
Journal of
Classical

Analysis

Volume 22, Number 1 (2023), 55–66 doi:10.7153/jca-2023-22-05

SOME CESÀRO–TYPE AND LACUNARY STATISTICAL

CONVERGENCE IN A–METRIC SPACES

RAMAZAN SUNAR ∗ AND MUKADDES ARSLAN

Abstract. In this paper, we investigated the concepts of statistical convergence, Cesàro conver-
gence, lacunary convergence, and lacunary statistical convergence in A -metric spaces. We also
discussed the relationships between these concepts.

1. Introduction

In 1906, Fréchet [7] introduced the concept of metric space for the first time. In the
following years, the concept of metric space attracted the attention of many researchers,
and generalization studies of metric spaces were made. For those interested in studying
the generalization of metric spaces, see the research papers in [5, 14, 17, 20, 21, 26].
The idea of A-metric spaces, which resulted from these investigations, was initially
presented by Abbas et al. [2] in 2015 as a generalization of the S-metric space. They
proved some coupled common fixed point theorems for mixed weakly monotone maps
in partially ordered A-metric spaces.

The concept of statistical convergence was introduced in 1951 by Fast [6] and
Steinhaus [27]. Afterwards, Shoenberg [25] introduced it in 1959 and also studied
the concept as a summability method. Since then, the properties of statistical conver-
gence have been studied by different mathematicians and applied in several area (see,
[1, 3, 8, 9, 10, 13, 16, 19, 24, 29].) Connor [4] established a relationship between strong
Cesàro summability and statistical convergence. Later, Fridy-Orhan [11, 12] introduced
the concepts of lacunary statistical convergence and lacunary statistical summability,
as well as explored their relationships with previously presented summability theory
concepts. Recenty, Küçük and Gümüş [18] studied the concept of lacunary statisti-
cal convergence in G-metric spaces. Nuray [22] examined statistical convergence in
2-metric spaces and also examined the relationships between the concepts of Cesàro
convergence, Nθ -convergence, and lacunary statistical convergence. Also Nuray [23]
examined statistical convergence in partial metric spaces. Then, Gülle et al. [15] pre-
sented strong lacunary and strong q -lacunary summability, as well as lacunary statisti-
cal convergence in partial metric spaces. They also discussed the concept of lacunary
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statistical convergence in partial metric space and looked at certain relationships. Sub-
sequently lacunary sequence have been examined in [15]. The papers in [15, 18, 22]
motivated this study.

The primary goal of this paper is to introduce the concepts of Cesàro convergence,
Nθ -convergence, and lacunary statistical convergence in A-metric spaces. We will
also show how these notions are related to the concepts of statistical convergence and
statistical Cauchy sequence defined in [28].

DEFINITION 1. [2] Let X be a nonempty set. A function A : Xn → [0,∞) is called
an A-metric on X if for any xi,a ∈ X , i = 1,2, . . . ,n the following conditions hold;

(A1) A(x1,x2, . . . ,xn−1,xn) � 0,

(A2) A(x1,x2, . . . ,xn−1,xn) = 0 ⇔ x1 = x2 = . . . = xn,

(A3) A(x1,x2, . . . ,xn−1,xn) � ∑n
i=1 A(xi,xi, . . . ,xi︸ ︷︷ ︸

n−1

,a).

Also the pair (X ,A) is called an A-metric space.

EXAMPLE 1. [2] Let X = R . Define a function A : Xn → [0,∞) by

A(x1,x2, . . . ,xn−1,xn) =
n

∑
i=1

∑
i< j

|xi − x j|.

Then (X ,A) is an A-metric.

LEMMA 1. [2] Let (X ,A) be an A-metric space. Then

A(x,x, . . . ,x,y) = A(y,y, . . . ,y,x)

for all x,y ∈ X .

