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DISCRETE AND CONTINUOUS WELCH BOUNDS

FOR BANACH SPACES WITH APPLICATIONS

K. MAHESH KRISHNA

Abstract. In 1974, Welch derived lower bounds (known as Welch bounds) on the maximum
of modulus of inner products of distinct elements in a finite collection of unit vectors in a finite
dimensional Hilbert space. Recently, continuous Welch bounds are derived for continuous Bessel
family of unit vectors indexed over measure spaces in a finite dimensional Hilbert space. In
this paper, we derive both discrete and continuous Welch bounds for finite dimensional Banach
spaces which contain Welch bounds for finite dimensional Hilbert space case as a particular case.
We formulate several problems for future research.

1. Introduction

Given a collection {τ j}n
j=1 of unit vectors in Cd , using Cauchy-Schwarz inequal-

ity we get

max
1� j,k�n, j �=k

|〈τ j,τk〉|2 � 1. (1)

The natural question which comes immediately is whether there is any lower bound for
the quantity max in (1). In his celebrated paper [66], L. Welch proved the following
result in 1974.

THEOREM 1. [66] (Welch bounds) Let n � d . If {τ j}n
j=1 is any collection of

unit vectors in Cd , then

∑
1� j,k�n

|〈τ j,τk〉|2m � n2(d+m−1
m

) , ∀m ∈ N.

Furthermore,

max
1� j,k�n, j �=k

|〈τ j,τk〉|2m � 1
n−1

[
n(d+m−1
m

) −1

]
, ∀m ∈ N. (2)
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REMARK 1. For m = 1, (2) gives

max
1� j,k�n, j �=k

|〈τ j,τk〉|2 � n−d
d(n−1)

. (3)

Inequality (3) is called first order Welch bound. For m � 2, family of inequalities in (2)
is called higher order Welch bounds.

There are several theoretical and practical applications of Theorem 1 such as in
the study of root-mean-square (RMS) absolute cross relation of unit vectors [52], frame
potential [4,6,10], correlations [51], codebooks [20], numerical search algorithms [67],
quantum measurements [53], coding and communications [55, 62], code division mul-
tiple access (CDMA) systems [37,38], wireless systems [48], compressed sensing [59],
‘game of Sloanes’ [32], equiangular tight frames [56], etc.

Following are some of the important connections of Welch bounds to other active
areas of research.

(I) Spherical t -designs have direct connection with Welch bounds (see Chapter 6
in [65]). Even though the existence of spherical t -designs is known (see [54]),
their exact number is not known. Recently, in a ground breaking work, their
asymptotic bounds are derived (see [7]).

(II) Welch bounds are very useful in the study of equiangular lines (see Chapter 12
in [65]). Existence of equiangular lines having a prescribed angle in a given
dimension is not known (see [57]). An asymptotic bound is recently derived for
equiangular lines (see [33]).

(III) Benedetto and Fickus (see [4]) were able to characterize finite unit norm frames
for finite dimensional Hilbert spaces using frame potential which has connection
with Welch bounds (see Chapter 6 in [65]). This characterization later led to the
development of so called Fundamental Inequality for Finite Frames (see [10]).

(IV) In the context of compressive sensing, Welch bounds play an important role in
the construction of matrices with small coherence which uses the inner product
(see Chapter 5 in [24]).

In 2003, Waldron [63] derived Welch bounds for vectors which need not have unit
norm. In 2016, Datta [18] derived Theorem 1 for fusion frames. In 2017, Waldron [64]
improved Theorem 1 for real Hilbert spaces. In 2020, Christensen, Datta and Kim [13]
derived first order Welch bound for dual pairs of frames. It is in the paper [17] where
the following generalization of Theorem 1 has been done for continuous collections.

THEOREM 2. [17] Let CPn−1 be the complex projective space and μ be a nor-
malized measure on CP

n−1 . If {τα}α∈CPn−1 is a continuous frame for a d -dimensional
subspace H of a Hilbert space H0 , then∫

CPn−1×CPn−1
|〈τα ,τβ 〉|2m d(μ × μ)(α,β ) � 1(d+m−1

m

) , ∀m ∈ N.
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Theorem 2 has been recently generalized in full generality for finite-dimensional
Hilbert spaces and σ -finite measure spaces by the author in [40].

