mula, a mixed trigonometric-polynomial can be transformed into a polynomial in the
complex field, and then the tools of the polynomials such as Sylvester resultant, can be
employed to decide whether the correlative polynomials are square-free. We also devel-
oped a mechanism to guarantee that the MTPs corresponding to the above polynomials
in complex field are real-valued. The method is simple but practical.

The rest of the paper is organized as follows. Section 2 proposes the scheme of
square-free factorization of MTP. Section 3 presents examples to show the effectiveness
of the algorithm. We will conclude the paper in Section 4.

2. Square-free factorization of mixed trigonometric polynomial

In this section, we extend the coefficients of MTP to complex field. By Euler
Formula, sin(x) = eIx−e−Ix

2I , cos(x) = eIx+e−Ix

2 , an MTP can be transformed to an expo-
nential polynomial in complex field f (x,eIx,e−Ix) , where I2 =−1.

Let eIx = y , then an MTP can be reduced to a Laurent polynomial in the form
of f [x,y,y−1] . Denote LR := C[x,y,y−1] , then for any P ∈ LR , there exists one and
only one polynomial Q ∈ C[x,y] such that P = Q/yp , Q and y are coprime, p ∈ Z .
We denote the numerator of a rational polynomial or expression RP by numer(RP) ,
then numer(P) = Q . If f actor(numer(P)) is a factorization of numer(P) , we call
f actor(numer(P))/yp or y−p× f actor(numer(P)) a factorization of P .

By Lindemann Theorem, we have that

LEMMA 2.1. For ∀x∈C , there exists at least one transcendental number between
x,eIx .

LEMMA 2.2. If f1(x,y), f2(x,y) ∈ A[x,y] are co-prime, then F1(x) = f1(x,eIx)
and F2(x) = f2(x,eIx) have no common roots other than 0 .

Proof. Suppose F1(x) and F2(x) have common root x0 and x0 �= 0.
Let g(x) = res( f1(x,y), f2(x,y),y) , then g ∈ A[x] and g(x0) = 0. As f1(x,y) and

f2(x,y) are co-prime, then g(x) �≡ 0, so x0 is algebraic. Then h(y) = f1(x0,y) ∈ A[y] ,
and h(eIx0) = f1(x0,eIx0) = 0, which implies eIx0 is algebraic and contradicts Lemma
2.1. �
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THEOREM 2.1. If f (x,y) ∈ A[x,y] is irreducible, then F(x) = f (x,eIx) has no
multiple roots other than 0 .

Proof. Let f ′(x,y) ∈ A[x,y] such that F ′(x) = f ′(x,eIx) , then f ′(x,y) = f ′x + I×
y× f ′y , so degree( f ′,x) � degree( f ,x) , degree( f ′,y) � degree( f ,y) . As f (x,y) is ir-
reducible, so f (x,y) and f ′(x,y) are co-prime. Then F(x) and F ′(x) have no common
roots other than 0. We conclude that Theorem 2.1 holds. �

COROLLARY 2.1. If f (x,y) ∈A[x,y] is square-free, then F(x) = f (x,eIx) has no
multiple roots other than 0 .

We extend the operation of complex conjugation to LR as follows.

Given P =
n
∑
j=1

a j(x)yvj ∈ LR , where a1, · · · ,an ∈ C[x] , define its formal conju-

gate to be con(P) = ∑n
j=1 a j(x)y−v j , where a j(x) is the standard conjugate function of

a j(x) , and specially, con(a j(x)) = a j(x) .

For P =
n
∑
j=1

a j(x)yvj ∈ LR , if v j ∈ Q , P is called a generalized Laurent polyno-

mial( GLR). For P∈GLR and v∈Q , define LRhom[v](P)= P(x,eIvx)=
n
∑
j=1

a j(x)(eIvx)v j

=
n
∑
j=1

a j(x)(cos(v jvx)+ I sin(v jvx)) , then LRhom[v](P) is a mixed trigonometric-poly-

nomial with coefficients in the complexfield. LRhom[1](P) is abbreviated as LRhom(P) .
For an MTP F(x) = f (x,sin(x),cos(x)) , let P(x,y) = f (x, y−y−1

2I , y+y−1

2 ) ∈ LR ,
then LRhom(P) = F(x) obviously.

LEMMA 2.3. For P =
n
∑
j=1

a j(x)yvj ∈ GLR , LRhom[v](con(P)) = LRhom[v](P)

for ∀v ∈Q .

Proof.