LEMMA 2. [2] Let (X ,A) be an A-metric space. For all x,y ∈ X we get

A(x,x, . . . ,x,y) � (n−1)A(x,x, . . . ,x,z)+A(y,y, . . . ,y,z) and

A(x,x, . . . ,x,z) � (n−1)A(x,x, . . . ,x,y)+A(z,z, . . . ,z,y).

DEFINITION 2. [2] Let (X ,A) be an A-metric space. A subset B of X is said
to be bounded if there exists an r > 0 such that A(y,y, . . . ,y,x) � r for every x,y ∈ X .
Otherwise, X is unbounded.

DEFINITION 3. [2] Let (X ,A) be an A-metric space. A sequence (xk) in X is
said to be convergent to x in X if for every ε > 0 there exists a natural k0 such that
A(xk,xk, . . . ,xk,x) < ε for every k � k0.

DEFINITION 4. [2] Let (X ,A) be an A-metric space. A sequence (xk) in X is
said to be a Cauchy sequence if for each ε > 0, there exists a k0 ∈ N such that for all
k,m � k0 we have A(xk,xk, . . . ,xk,xm) < ε.
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2. Main results

In this section, we present the definitions of Cesàro and statistical convergence,
the statistical Cauchy sequence in A-metric spaces, and the relations between them.
The definitions of statistical convergence and statistical Cauchy sequence in A-metric
spaces were presented in [28].

DEFINITION 5. [28] Let (X ,A) be an A-metric space. A sequence (xk) in X is
said to be statistically convergent to an element x ∈ X if for every ε > 0

lim
t→∞

1
t
|{k � t : A(xk,xk, . . . ,xk,x) � ε}| = 0

or equivalently

lim
t→∞

1
t
|{k � t : A(xk,xk, . . . ,xk,x) < ε}| = 1

and is denoted by xk
AS−→ x. In this case, we can write st− lim

k→∞
A(xk,xk, . . . ,xk,x) = 0.

The set S of statistically convergent sequences is defined as follows;

S =
{
(xk) ⊆ X : lim

t→∞

1
t
|{k � t : A(xk,xk, . . . ,xk,x) � ε}| = 0, for some x

}
.

DEFINITION 6. [28] Let (X ,A) be an A- metric space. A sequence (xk) in X is
said to be a statistically Cauchy sequence if for all x ∈ X and for every ε > 0

lim
t→∞

1
t
|{k,m � t : A(xk,xk, . . . ,xk,xm) � ε}| = 0

or equivalently

lim
t→∞

1
t
|{k,m � t : A(xk,xk, . . . ,xk,xm) < ε}| = 1.

In this case, we can write st− lim
k,m→∞

A(xk,xk, . . . ,xk,xm) = 0.

DEFINITION 7. Let (X ,A) be an A-metric space. A sequence (xk) in X is said
to be Cesàro convergent to an element x ∈ X if

lim
t→∞

1
t

t

∑
k=1

A(xk,xk, . . . ,xk,x) = 0

and is denoted by xk
Aσ1−→ x.

The set σA
1 of Cesàro convergent sequences is defined, as follows;

σA
1 =

{
(xk) ⊆ X : lim

t→∞

1
t

t

∑
k=1

A(xk,xk, . . . ,xk,x) = 0, for some x
}

.
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THEOREM 1. Let (X ,A) be an A-metric space and (xk) be a sequence in X .
Then

(i) If (xk) is Cesàro convergent to x then (xk) is statistically convergent to x.

(ii) If (X ,A) is bounded and (xk) is statistically convergent to x, then (xk) Cesàro
convergent to x.

Proof. (i) Let (X ,A) be an A-metric space and (xk) be Cesàro convergent to x.
For ε > 0, we have

1
t

t

∑
k=1

A(xk,xk, . . . ,xk,x) =
1
t

t

∑
k=1

A(xk,xk ,...,xk,x)�ε

A(xk,xk, . . . ,xk,x)

+
1
t

t

∑
k=1

A(xk,xk,...,xk ,x)<ε

A(xk,xk, . . . ,xk,x)

� 1
t

t

∑
k=1

A(xk,xk,...,xk,x)�ε

A(xk,xk, . . . ,xk,x)

� 1
t
|{1 � k � t : A(xk,xk, . . . ,xk,x) � ε}|ε.