THEOREM 3. [40] Let (Ω,μ) be a measure space and {τα}α∈Ω be a normalized
continuous Bessel family for H of dimension d . If the diagonal Δ := {(α,α) : α ∈ Ω}
is measurable in the measure space Ω×Ω , then

∫
Ω×Ω

|〈τα ,τβ 〉|2m d(μ × μ)(α,β ) � μ(Ω)2(d+m−1
m

) , ∀m ∈ N.

Furthermore, we have the higher order continuous Welch bounds

sup
α ,β∈Ω,α �=β

|〈τα ,τβ 〉|2m � 1
(μ × μ)((Ω×Ω)\Δ)

[
μ(Ω)2(d+m−1

m

) − (μ × μ)(Δ)

]
,

∀m � 2

and the first order continuous Welch bound

sup
α ,β∈Ω,α �=β

|〈τα ,τβ 〉|2 � 1
(μ × μ)((Ω×Ω)\Δ)

[
μ(Ω)2

d
− (μ × μ)(Δ)

]
.

Recently, Theorem 1 and Theorem 3 have been proved in the context of Hilbert
C*-modules by the author in [39].

In this paper we derive both discrete and continuous Welch bounds for Banach
spaces. We pose several open problems for further research. Following are important
motivations for this paper.

(I) Starting from the theory of Schauder bases, biorthogonal systems are studied in
Banach spaces but not systems which are not biorthogonal (see [29]).

(II) Recently, Chávez-Domı́nguez, Freeman and Kornelson constructed a very inter-
esting collection of vectors and functionals on a finite dimensional Banach space
and showed that a new way of thinking is required even in finite dimensional
Banach spaces than finite dimensional Hilbert spaces (see Proposition 2.5 and its
proof in [12]).

2. Discrete Welch bounds for Banach spaces

Throughout the paper, X denotes a finite dimensional Banach space and X ∗
denotes its dual. IX denotes the identity operator on X . We use K to denote R or
C .

DEFINITION 1. Let X be a finite dimensional Banach space. Given a collection
{τ j}n

j=1 in X and a collection { f j}n
j=1 in X ∗ ,
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(i) The frame operator is defined as

S f ,τ : X � x 	→ S f ,τx :=
n

∑
j=1

f j(x)τ j ∈ X .

(ii) The analysis operator is defined as

θ f : X � x 	→ θ f x := ( f j(x))n
j=1 ∈ K

n.

(iii) The synthesis operator is defined as

θτ : K
n � (a j)n

j=1 	→ θτ (a j)n
j=1 :=

n

∑
j=1

a jτ j ∈ X .

Using direct computation we see that the frame operator factorizes as S f ,τ = θτ θ f .

DEFINITION 2. [25, 60] Let {τ j}n
j=1 be a collection in X and { f j}n

j=1 be a
collection in X ∗. The pair ({ f j}n

j=1,{τ j}n
j=1) is said to be an approximate Schauder

frame (ASF) for X if the map

S f ,τ : X � x 	→ S f ,τx :=
n

∑
j=1

f j(x)τ j ∈ X .

is invertible. If S f ,τ = λ IX , for some non zero scalar λ , then ({ f j}n
j=1,{τ j}n

j=1) is
called a tight ASF for X .

Following theorem says that we can recover the trace of frame operator using
ASFs.

THEOREM 4. Given a collection {τ j}n
j=1 in X and a collection { f j}n

j=1 in X ∗ ,
we have

Tra(S f ,τ) =
n

∑
j=1

f j(τ j),

Tra(S2
f ,τ) =

n

∑
j=1

n

∑
k=1

f j(τk) fk(τ j).

Proof. From the expression of S f ,τ and from the definition of trace of operator in
Banach space (see [34]) we get

Tra(S f ,τ) =
n

∑
j=1

f j(τ j).
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Now

S2
f ,τx =

n

∑
j=1

f j(x)(S f ,τ τ j), ∀x ∈ X .

Again using the definition of trace we get

Tra(S2
f ,τ) =

n

∑
j=1

f j(S f ,τ τ j) =
n

∑
j=1

f j

(
n

∑
k=1

fk(τ j)τk

)
=

n

∑
j=1

n

∑
k=1

f j(τk) fk(τ j). �

Now we can derive the first important result of the paper.

