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COMPLETE ASYMPTOTIC EXPANSION OF

THE COMPOUND MEANS WITH APPLICATIONS

TOMISLAV BURIĆ ∗ AND LENKA MIHOKOVIĆ

Abstract. We present a complete asymptotic expansion of the compound mean M⊗N of two
symmetric homogeneous means M and N and derive an efficient algorithm for computing coef-
ficients in this expansion. This new approach is applied to obtain a simple formula for computing
coefficients in the expansion of the arithmetic-geometric mean. We also give some other appli-
cations to the compounds of the classical means.

1. Introduction and motivation

Arithmetic-geometric mean is a famous mean obtained by a limiting iterative pro-
cess of arithmetic and geometric means in a following way:

A0 = s, G0 = t, s,t ∈ R+,

An =
An−1 +Gn−1

2
, Gn =

√
An−1Gn−1, n � 1.

Both of these sequences converge to a same limit which is called arithmetic-
geometric mean of the numbers s and t . This mean was studied by Gauss a long time
ago, but it is still an interesting research subject of many mathematicians. Because of
its fast convergence properties, this method is used to construct efficient algorithms for
computing classical constants, elementary transcedental funtions and elliptic integrals
([2, 3]).

This process can be generalized to arbitrary bivariate means M and N . By bivari-
ate mean we consider a symmetrical function F : R+×R+ →R+ such that min(s,t) �
F(s,t) � max(s, t). Then, we define an iterative algorithm:

M0(s, t) = s, N0(s,t) = t,

Mn(s, t) = M(Mn−1,Nn−1), Nn(s,t) = N(Mn−1,Nn−1), n � 1.
(1.1)

If both of these sequences converge to the same limit, this common value is called
the compound mean of s and t and is denoted by M ⊗N(s,t) . More details about
this concept, existence and some properties of compound means can be found in [4,
Ch.VI.3] and a comprehensive study on arithmetic-geometric mean and other bivariate
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means can be found in [16]. Recently, compound means were used in root finding
method [15] and for solving automorphism equations for random means [14].

The problem with compound means is that they rarely have closed explicit forms
and there is no an easy way to study them. Therefore it is useful to find another way of
representing and analysing these means.

The asymptotic expansion of the mean M(s,t) is a representation of mean in a
form

M(x+ s,x+ t) = x
∞

∑
n=0

cn(s,t)x−n, x → ∞, (1.2)

where cn(s, t) are polynomials of the degree n in variables s and t . If we consider ho-
mogeneous means, that is M(λ s,λ t) = λM(s,t) , then cn(s,t) are homogeneous poly-
nomials. The technique of developing asymptotic expansions of means is presented in
a series of recently published papers [9, 10, 11]. This new method is successfully used
in the comparison of classical means and establishing various relations between means,
see cited papers for details. Also note that for expansions we use the equality sign =
instead of ∼ since they are usually convergent for x large enough.

In [5], authors derived the asymptotic expansion of the arithmetic-geometric mean
and studied convergence and stationary properties of the coefficients in this expansion.
In [1, 6], authors studied and presented the asymptotic expansion of the compound of
the two power means and most recently, in [7], this was generalized to the compound
of arbitrary two means. Authors presented an algorithm for computing coefficients in
asymptotic expansions of composition of two means and they proved fast convergence
and stationary properties of this iterative process. In a recent paper [13], author also
studied the asymptotic behaviour of the compound means and gave some related nu-
merical results.

First, we will present an efficient recursive formula for calculating coefficients
in the asymptotic expansion of arbitrary compound mean which was not observed by
authors in [7]. Then, we will derive a simple algorithm for computing coefficients in
the expansion of the arithmetic-geometric mean and connect it with elliptic integral.
Finally, we will also give some other examples of the compounds of some classical
means.

In the sequel, the following fundamental lemma for transformation of power of
asymptotic series will be crucial. The coefficients of the new series depend on the
power r and initial sequence a = (an)n∈N0 , it will be denoted here as P[n,r,a] , see [12]
for details.