Hence we get

lim
t→∞

1
t
|{1 � k � t : A(xk,xk, . . . ,xk,x) � ε}| = 0

that is, (xk) is statistically convergent to x.

(ii) Suppose that (xk) is bounded and statistically convergent to x . Since (X ,A)
is bounded, we say A(xk,xk, . . . ,xk,x) � K for all k. For ε > 0, we have

1
t

t

∑
k=1

A(xk,xk, . . . ,xk,x) =
1
t

t

∑
k=1

A(xk,xk,...,xk,x)�ε

A(xk,xk, . . . ,xk,x)

+
1
t

t

∑
k=1

A(xk,xk,...,xk ,x)<ε

A(xk,xk, . . . ,xk,x)

� 1
t
K

t

∑
k=1

A(xk,xk,...,xk,x)�ε

1

+
1
t

t

∑
k=1

A(xk,xk,...,xk ,x)<ε

A(xk,xk, . . . ,xk,x)

� K
1
t
|{1 � k � t : A(xk,xk, . . . ,xk,x) � εk}|+ 1

t

t

∑
k=1

ε.
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Hence, we get

lim
t→∞

1
t

t

∑
k=1

A(xk,xk, . . . ,xk,x) = 0,

that is, (xk) is Cesàro convergent to x. �

First, we recall the consept of lacunary sequences. A lacunary sequence [9] is an
increasing integer sequence θ = (pr) such that p0 = 0 and hr = pr − pr−1 → ∞ as
r → ∞. The intervals (pr−1, pr] determined by θ = (pr) will be denoted by Ir.

DEFINITION 8. Let (X ,A) be an A-metric space and θ = (pr) be any lacunary
sequence. A sequence (xk) in X is said to be Nθ -convergent to an element x ∈ X if for
every ε > 0,

lim
r→∞

1
hr

∑
k∈Ir

A(xk,xk, . . . ,xk,x) = 0

and is denoted by xk
ANθ−→ x. The set of Nθ -convergent sequences will be denoted by

Nθ .

DEFINITION 9. Let (X ,A) be an A-metric space and θ = (pr) be any lacunary
sequence. A sequence (xk) in X is said to be lacunary statistically convergent to an
element x ∈ X if for every ε > 0,

lim
r→∞

1
hr
|{k ∈ Ir : A(xk,xk, . . . ,xk,x) � ε}| = 0

or equivalently

lim
r→∞

1
hr
|{k ∈ Ir : A(xk,xk, . . . ,xk,x) < ε}| = 1

and is denoted by xk
ASθ−→ x.

The set Sθ of lacunary statistically convergent sequences is defined, as follows;

Sθ = {(xk) ⊆ X : lim
r→∞

1
hr
{k ∈ Ir : A(xk,xk, . . . ,xk,x) � ε} = 0, for some x}.

DEFINITION 10. Let (X ,A) be an A-metric space and θ = (pr) be any lacunary
sequence. A sequence (xk) in X is said to be lacunary statistically Cauchy sequence if
there is a subsequence (xk′r

) of (xk) such that k
′
r ∈ Ir for each r, limr xk′r

= x , and for
each ε > 0

lim
r→∞

1
hr
|{k ∈ Ir : A(xk,xk, . . . ,xk,xk′r

) � ε}| = 0.
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THEOREM 2. Let (xk) be a sequence in an A-metric space (X ,A) and θ = (pr)
be any lacunary sequence. The sequence (xk) is lacunary statistically convergent if
and only if (xk) is a lacunary statistically Cauchy sequence.