THEOREM 5. (First order Welch bound for Banach spaces) Let {τ j}n
j=1 be a

collection in a finite dimensional Banach space X of dimension d and { f j}n
j=1 be a

collection in X ∗. Let n � d . If the operator S f ,τ : X � x 	→ S f ,τx := ∑n
j=1 f j(x)τ j ∈X

is diagonalizable and its eigenvalues are all non negative, then

∑
1� j,k�n

f j(τk) fk(τ j) � 1
d

(
n

∑
j=1

f j(τ j)

)2

(4)

and

max
1� j,k�n, j �=k

| f j(τk)| �

√√√√ 1
d

(
∑n

j=1 f j(τ j)
)2−∑n

j=1 | f j(τ j)|2
n2−n

.

Furthermore, equality holds in (4) if and only if ({ f j}n
j=1,{τ j}n

j=1) is tight ASF for
X . In particular, if f j(τ j) = 1 for all 1 � j � n, then

max
1� j,k�n, j �=k

| f j(τk) fk(τ j)| � n−d
d(n−1)

and we have first order (discrete) Welch bound for Banach spaces

max
1� j,k�n, j �=k

| f j(τk)| �
√

n−d
d(n−1)

.

Proof. Let λ1, . . . ,λd be eigenvalues of S f ,τ . Then λ1, . . . ,λd � 0 and using the
diagonalizability of S f ,τ we get

(
n

∑
j=1

f j(τ j)

)2

= (Tra(S f ,τ))2 =

(
d

∑
k=1

λk

)2

� d
d

∑
k=1

λ 2
k

= d Tra(S2
f ,τ) = d

n

∑
j=1

n

∑
k=1

f j(τk) fk(τ j). (5)
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For the second inequality,

1
d

(
n

∑
j=1

f j(τ j)

)2

�
n

∑
j=1

n

∑
k=1

f j(τk) fk(τ j) =
n

∑
j=1

f j(τ j)2 +
n

∑
j,k=1, j �=k

f j(τk) fk(τ j)

�
n

∑
j=1

| f j(τ j)|2 +
n

∑
j,k=1, j �=k

| f j(τk) fk(τ j)|

�
n

∑
j=1

| f j(τ j)|2 +(n2−n) max
1� j,k�n, j �=k

| f j(τk) fk(τ j)|

which gives

max
1� j,k�n, j �=k

| f j(τk) fk(τ j)| �
1
d

(
∑n

j=1 f j(τ j)
)2−∑n

j=1 | f j(τ j)|2
n2−n

. (6)

Now let 1 � j,k � n, j �= k be fixed. Then

| f j(τk) fk(τ j)| � max
1� j,k�n, j �=k

| f j(τk)| max
1� j,k�n, j �=k

| fk(τ j)|

= max
1� j,k�n, j �=k

| f j(τk)| max
1� j,k�n, j �=k

| f j(τk)|

=
(

max
1� j,k�n, j �=k

| f j(τk)|
)2

.

Therefore

max
1� j,k�n, j �=k

| f j(τk) fk(τ j)| �
(

max
1� j,k�n, j �=k

| f j(τk)|
)2

.

Using (6) we now get

max
1� j,k�n, j �=k

| f j(τk)| �

√√√√ 1
d

(
∑n

j=1 f j(τ j)
)2−∑n

j=1 | f j(τ j)|2
n2−n

. (7)

Whenever f j(τ j) = 1 for all 1 � j � n , Inequality (6) gives

max
1� j,k�n, j �=k

| f j(τk) fk(τ j)| �
n2

d −n

n2−n
=

n−d
d(n−1)

and (7) gives

max
1� j,k�n, j �=k

| f j(τk)| �
√

n−d
d(n−1)

.
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Equality holds in Inequality (5) if and only if

(
d

∑
k=1

λk

)2

=

(
d

∑
k=1

1

)(
d

∑
k=1

λ 2
k

)

if and only if

λk = a, for some a > 0,∀1 � k � n

if and only if S f ,τ is a tight ASF for X . �
Given a finite collection {τ j}n

j=1 in a finite dimensional Hilbert space H , the
operator

Sτ : H � h 	→ Sτh :=
n

∑
j=1

〈h,τ j〉τ j ∈ H

is positive definite and hence diagonalizable and all eigenvalues are non negative. But
we cannot say the same for S f ,τ . Even in finite dimensions, frame operator Sτ , being
a sum of rank one positive operators, is positive so that diagonalization is ensured. In
Banach spaces (even finite dimensional) the frame operator S f ,τ need not be a sum of
positive operators. Hence S f ,τ may not be diagonalizable. Thus even finite dimen-
sional Banach space frame theory differs from (finite dimensional) Hilbert space frame
theory. This is also the reason for additional assumptions in the statement of Theorem
5. We next derive higher order Welch bounds for Banach spaces. For this we need the
notion of symmetric tensors. For this we need the concept of vector space of symmet-
ric tensors. Given a vector space V of dimension d , let V ⊗m be the vector space of
m-tensors. A vector