LEMMA 1.1. Let a0 �= 0 and g(x) be a function with asymptotic expansion (as
x → ∞):

g(x) ∼
∞

∑
n=0

anx
−n.

Then for all real r it holds

[g(x)]r ∼
∞

∑
n=0

P[n,r,a]x−n,
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where P[0,r,a] = ar
0 and

P[n,r,a] =
1

na0

n

∑
k=1

[k(1+ r)−n]akP[n− k,r,a], n � 1.

2. Asymptotic expansion of the compound mean

It is shown in [9, 10] that simpler form of the coefficients in the asymptotic expan-
sion of the mean (1.2) is obtained through variables α and β where

s = α −β , t = α + β ,

and if α = 0, we will have

M(x−β ,x+ β ) = x
∞

∑
n=0

cn(−β ,β )x−n.

Since cn are homogeneous and symmetric polynomials of degree n , it follows

M(x−β ,x+ β ) = x
∞

∑
n=0

γnβ 2nx−2n, (2.1)

for some constants (γn)n∈N0 . The asymptotic expansion (2.1), which can be seen as the
asymptotic expansion in one variable since

M(x−β ,x+ β ) = xM
(
1− β

x ,1+ β
x

)
,

is sufficient to obtain the complete two variable asymptotic expansion (1.2) when α �=
0.

LEMMA 2.1. Let M be symmetric homogeneous means with asymptotic expan-
sion (2.1). Then the coefficients cm(s,t) , t �= ±s, in the asymptotic expansion (1.2) are
given by the formula

cm(s, t) = (−1)m
(

s+ t
2

)m �m
2 	

∑
n=0

(
m−2
m−2n

)
γn

(
t − s
t + s

)2n

, m � 0.

Proof. By simple computation and rearrangement of sums we obtain the follow-
ing:

M(x+ s,x+ t) = M

(
x+

(s+ t)
2

− (t − s)
2

,x+
(s+ t)

2
+

(t − s)
2

)

= M (x+ α −β ,x+ α + β ) =
∞

∑
n=0

γnβ 2n(x+ α)−2n+1
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=
∞

∑
m=0

[
(−1)mαm

�m
2 	

∑
n=0

(
m−2
m−2n

)
γnβ 2nα−2n

]
x−m+1

=
∞

∑
m=0

[
(−1)m

(
s+ t
2

)m �m
2 	

∑
n=0

(
m−2
m−2n

)
γn

(
t− s
t + s

)2n
]

x−m+1. �

Let M and N be two arbitrary symmetric and homogeneous means with the
asymptotic expansions

M(x− t,x+ t) =
∞

∑
k=0

akt
2kx−2k+1, (2.2)

and

N(x− t,x+ t) =
∞

∑
k=0

bkt
2kx−2k+1. (2.3)

In [7], authors obtained the asymptotic expansion of the composition of means
H = F(M,N) , where F is arbitrary mean with coefficients ( fn)n∈N0 . They proved that
coefficients (hn)n∈N0 can be calculated by recursive algorithm

hn =
� n

2z 	
∑
k=0

γk

n−2zk

∑
j=0

P[ j,2k,d]P[n−2zk− j,−2k+1,c], (2.4)

where sequences c = (cn)n∈N0 and d = (dn)n∈N0 are defined by

cn =
1
2
(an +bn), dn =

1
2
(bn+z−an+z). (2.5)

Here z denotes the smallest number m � 0 such that am−bm �= 0, but notice that z � 1
since it holds a0 = b0 = 1.

We will now show that this algorithm can be also applied for calculating the com-
pound of means M⊗N . We state the following theorem.