LRhom[v](con(P)) = LRhom[v]

(
n

∑
j=1

a j(x)y−v j

)

= LRhom[v]

(
n

∑
j=1

a j(x)(eIvx)−v j

)

=
n

∑
j=1

a j(x) (cos(−v jvx)+ I sin(−v jvx))

=
n

∑
j=1

a j(x)(cos(v jvx)− I sin(v jvx))

=
n

∑
j=1

a j(x)(cos(v jvx)+ I sin(v jvx))

= LRhom[v](P). �
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By Lemma 2.3 we get that

LEMMA 2.4. For P ∈GLR , if P = con(P) , then LRhom[v](P) is real-valued for
∀v ∈Q .

LEMMA 2.5. If P∈C[x,y] is coprime with y, P is irreducible iff numer(con(P))
is irreducible.

Proof. Suppose that there exist non-constant P1 and P2 ∈ C[x,y] such that P =
P1×P2 .

Then, con(P) = con(P1)× con(P2) . Let n = degree(P,y) , n1 = degree(P1,y) ,
n2 = degree(P2,y) . It is obviously that n = n1 + n2 , n = degree(con(P),y−1) , n1 =
degree(con(P1),y−1) , n2 = degree(con(P2),y−1) . So, numer(con(P)) = yncon(P) ,
numer(con(P1)) = yn1con(P1) , numer(con(P2)) = yn2con(P2) .

We get that numer(con(P)) = numer(con(P1))×numer(con(P2)) .
Furthermore, we declare that numer(con(P1)) is non-constant, otherwise, ∃c ∈ C

and p ∈N such that con(P1) = c× y−p , then P1 = c× yp , which conflicts the fact that
P is coprime with y .

So, we get that the reducibility of numer(con(P)) implies the reducibility of P .
In the similar way, we will get that the reducibility of P implies the reducibility of

numer(con(P)) . Thus the Lemma holds. �

For two polynomials P and Q , we say that P∼Q if there exists a nonzero constant
c such that P = c×Q .

THEOREM 2.2. If P = ∑
j=1

a j(x)yvj ∈ LR such that P = con(P) , then

1) There exist polynomials T1, . . . ,Tm ∈C[x,y] , c∈C and p∈ Z such that Ti s are
square-free and pairwisely coprime, P = cypT r1

1 · · ·T rm
m and Ti ∼ numer(con(Ti)) for

i = 1, . . . ,m.
2) For each i = 1, . . . ,m, ∃ci ∈C and pi ∈ Z such that

fi(x) = LRhom[v](Tiy
−pi/2c−1/2

i )

is real-valued or pure imaginary, and fi has no multiple root other than 0 for i =
1, . . . ,m, fi and f j have no common root other than 0 for i �= j , where v is an arbitrary
algebraic number ;

3) LRhom[v](P) = c0 f r1
1 · · · f rm

m , where c0 = c(c1)r1/2 . . . (cm)rm/2 .

Proof. 1) Let P be factorized as cypPr1
1 · · ·Prn

n , where c∈C , p∈Z and P1, . . . ,Pn

∈ C[x,y] are irreducible, and Pi �= y for i = 1, . . . ,n , Pi �= Pj for i �= j . Let con(P) =
c0yqQr1

1 . . .Qrn
n , where Qi = numer(con(Pi)) .

By Lemma 2.5, Q1, . . . ,Qn are all irreducible, then P = con(P) implies that for
each i , ∃ ji such that Pi∼Qji , and then the index ri = r ji whether i= ji or not. If i �= ji ,
Pi ∼ Qji = numer (con(Pji)) implies that there exist ci ∈ C and pi ∈ Z such that Pi =
ciypicon(Pji) , con(Pi) = con(ciypicon(Pji)) = ciy−piPji , so Qi = numer(con(Pi)) =
numer(ciy−piPji) = ci×Pji , i.e. Pji ∼ Qi . Then we get that Pi×Pji ∼ Qi×Qji .
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Now reduce P = cypPr1
1 · · ·Prn

n to P = cypT r1
1 · · ·T rm

m , where if Pi ∼ Qi , Pi is one
of Ti s, if Pi ∼ Qji and i �= ji , Pi× Pji is one of Ti s. And Ti s are square-free and
pairwisely co-prime, furthermore, Ti ∼ numer(con(Ti)) for i = 1, . . . ,m .

2) Ti∼ numer(con(Ti)) implies that ∃ci ∈C and pi ∈Z such that Ti = ciypicon(Ti) ,
then T 2

i = ciypicon(Ti)Ti , so T 2
i c−1

i y−pi = con(Ti)Ti . Let Qi = Tiy−pi/2c−1/2
i , then

Q2
i = con(Ti)Ti , so that Q2

i = con(Q2
i ) .