n

∑
j=1

x j,1⊗·· ·⊗ x j,m ∈ V ⊗m

is said to be symmetric if for every bijection σ : {1, . . . ,m}→ {1, . . . ,m} , we have

n

∑
j=1

x j,σ(1)⊗·· ·⊗ x j,σ(m) =
n

∑
j=1

x j,1⊗·· ·⊗ x j,m.

Set of all symmetric m-tensors will form a vector space, denoted by Symm(V ) . It is
known that (see [5, 14])

dim(Symm(V )) =
(

d +m−1
m

)
, ∀m ∈ N.

THEOREM 6. (Welch bounds for Banach spaces) Let {τ j}n
j=1 be a collection

in a finite dimensional Banach space X of dimension d and { f j}n
j=1 be a collec-

tion in X ∗. Let n � d and m ∈ N . If the operator S f ,τ : Symm(X ) � x 	→ S f ,τx :=
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∑n
j=1 f⊗m

j (x)τ⊗m
j ∈ Symm(X ) is diagonalizable and its eigenvalues are all non nega-

tive, then

∑
1� j,k�n

f j(τk)m fk(τ j)m � 1(d+m−1
m

)
(

n

∑
j=1

f j(τ j)m

)2

(8)

and

max
1� j,k�n, j �=k

| f j(τk)|m �

√√√√ 1
(d+m−1

m )

(
∑n

j=1 f j(τ j)m
)2 −∑n

j=1 | f j(τ j)|2m

n2−n
.

Furthermore, equality holds in (8) if and only if ({ f j}n
j=1,{τ j}n

j=1) is a tight ASF for
Symm(X ) . In particular, if f j(τ j) = 1 for all 1 � j � n, then

max
1� j,k�n, j �=k

| f j(τk) fk(τ j)|m �
n− (d+m−1

m

)
(d+m−1

m

)
(n−1)

==
1

n−1

[
n(d+m−1
m

) −1

]

and we have (discrete) Welch bounds for Banach spaces

max
1� j,k�n, j �=k

| f j(τk)|m �

√√√√ n− (d+m−1
m

)
(d+m−1

m

)
(n−1)

=

√√√√ 1
n−1

[
n(d+m−1
m

) −1

]
. (9)

Proof. We will do the proof of Theorem 5 for the space Symm(X ) (we refer to
[50] for the tensor product of Banach spaces). Let λ1, . . . ,λdim(Symm(X )) be eigenvalues
of S f ,τ . Then

(
n

∑
j=1

f j(τ j)m

)2

=

(
n

∑
j=1

f⊗m
j (τ⊗m

j )

)2

= (Tra(S f ,τ))2 =

(
dim(Symm(X ))

∑
l=1

λl

)2

� dim(Symm(X ))
dim(Symm(X ))

∑
l=1

λ 2
l =

(
d +m−1

m

)
Tra(S2

f ,τ)

=
(

d +m−1
m

) n

∑
j=1

n

∑
l=1

f⊗m
j (τ⊗m

l ) f⊗m
l (τ⊗m

j )

=
(

d +m−1
m

) n

∑
j=1

n

∑
k=1

f j(τk)m fk(τ j)m
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and

1(d+m−1
m

)
(

n

∑
j=1

f j(τ j)m

)2

= ∑
1� j,k�n

f j(τk)m fk(τ j)m

= ∑
1� j,k�n, j �=k

f j(τk)m fk(τ j)m +
n

∑
j=1

f j(τ j)2m

� ∑
1� j,k�n, j �=k

| f j(τk) fk(τ j)|m +
n

∑
j=1

| f j(τ j)|2m

� (n2−n) max
1� j,k�n, j �=k

| f j(τk) fk(τ j)|m +
n

∑
j=1

| f j(τ j)|2m.

Other parts are similar to the corresponding part in the proof of Theorem 5. �

REMARK 2. For m � 2, we call family of inequalities in (9) as (discrete) higher
order Welch bounds.