THEOREM 2.2. Let M and N be symmetric homogeneous means whose asymp-
totic expansions are given by (2.2) and (2.3), and let their compound M⊗N have the
asymptotic expansion

M⊗N(x− t,x+ t) =
∞

∑
n=0

γnt
2nx−2n+1. (2.6)

Then the coefficients (γn) satisfy the recursive relation

γ0 = 1,

γn =
� n

2z 	
∑
k=0

γk

n−2zk

∑
j=0

P[ j,2k,d]P[n−2zk− j,−2k+1,c], n � 1, (2.7)

where the sequences c = (cn)n∈N0 and d = (dn)n∈N0 are defined by (2.5).
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Proof. By definition of the compound mean and its construction, it can easily be
seen that the compound mean M⊗N satisfies relation

M⊗N(M,N) = M⊗N, (2.8)

which is also known as the Gauss functional equation. Now we can apply result (2.4) for
the composition of the means. By comparing the asymptotic expansions of the function
on the right and left-hand side in (2.8), if follows that coefficients γn in the asymptotic
expansion (2.6) are given by recursive relation (2.7) which proves the theorem. �

Let us show the first few coefficients in the expansion of the arbitrary compound
mean. For a z = 1, which is usually the case for most of the means, we obtain the
following coefficients:

γ0 = 1,

γ1 =
1
2
(a1 +b1),

γ2 =
1
2
(a2 +b2)+

1
8
(a1 −b1)2(a1 +b1),

γ3 =
1
2
(a3 +b3)− 1

16
(a1−b1)(a2

1 −b2
1−4(a2−b2))(a1 +b1),

...

Regarding the general choice of variables, from asymptotic expansion (2.6) we can
easily derive expansion of the type (1.2) by applying Lemma 2.1, where coefficients
(γn) are defined in (2.7).

COROLLARY 2.3. The asymptotic expansion of a compound mean M⊗N reads
as:

M⊗N(x+ s,x+ t)

= x+
s+ t
2

+
(s− t)2

8
(a1 +b1)x−1− (s− t)2(s+ t)

16
(a1 +b1)x−2

+
(s− t)2

128

(
(s2 + t2)

(
a3

1 +b3
1−a1b1(a1 +b1)+4(a1 +b1)+4(a2 +b2)

)
−2st

(
a3

1 +b3
1−a1b1(a1 +b1)−4(a1 +b1)+4(a2 +b2)

))
x−3 +O(x−4).

From the proof of the Lemma 2.1 we can also deduce the more convenient expan-
sion through the variables α and β :

M⊗N(x+ α −β ,x+ α + β ) = x+ α +
β 2

2
(a1 +b1)x−1− αβ 2

2
(a1 +b1)x−2

+ β 2
(

β 2

2
(a2 +b2)+

α2

2
(a1 +b1)+

β 2

8
(a1 +b1)(a1 −b1)2

)
x−3 +O(x−4).
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3. Asymptotic expansion of the arithmetic-geometric mean and related means

Asymptotic expansion of the arithmetic-geometric mean was derived in [5]. Au-
thors obtained the following:

A⊗G(x− t,x+ t)= x− 1
4
t2x−1− 5

64
t4x−3− 11

256
t6x−5− 469

16384
t8x−7 − . . .

Coefficients in this expansion were obtained by a tedious iterative procedure until their
stationarity was achieved and there was not any direct algorithm or formula describing
the sequence of coefficients in this expansion.

Applying Theorem 2.2, we can now obtain these coefficients directly by algo-
rithm (2.7). This is much easier than before, but still in this algorithm we have to
apply Lemma 1.1 twice. We will now show that coefficients in the expansion of the
arithmetic-geometric mean satisfy simple recursive formula and can be calculated very
efficiently.

First let us recall asymptotic expansions of the arithmetic and geometric mean
derived in [10]:

A(x− t,x+ t) = x,

G(x− t,x+ t) = x− 1
2
t2x−1− 1

8
t4x−3− 1

16
t6x−5− . . . .

Following remark will be useful in the sequel.

REMARK 3.1. The asymptotic expansion of the geometric mean

G(x− t,x+ t) =
∞

∑
n=0

gnt
2nx−2n+1

has the following coefficients

g0 = 1, gn = − 1
22n−1Cn−1, n � 1, (3.1)

where Cn denotes the n -th Catalan number. Namely, in the paper [10], authors showed
that gn = − (2n−3)!!