Let fi(x) = LRhom[v](Qi) , then fi(x)2 is real-valued due to Lemma 2.4, i.e. fi(x)
is real-valued or pure imaginary.

It is clearly that fi has no multiple root other than 0 by Theorem 2.1, fi and f j

have no common root other than 0 for i �= j by Lemma 2.2.
3) P = con(P) implies that degree(P,y) = degree(P,y−1) , denoted by q . It is

trivial that p =−q and degree(Q = Tr1
1 · · ·T rm

m ,y) = 2q . Since Ti = ciypicon(Ti) , pi =
degree(Ti,y) = degree(con(Ti),y−1) , hence r1p1 + . . .+ rmpm = degree(Q,y) , i.e. p =
−q =− r1 p1+...+rmpm

2 .
So,

c0 f r1
1 · · · f rm

m

= c(c1)r1/2 . . . (cm)rm/2(LRhom[v](T1y
−p1/2c−1/2

1 ))r1 . . . (LRhom[v](Tmy−pm/2c−1/2
m ))rm

= c×
(
LRhom[v](T1y

− p1
2 )
)r1

. . .
(
LRhom(Tmy−

pm
2 )
)rm

= c×LRhom[v]
(
y−

p1
2 r1−...− pm

2 rmT r1
1 . . .Trm

m

)
= LRhom[v](cypT r1

1 . . .T rm
m )

= LRhom[v](P). �

COROLLARY 2.2. For each mixed trigonometric polynomial

F(x) = f (x,sin(x),cos(x)),

where f ∈ Ralg[x,y,z] , there exist c ∈ Ralg and real-valued mixed trigonometric-po-
lynomials { fi} such that fi has no multiple root other than 0 , fi and f j have no
common root other than 0 for i �= j , F(x) = c f1(x)r1 . . . fn(x)rn .

Proof. Let P = f (x, y−y−1

2I , y+y−1

2 ) , by Theorem 2.2, there exist c ∈ C and mixed
trigonometric polynomials { fi} such that fi has no multiple root other than 0, fi and
f j have no common root other than 0 for i �= j , F(x) = c f1(x)r1 . . . fn(x)rn , each fi is
real-valued or pure imaginary.

If all fi s are real-valued, then Corollary 2.2 holds. If fi is pure imaginary, let
f ′i = fi/I and c′= cIri , then f ′i is real-valued and F(x) = c′ f1(x)r1 . . . f ′i (x)

ri . . . fn(x)rn .
Repeat the above operation to ensure that each fi is real-valued.

Now, F(x) and all fi(x)s (or f ′i (x)s) are real-valued, so the constant c(or c′) must
be a real number. That is to say the corollary holds. �

Theorem 2.2 and Corollary 2.2 guarantee the correctness of the following Algo-
rithm 2.1.
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ALGORITHM 2.1. (Square-free Factorization of MTP)

INPUT: An MTP F(x) = f (x,sin(x),cos(x)), f ∈ Ralg[x,y,z] ;
OUTPUT: F(x) = c× F1(x)n1 · · ·Fm(x)nm ; where c ∈ Ralg and Fi(x) is a real-

valued MTP and which has no multiple roots other than 0 for i = 1, · · · ,m , Fi(x) and
Fj(x ) have no common roots other than 0 for i �= j

1) P← f (x, y−y−1

2I , y+y−1

2 ) ;
2) P lst ← f actor(P) = c0ypPr1

1 · · ·Prn
n ; where c0 ∈ C , P1, · · · ,Pn ∈ C[x,y] are

irreducible.

3) T←{PrP |P∈ {P1, · · · ,Pn} and P∼ numer(P)}∪{(P×Q)rP |P,Q∈{P1, · · · ,Pn}
and P∼ numer(Q)} , where rP is the corresponding index of P in P lst . Suppose that
T = {Tr1

1 , . . . ,T rm
m } and Ti = ci× ypi× con(Ti) for i = 1, . . . ,m .

4) F ← 1 and c← c0×∏m
i=1(ci)1/2 ;

5) For i form 1 to nops(T )

5.1) fi← LRhom(Ti× c−1/2
i × y−pi/2)

5.2) If fi is purely imaginary, then fi← fi/I and c← c× Iri

5.3) F ← F× f ri
i ;

6) return c×F .

3. Examples

We present some examples to show the effectiveness of the algorithm in this sec-
tion.

EXAMPLE 1. Decide whether f (x) = 2
3x+ xcos(x)− sin(x) has multiple roots.