REMARK 3. Note that Theorem 1 is a corollary of Theorem 6. In fact, Let {τ j}n
j=1

be a finite collection in a finite dimensional Hilbert space H of dimension d . Define
f j : H � h 	→ 〈h,τ j〉 ∈ K , ∀1 � j � n . Let m ∈ N . Then the operator

Sτ : Symm(H ) � h 	→
n

∑
j=1

f⊗m
j (h)τ⊗m

j =
n

∑
j=1

〈h,τ⊗m
j 〉τ⊗m

j ∈ Symm(H )

is positive definite and we can apply Theorem 6.

Theorem 6 gives Welch bound for all natural numbers. One can now ask whether
we can replace naturals by positive reals. Following results show that we can do this.
For normalized tight frames for Hilbert spaces, these results are derived in [22] and [28].

THEOREM 7. Let {τ j}n
j=1 be a collection in a finite dimensional Banach space

X of dimension d and { f j}n
j=1 be a collection in X ∗. Let n � d . If the operator

S f ,τ : X � x 	→ S f ,τx := ∑n
j=1 f j(x)τ j ∈ X is diagonalizable and its eigenvalues are

all non negative, then

Tra(Sr
f ,τ) �

(
∑n

j=1 f j(τ j)
)r

dr−1 , ∀r ∈ [1,∞)

and

Tra(Sr
f ,τ) �

(
∑n

j=1 f j(τ j)
)r

dr−1 , ∀r ∈ (0,1).
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Proof. Let λ1, . . . ,λd be eigenvalues of S f ,τ . Let r ∈ [1,∞) . Using Jensen’s in-
equality, we have

(
∑n

j=1 f j(τ j)
d

)r

=
(

Tra(S f ,τ)
d

)r

=

(
∑d

k=1 λk

d

)r

� ∑d
k=1 λ r

k

d
=

1
d

Tra(Sr
f ,τ)

which gives the first part. Second part again follows from Jensen’s inequality. �

REMARK 4. If f j(τ j) = 1 for all 1 � j � n , then Theorem 7 says that

Tra(Sr
f ,τ) � nr

dr−1 , ∀r ∈ [1,∞)

and

Tra(Sr
f ,τ) � nr

dr−1 , ∀r ∈ (0,1).

THEOREM 8. Let {τ j}n
j=1 be a collection in a finite dimensional Banach space

X of dimension d and { f j}n
j=1 be a collection in X ∗. Let 2 < p < ∞ . If the operator

S f ,τ : X � x 	→ S f ,τx := ∑n
j=1 f j(x)τ j ∈ X is diagonalizable and its eigenvalues are

all non negative, then

∑
1� j,k�n

| f j(τk) fk(τ j)|
p
2 � n(n−1)

(
n−d

d(n−1)

) p
2

+n.

Proof. Define r := 2p/(p− 2) and q be the conjugate index of p/2. Then q =
r/2. Using Theorem 5 and Holder’s inequality, we have

n2

d
−n � ∑

1� j,k�n, j �=k

| f j(τk) fk(τ j)|

�
(

∑
1� j,k�n, j �=k

| f j(τk) fk(τ j)|
p
2

) 2
p
(

∑
1� j,k�n, j �=k

1

) 1
q

=

(
∑

1� j,k�n, j �=k

| f j(τk) fk(τ j)|
p
2

) 2
p

(n2−n)
1
q

=

(
∑

1� j,k�n, j �=k

| f j(τk) fk(τ j)|
p
2

) 2
p

(n2−n)
2
r

=

(
∑

1� j,k�n, j �=k

| f j(τk) fk(τ j)|
p
2

) 2
p

(n2−n)
p−2
p
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which gives

(
n2

d
−n

) p
2

�
(

∑
1� j,k�n, j �=k

| f j(τk) fk(τ j)|
p
2

)
(n2 −n)

p
2 −1.

Therefore

n(n−1)
(

n−d
d(n−1)

) p
2

+n =
1

(n2−n)
p
2−1

(
n2

d
−n

) p
2

+n

� ∑
1� j,k�n, j �=k

| f j(τk) fk(τ j)|
p
2 +

n

∑
j=1

| f j(τ j) f j(τ j)|
p
2

= ∑
1� j,k�n

| f j(τk) fk(τ j)|
p
2 . �

Some of the proofs of Theorem 6 (for instance see [49]) use the Gram matrix and
Frobenius norm/Hilbert-Schmidt norm. We now give Welch bound for Banach spaces
using matrices. First we need a definition.