2nn! , for n � 1 (note that (−1)!! = 1). By simple computation this can

be written through Catalan numbers Cn = 1
n+1

(2n
n

)
and the (3.1) holds.

By using properties of the Catalan numbers, we will derive following algorithm
for calculating coefficients in the expansion of A⊗G .

THEOREM 3.2. The coefficients (γm) in the asymptotic expansion of compound
mean A⊗G are given by

γ0 = 1,

γm =
1

22m

�m
2 	

∑
n=0

γn

m−2n

∑
k=0

m− k
m+ k

(
k+m

m

)(
m− k−2
m− k−2n

)
, m � 1. (3.2)
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Proof. If we directly apply Theorem 2.2 and calculate coefficients by (2.7), note
that sequences (cn) and (dn) coincide in most terms. Therefore it is better to get one
step back and group these coefficients in a more efficient way.

Proof of (2.4) is based on the following technique:

F(M,N) =
N +M

2
+ f1

(
N−M

2

)2(N +M
2

)−1
+ f2

(
N−M

2

)4(N +M
2

)−3

+ . . .

where the composition F(M,N) was written as the asymptotic expansion in terms of
the asymptotic sequence

Fn =
(

N−M
2

)2n(N +M
2

)−2n+1

+O(x−2n(z+1)+1), n � 1.

For details see [7].
In our case, functional equation (2.8) reads as

A⊗G(x− t,x+ t)= A⊗G(G(x− t,x+ t),A(x− t,x+ t)).

On the left-hand side, we have the asymptotic expansion of the A⊗G and on the right-
hand side we have same expansion but with the variables 1

2 (A−G) and 1
2(A + G) .

Hence, we have the following calculations:

∞

∑
n=0

cnt
2nx−2n+1

=
∞

∑
n=0

cn

(
−1

2

∞

∑
k=1

gkt
2kx−2k+1

)2n(
x+

1
2

∞

∑
k=1

gkt
2kx−2k+1

)−2n+1

=
∞

∑
n=0

cn

(
1
4
t2x−1

∞

∑
k=0

Ck
t2k

22k
x−2k

)2n

×
∞

∑
j=0

(−2n+1
j

)
x−2n+1− j

(
−1

4
t2x−1

∞

∑
k=0

Ck
t2k

22k x−2k

) j

=
∞

∑
n=0

cn

∞

∑
j=0

(−2n+1
j

)
x−2n+1− j

(
1
4
t2x−1

)2n+ j

(−1) j

(
∞

∑
k=0

Ck
t2k

22k x−2k

)2n+ j

=
∞

∑
n=0

cn

∞

∑
j=0

(−2n+1
j

)(
1
4
t2x−2

)2n+ j

x(−1) j
∞

∑
k=0

C(k,2n+ j)
t2k

22k x−2k,

where C(k, j) equals δ0k for j = 0 and it denotes k -fold Catalan product

C(k, j) = ∑
i1+···+i j=k

in�0

Ci1 · · ·Cij
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for j �= 0. After substitution t2
4 x−2 = y−1 we obtain

∞

∑
n=0

cn22ny−n =
∞

∑
n=0

cn

∞

∑
j=0

(−2n+1
j

)
(−1) jy−2n− j

∞

∑
k=0

C(k,2n+ j)y−k,

and further

∞

∑
m=0

cm22my−m =
∞

∑
m=0

�m
2 	

∑
n=0

cn

m−2n

∑
k=0

( −2n+1
−2n+m− k

)
(−1)m−kC(k,m− k)y−m

=
∞

∑
m=0

�m
2 	

∑
n=0

cn

m−2n

∑
k=0

(
m− k−2
m− k−2n

)
C(k,m− k)y−m.

Catalan’s k -fold convolution formula (see [8]) states that

C(k, j) =
j

2k+ j

(
2k+ j
k+ j

)
.