Proof. Let xk
ASθ−→ x, and write Kj =

{
k ∈ N : A(xk,xk, . . . ,xk,x) <

1
j

}
for each

j ∈ N. Hence, for each j, Kj ⊇ Kj+1 and

|Kj ∩ Ir|
hr

= 1 as r → ∞. (1)

Choose m1 such that r � m1 implies
|K1 ∩ Ir|

hr
> 0, that is, K1 ∩ Ir 
= /0. Next choose

m2 > m1 so that r � m2 implies K2 ∩ Ir 
= /0. Then for each r satisfying m1 � r < m2 ,
choose k

′
r ∈ Ir such that k

′
r ∈ Ir ∩K1, that is, A(xk′r

,xk′r
, . . . ,xk′r

,x) < 1. In general,
choose mp+1 > mp such that r > mp+1 implies Ir∩Kp+1 
= /0. Then for all r satisfying
mp � r < mp+1 choose k

′
r ∈ Ir ∩Kp, that is,

A(xk′r
, . . . ,xk′r

,x) <
1
p
. (2)

Hence, we get k
′
r ∈ Ir for every r , and (2) implies that lim

r→∞
A(xk′r

,xk′r
, . . . ,xk′r

,x) = 0.

Furthermore, from Lemma 2, we have for every ε > 0,

1
hr

∣∣∣{k ∈ Ir : A(xk,xk, . . . ,xk,xk′r
) � ε

}∣∣∣� (n−1)
hr

∣∣∣{k ∈ Ir : A(xk,xk, . . . ,xk,x) � ε
n

}∣∣∣
+

1
hr

∣∣∣{k ∈ Ir : A(xk′r
,xk′r

, . . . ,xk′r
,x) � ε

n

}∣∣∣.
Using the assumptions that xk

ASθ−→ x, and lim
r→∞

A(xk′r
,xk′r

, . . . ,xk′r
,x) = 0, (xk) is a lacu-

nary statistically Cauchy sequence.
Conversely, suppose that (xk) is a lacunary statistically Cauchy sequence. For

every ε > 0,∣∣∣{k ∈ Ir : A(xk,xk, . . . ,xk,x) � ε
}∣∣∣� (n−1)

∣∣∣{k ∈ Ir : A(xk,xk, . . . ,xk,xk′r
) � ε

n

}∣∣∣
+
∣∣∣{k ∈ Ir : A(xk′r

,xk′r
, . . . ,xk′r

,x) � ε
n

}∣∣∣,
from which it follows that xk

ASθ−→ x. �

THEOREM 3. Let (xk) be a sequence in an A-metric space (X ,A) and θ = (pr)

be any lacunary sequence. If xk
ANθ−→ x then xk

ASθ−→ x .
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Proof. Let ε > 0 and xk
ANθ−→ x . Then, we get

lim
r→∞

1
hr

∑
k∈Ir

A(xk,xk, . . . ,xk,x) = 0.

Also we can write

1
hr

∑
k∈Ir

A(xk,xk, . . . ,xk,x) � 1
hr

∑
k∈Ir

A(xk,xk,...,xk ,x)�ε

A(xk,xk, . . . ,xk,x)

� ε.
1
hr
|{k ∈ Ir : A(xk,xk, . . . ,xk,x) � ε}|

which yields the result. �

THEOREM 4. Let (xk) be a sequence in an A-metric space (X ,A) and θ = (pr)

be any lacunary sequence and A be a bounded function in X . If xk
ASθ−→ x , then xk

ANθ−→ x .

Proof. Let ε > 0, A is bounded and (xk) is Sθ -convergent to x. Since A is
bounded, there exists a K > 0 such that A(xk,xk, . . . ,xk,x) � K for all k ∈ N. Thus,
for every ε > 0

1
hr

∑
k∈Ir

A(xk,xk, . . . ,xk,x) =
1
hr

∑
k∈Ir

A(xk,xk ,...,xk,x)�ε

A(xk,xk, . . . ,xk,x)

+
1
hr

∑
k∈Ir

A(xk,xk ,...,xk,x)<ε

A(xk,xk, . . . ,xk,x)

� K.
1
hr
|{k ∈ Ir : A(xk,xk, . . . ,xk,x) � ε}|+ ε

considering that (xk) is Sθ -convergent, we get the result. �

COROLLARY 1. Let (xk) be a sequence in an A-metric space (X ,A) and θ =

(pr) be any lacunary sequence and A be a bounded function in X . Then xk
ASθ−→ x if

and only if xk
ANθ−→ x.