Let cos(x) = eIx+e−Ix

2 , sin(x) = eIx−e−Ix

2I , y = eIx , then f = 2
3x+ x(y+y−1)

2 − y−y−1

2I ,

and f actor( f ) = 1
6

4xy+3xy2+3x+3Iy2−3I
y . 4xy + 3xy2 + 3x + 3Iy2− 3I is irreducible,

which implies that f (x) has no multiple roots other than 0.

f (0) = 0 and f ′(0) = 2
3 , i.e. 0 is a simple root of f (x) . We get that f (x) has no

multiple roots.

EXAMPLE 2. Factorize f (x) = 1− sin3(x) .

Let sin(x) = eIx−e−Ix

2I , y = eIx .

Then f (x) = g(y) = 1− 1
8 I(y− 1

y )
3 = − 1

8 I(y4+2Iy3−6y2−2Iy+1)(y−I)2

y3 = c0×P1×P2
2 ,

where c0 =− I
8 , P1 = y4 +2Iy3−6y2−2Iy+1, and P2 = y− I .

We get that y = I is a multiple root of g(x) , and then {2kπ + π
2 ,k∈Z} are multiple

roots of f (x) .
As con(P1) = 1

y4 − 2I
y3 − 6

y2 + 2I
y +1, so P1 = c1y4con(P1) , where c1 = 1.
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Let

g1 = LRhom(P1/(y4)1/2) = LRhom((y4 +2Iy3−6y2−2Iy+1)/y2)

= LRhom(y2 +2Iy−6−2Iy−1+ y−2)

= e2Ix +2eI π
2 eIx−6−2eI π

2 e−Ix + e−2Ix

= cos(2x)+ I sin(2x)+2cos(
π
2

+ x)+2I sin(
π
2

+ x)−6−2cos(
π
2
− x)

−2I sin(
π
2
− x)+ cos(−2x)+ I sin(−2x)

= cos(2x)+ I sin(2x)−2sin(x)+2I cos(x)−6−2sin(x)
−2I cos(x)+ cos(2x)− I sin(2x)

= 2cos(2x)−4sin(x)−6

As con(P2) = 1
y + I , then P2 = c2ycon(P2) , where c2 =−I = e−I π

2 .
Let

g2 = LRhom(P2/(−Iy)
1
2 ) = LRhom((y− I)/(−Iy)

1
2 )

= (eIx− eI π
2 )/e−I π

4 +I x
2

= eI x
2 +I π

4 − eI 3π
4 −I x

2

= cos
( x

2
+

π
4

)
+ I sin

( x
2

+
π
4

)
−
(

cos

(
3π
4
− x

2

)
+ I sin

(
3π
4
− x

2

))

= cos
( x

2
+

π
4

)
+ I sin

( x
2

+
π
4

)
+ cos

( x
2

+
π
4

)
− I sin

( x
2

+
π
4

)
= 2cos

(π
4

+
x
2

)

Let c = c0× c1/2
1 × (c1/2

2 )2 =− I
8(−I) =−1/8.

Then f (x) = c × g1 × g2
2 = − 1

8(2cos(2x) − 4sin(x) − 6) × cos2(π
4 + x

2 ) =
− 1

2(cos(2x)− 2sin(x)− 3)× (cos( x
2 )− sin( x

2 ))2 = − 1
2 f1× f 2

2 , where f1 = cos(2x)−
2sin(x)− 3, f2 = cos( x

2)− sin( x
2 ) , f1 and f2 have no common real roots and both of

them have no multiple roots.

EXAMPLE 3. (Adapted form [17]) Compute the greatest common divisor(GCD)
of a = sin(x)(1+ cos(x)) and b =−cos2(x)+ sin(x)cos(x)+ sin(x)+1.

we find that that a and b have exactly the following factorizations in classical
manner: a = sin(x)(cos(x) + 1) and b = (cos(x) + sin(x) + 1)sin(x) = (−cos(x) +
sin(x)+1)(1+cos(x)) . Now, sin(x) and 1+cos(x) divide both a and b , but sin(x)(1+
cos(x) is not a common divisor of a and b .

By Algorithm 2.1, we get that a = 4sin( x
2 )cos3( x

2 ) and b = 4cos2( x
2 )sin( x

2 )(cos( x
2 )

+ sin( x
2 )) , so, GCD(a,b) = sin( x

2 )cos2( x
2 ) . Here, we omit the details to conclude that

the common divisor sin( x
2 )cos2( x

2) is the greatest.
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Conclusion

In this paper, we present an algorithm to decompose the mixed trigonometric-
polynomials without multiple roots. Furthermore, this algorithm can serve as a funda-
mental method for performing other algebraic operations on trigonometric polynomials,
such as simplification, division, and computing the greatest common divisor.

Disclosure statement. The authors report that there is no potential conflict of in-
terest to declare.
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