Now it follows that c0 = 1 and for m � 1 we have

cm =
1

22m

�m
2 	

∑
n=0

cn

m−2n

∑
k=0

(
m− k−2
m− k−2n

)
C(k,m− k)

=
1

22m

�m
2 	

∑
n=0

cn

m−2n

∑
k=0

(
m− k−2
m− k−2n

)
m− k
m+ k

(
k+m

m

)
,

which completes the proof. �

REMARK 3.3. It is well-known that arithmetic-geometric mean has an integral
representation in terms of the elliptic integral of the first kind, see [16]. Namely, it
holds

A⊗G(s,t) =

(
2
π

∫ π/2

0

1√
s2 cos2 θ + t2 sin2 θ

dθ

)−1

.

Therefore, we can apply Lemma 1.1 for r = −1 to the coefficients of the A⊗G and
easily obtain asymptotic expansion of the elliptic integral, which has already been done
in [5].

But the complete elliptic integral of the first kind is usually defined through one
parameter m ∈ [0,1] in a way

K(m) =
∫ π

2

0

dθ√
1−msin2 θ

and it has a famous series representation:

K(m) =
π
2

∞

∑
k=0

[
(2k−1)!!

(2k)!!

]2

mk =
π
2

(
1+

1
4
m+

9
64

m2 +
25
256

m3 + . . .
)
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Since corresponding relation with arithmetic-geometric mean is:

A⊗G(1−√
m,1+

√
m) =

π
2

(
K(m)

)−1
,

and if we apply asymptotic expansion of A⊗G with x = 1 and t =
√

m , we have

∞

∑
k=0

γk mk =

(
∞

∑
k=0

[
(2k−1)!!

(2k)!!

]2

mk

)−1

. (3.3)

Therefore, we can obtain coefficients (γn) directly from the known series of the elliptic
integral together with the Lemma 1.1 for r = −1. By this discussion, we have proved
the following result.

The coefficients (γn) in the asymptotic expansion of compound mean A⊗G are
given by

γ0 = 1, γn = −
n

∑
k=1

[
(2k−1)!!

(2k)!!

]2

γn−k, n � 1. (3.4)

REMARK 3.4. In fact, by Proposition 3.1, it follows that (3.4) can be written
through the Catalan numbers and the coefficients (gn) of the geometric mean:

γn = −
n

∑
k=1

[(2k−1)gn]
2 γn−k, n � 1.

While both algorithms (3.2) and (3.4) define the same sequence, recursion (3.4)
has simpler coefficients, but recursion (3.2) uses half less terms of (γn) in its calcula-
tion.

We can also obtain the asymptotic expansion of A⊗G in two variables by applying
Corollary 2.3. Here are the first few coefficients:

A⊗G(x+ s,x+ t) = x+
s+ t
2

− (s− t)2

16
x−1 +

(s− t)2(s+ t)
32

x−2

− (s− t)2

1024

(
21(s2 + t2)+22st

)
x−3 +O(x−4),

or in the more convenient form through the variables α and β :

A⊗G(x+ α −β ,x+ α + β ) = x+ α − β 2

4
x−1 +

αβ 2

4
x−2

− β 2

64

(
16α2 +5β 2)x−3 +O(x−4).

Next, we will derive the coefficients in the compound of the arithmetic and har-
monic mean.
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THEOREM 3.5. The coefficients (hn) in the asymptotic expansion of A⊗H are
given by

h0 = 1, hn =
1
2n

� n
2	

∑
k=0

(
n−2
n−2k

)
hk, n � 1. (3.5)

Proof. We will directly apply Theorem 2.2. Since the coefficients of the arithmetic
and harmonic mean are given by

a0 = 1, an = 0, n � 1,

b0 = 1, b1 = −1, bn = 0, n � 2,

it follows z = 1 and

c0 = 1, c1 = −1
2
, cn = 0, n � 2,

d0 =
1
2
, dn = 0, n � 1.