Proof. This is an immediate consequence of Theorem 3 and Theorem 4. �

The following two lemmas and the next theorem gives the relation between Cesàro
convergence and Nθ -convergence in A-metric spaces.

LEMMA 3. Let (xk) be a sequence in an A-metric space (X ,A) and θ = (pr) be

any lacunary sequence. If liminfr
pr

pr−1
> 1, then σA

1 ⊆ Nθ .
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Proof. Let liminfr
pr

pr−1
> 1. Then there exists a δ > 0 such that 1+ δ � pr

pr−1
for all r � 1. Suppose that (xk) ∈ σA

1 , hence we can write

1
hr

∑
k∈Ir

A(xk,xk, . . . ,xk,x) =
1
hr

pr

∑
k=1

A(xk,xk, . . . ,xk,x)

− 1
hr

pr−1

∑
k=1

A(xk,xk, . . . ,xk,x)

=
pr

hr

(
1
pr

pr

∑
k=1

A(xk,xk, . . . ,xk,x)

)

− pr−1

hr

(
1

pr−1

pr−1

∑
k=1

A(xk,xk, . . . ,xk,x)

)
.

(3)

Since hr = pr − pr−1 , we have

pr

hr
� 1+ δ

δ
and

pr−1

hr
� 1

δ
. (4)

By (3) and (4), we get

1
hr

∑
k∈Ir

A(xk,xk, . . . ,xk,x) � 1+ δ
δ

(
1
pr

pr

∑
k=1

A(xk,xk, . . . ,xk,x)

)

− 1
δ

(
1

pr−1

pr−1

∑
k=1

A(xk,xk, . . . ,xk,x)

)
.

(5)

Since xk
Aσ1−→ x

1
pr

pr

∑
k=1

A(xk,xk, . . . ,xk,x) → 0 and
1

pr−1

pr−1

∑
k=1

A(xk,xk, . . . ,xk,x) → 0,

then by (5) for r → ∞ we get that (xk) ∈ Nθ . �

LEMMA 4. Let (xk) be a sequence in an A-metric space (X ,A) and θ = (pr) be

any lacunary sequence. If limsupr
pr

pr−1
< ∞ then Nθ ⊆ σA

1 .

Proof. Let limsupr
pr

pr−1
< ∞. Then there exists K′ > 0 such that

pr

pr−1
< K′ for

all r � 1. Let (xk) ∈ Nθ and ε > 0. Then we can find R > 0 and K > 0 such that

supi�R τi < ε and τi < K for all i = 1,2, . . . where τi =
1
hr

∑
k∈Ir

A(xk,xk, . . . ,xk,x). Let
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we choose an integer m such that pr−1 < m � pr for r > R. So, we get

1
m

m

∑
k=1

A(xk,xk, . . . ,xk,x) � 1
pr−1

pr

∑
k=1

A(xk,xk, . . . ,xk,x)

=
1

pr−1
∑
I1

A(xk,xk, . . . ,xk,x)+
1

pr−1
∑
I2

A(xk,xk, . . . ,xk,x)

+ . . .+
1

pr−1
∑
Ir−1

A(xk,xk, . . . ,xk,x)

+
1

pr−1
∑
Ir

A(xk,xk, . . . ,xk,x)

=
p1

pr−1
τ1 +

p2− p1

pr−1
τ2 + . . .+

pR − pR−1

pr−1
τR

+
pR+1− pR

pr−1
τR+1 + . . .+

pr − pr−1

pr−1
τr

�
(

sup
1�i�R

τi

)
pR

pr−1
+
(

sup
i�R+1

τi

)
pr − pR

pr−1

< K
pR

pr−1
+ εK′.