Now we have

P[ j,2k,d] =

{
1

22k , j = 0,

0 , j �= 0,

P[m,−2k+1,c] =
(−2k+1

m

)
(−1)m

2m ,

and by (2.7) it follows

n−2zk

∑
j=0

P[ j,2k,d]P[n−2zk− j,−2k+1,c]

= P[0,2k,d]P[n−2k,−2k+1,c]

=
1

22k

(−2k+1
n−2k

)
(−1)n

2n−2k =
1
2n

(
n−2
n−2k

)
,

which proves the theorem. �

REMARK 3.6. Since A⊗H is equal to the geometric mean, that is hn = gn , it
follows that gn = − Cn−1

22n−1 satisfy relation (3.5) which is a valid identity for the Catalan
numbers.

Applying Theorem 2.2 we can also obtain the compoundof the geometric-harmonic
mean, but we will show here that we can obtain direct connection with the asymptotic
expansion of the arithmetic-geometric mean and derive simple formula without any
recursion.
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THEOREM 3.7. The coefficients ( fn) in the asymptotic expansion of G⊗H are
given by

f0 = 1,

fn = −(4n−1)
[
(2n−3)!!

(2n)!!

]2

, n � 1.

Proof. Note that if we start iterative procedure for arithmetic-geometricmean with
A0 = 1

s , B0 = 1
t , we have An = 1

Hn
and Bn = 1

Gn
, where Hn and Gn are the n -th terms

in the iterative procedure with means G and H for initial points s and t , that is

G⊗H(s,t) = (A⊗G( 1
s ,

1
t ))

−1 = st(A⊗G(s,t))−1. (3.6)

Therefore it holds

G⊗H(x− t,x+ t)= (x2 − t2)(A⊗G(x− t,x+ t))−1.

Now applying (3.4), more precisely (3.3) for the inverse of A⊗G , we have

G⊗H(x− t,x+ t)

= x
∞

∑
n=0

[
(2n−1)!!

(2n)!!

]2

t2nx−2n− t2x−1
∞

∑
n=0

[
(2n−1)!!

(2n)!!

]2

t2nx−2n

= x+
∞

∑
n=1

([
(2n−1)!!

(2n)!!

]2

−
[
(2n−3)!!
(2n−2)!!

]2
)

t2nx−2n+1

= x+
∞

∑
n=1

[
(2n−3)!!

(2n)!!

]2

[(2n−1)2−4n2]t2nx−2n+1,

and the proof follows. �

Same as before, we can obtain the asymptotic expansion of G⊗H in two variables
by applying Corollary 2.3:

G⊗H(x+ s,x+ t)= x+
s+ t
2

− 3(s− t)2

16
x−1 +

3(s− t)2(s+ t)
64

x−2

− (s− t)2

1024

(
55(s2 + t2)+82st

)
x−3 +O(x−4),

or in simpler form through the variables α and β :

G⊗H(x+ α −β ,x+ α + β ) = x+ α − 3β 2

4
x−1 +

3αβ 2

4
x−2

− β 2

64

(
48α2 +7β 2)x−3 +O(x−4).
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REMARK 3.8. Connection (3.6) between G⊗H and A⊗G from the previous
theorem can be generalized in the following way. Suppose we have the coefficients
(Mn) and (Nn) in the iterative procedure of two compoundable means M and N as
defined in (1.1). If exists a suitable function, i.e. a continuous function f : R

+ → R
+

such that for all n ∈ N0 it holds

An+1 =
1
2
( f (Mn)+ f (Nn)) = f (Mn+1) = f (M(Mn,Nn)),

Bn+1 =
√

f (Mn) f (Nn) = f (Nn+1) = f (N(Mn,Nn)),

then we have
M⊗N(s,t) = f−1(A⊗G( f (s), f (t)))

For example, for general power mean Mr compounded with the geometric mean G the
function f (x) = xr and it holds:

Mr ⊗G(s,t) = (A⊗G(sr,tr))
1
r .

This principle may be useful for obtaining asymptotic expansions of such compounds.
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[5] T. BURIĆ AND N. ELEZOVIĆ, Asymptotic expansion of the arithmetic-geometric mean and related
inequalities, J. Math. Inequal. 9 (4) (2015), 1181–1190, dx.doi.org/10.7153/jmi-09-90 .
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