Consequencely for r → ∞ , we get that (xk) ∈ σA
1 . �

Combining Lemma 3 and Lemma 4 we have following theorem.

THEOREM 5. Let (xk) be a sequence in an A-metric space (X ,A) and θ = (pr)
be any lacunary sequence. If 1 < limr inf

pr

pr−1
� limr sup

pr

pr−1
< ∞. Then Nθ = σA

1 .

Following theorems state the relationships between statistical convergence and la-
cunary statistical convergence in A-metric spaces.

THEOREM 6. Let (xk) be a sequence in an A-metric space (X ,A) and θ = (pr)
be any lacunary sequence. Then the following statements hold:

(i) If liminfr
pr

pr−1
> 1 then S ⊆ Sθ .

(ii) If limsupr
pr

pr−1
< ∞ then Sθ ⊆ S.

(iii) If 1 < limr inf
pr

pr−1
� limr sup

pr

pr−1
< ∞ then Sθ = S.

Proof. We only prove (i). The others can be proved in a similar way used in
proving Lemma 4 and Theorem 5.
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Let liminfr
pr

pr−1
> 1. Then there exists a δ > 0 such that

pr

pr−1
� 1 + δ for

sufficiently large r , which implies that

hr

pr
� δ

1+ δ
.

Let (xk) ∈ S and ε > 0, we can write

1
pr
|{k � pr : A(xk,xk, . . . ,xk,x) � ε}| � 1

pr
|{k ∈ Ir : A(xk,xk, . . . ,xk,x) � ε}|

� δ
1+ δ

( 1
hr
|{k ∈ Ir : A(xk,xk, . . . ,xk,x) � ε}|

)
.

Considering that xk
AS−→ x then, we get xk

ASθ−→ x. Hence, (xk) ∈ Sθ . �

THEOREM 7. Let (xk) be a sequence in an A-metric space (X ,A) and θ = (pr)
be any lacunary sequence. If (xk) ∈ S ⊆ Sθ , then Sθ − lim(xk) = S− lim(xk).

Proof. Assume that S− lim(xk) = x and Sθ − lim(xk) = y and x 
= y. Then

A(xk,xk, . . . ,xk,x) 
= 0.

From (A3), Lemma 1 and Lemma 2, we can write

A(x,x, . . . ,x,y) � (n−1)A(xk,xk, . . . ,xk,x)+A(y,y, . . . ,y,xk) (6)

we take ε <
1
n
A(x,x, . . . ,x,y) from inequality (6), we have

lim
t→∞

1
t
|{k � t : A(xk,xk, . . . ,xk,y) � ε}| = 1.

Consider the i th term of the statistical limit expression

lim
t→∞

1
t
|{k � t : A(xk,xk, . . . ,xk,y) � ε}| :

1
ki

∣∣∣{k ∈
i⋃

r=1

Ir : A(xk,xk, . . . ,xk,y) � ε
}∣∣∣ (7)

=
1
ki

i

∑
r=1

|{k ∈ Ir : A(xk,xk, . . . ,xk,y) � ε}| (8)

=
1

∑i
r=1 hr

i

∑
r=1

hr
1
hr
|{k ∈ Ir : A(xk,xk, . . . ,xk,y) � ε}| → 0. (9)

Since θ = (pr) is a lacunary sequence, (7) is a regular weighted mean transformation
of the sequence converging to zero, so that itself converges to zero as i→ ∞. Also since
this is a subsequence of{1

t
|{k � t : A(xk,xk, . . . ,xk,y) � ε}|

}
t
,
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it follows that

lim
t→∞

{1
t
|{k � t : A(xk,xk, . . . ,xk,y) � ε}|

}
t

= 1,

and this is a contradiction. In this case we can not take x 
= y. �
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