DEFINITION 3. Let {τ j}n
j=1 be a collection in a Banach space X and { f j}n

j=1
be a collection in X ∗. We define the Gram matrix Gf ,τ of ({ f j}n

j=1,{τ j}n
j=1) as

Gf ,τ := [ f j(τk)]1� j,k�n =

⎛
⎜⎜⎜⎝

f1(τ1) f1(τ2) · · · f1(τn)
f2(τ1) f2(τ2) · · · f2(τn)

...
...

...
fn(τ1) fn(τ2) · · · fn(τn)

⎞
⎟⎟⎟⎠

n×n

∈ Mn(K).

In terms of analysis and synthesis operators, Gf ,τ = θ f θτ . We observe that Defi-
nition 3 reduces to the definition of Gram matrix in Hilbert spaces. Indeed, let {τ j}n

j=1
be a collection in a Hilbert space H . Now define f j(h) := 〈h,τ j〉 for all h ∈ H , for
all 1 � j � n .

THEOREM 9. Let {τ j}n
j=1 be a collection in a Banach space X and { f j}n

j=1 be
a collection in X ∗. If the Gram matrix Gf ,τ = [ f j(τk)]1� j,k�n is diagonalizable and
its eigenvalues are all non negative, then

∑
1� j,k�n

f j(τk) fk(τ j) � 1
rank(Gf ,τ)

(
n

∑
j=1

f j(τ j)

)2

and

max
1� j,k�n, j �=k

| f j(τk)| �

√√√√ 1
rank(Gf ,τ )

(
∑n

j=1 f j(τ j)
)2−∑n

j=1 | f j(τ j)|2
n2−n

.
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In particular, if f j(τ j) = 1 for all 1 � j � n, then

max
1� j,k�n, j �=k

| f j(τk) fk(τ j)| � n− rank(Gf ,τ)
rank(Gf ,τ)(n−1)

and

max
1� j,k�n, j �=k

| f j(τk)| �
√

n− rank(Gf ,τ)
rank(Gf ,τ)(n−1)

.

Proof. Let λ1, . . . ,λ(rankGf ,τ ) be the eigenvalues of Gf ,τ . Then

(
n

∑
j=1

f j(τ j)

)2

= (Trace(Gf ,τ))2 =

(
rank(Gf ,τ )

∑
k=1

λk

)2

� rank(Gf ,τ )
rank(Gf ,τ )

∑
k=1

λ 2
k

= rank(Gf ,τ)Trace(G2
f ,τ) = rank(Gf ,τ)

n

∑
j=1

n

∑
k=1

f j(τk) fk(τ j)

� rank(Gf ,τ)

(
∑

1� j,k�n, j �=k

| f j(τk) fk(τ j)|+
n

∑
j=1

| f j(τ j)|2
)

� rank(Gf ,τ)

(
(n2 −n) max

1� j,k�n, j �=k
| f j(τk) fk(τ j)|+

n

∑
j=1

| f j(τ j)|2
)

. �

Given a finite collection {τ j}n
j=1 in a Hilbert space H , the Gram matrix

[〈τk,τ j〉]1� j,k�n ∈ Mn(K)

is always positive definite and hence diagonalizable and all eigenvalues are non nega-
tive. For Banach spaces, the Gram matrix Gf ,τ need not be positive definite. Therefore
we imposed conditions on Gf ,τ in the statement of Theorem 9. In the following re-
sult, given a matrix G , G◦m

denotes the Hadamard/Schur/pointwise product of G with
itself, m times [31].

THEOREM 10. Let {τ j}n
j=1 be a collection in a Banach space X and { f j}n

j=1

be a collection in X ∗. Let m ∈ N . If the Hadamard product G◦m

f ,τ is diagonalizable
and its eigenvalues are all non negative, then

∑
1� j,k�n

f j(τk)m fk(τ j)m =
n

∑
j=1

n

∑
k=1

f j(τk)m fk(τ j)m � 1
rank(G◦m

f ,τ)

(
n

∑
j=1

f j(τ j)m

)2

.

and

max
1� j,k�n, j �=k

| f j(τk) fk(τ j)|m �
1

rank(G◦m
f ,τ )

(
∑n

j=1 f j(τ j)m
)2−∑n

j=1 | f j(τ j)|2m

n2−n
,
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max
1� j,k�n, j �=k

| f j(τk)|m �

√√√√ 1
rank(G◦m

f ,τ )

(
∑n

j=1 f j(τ j)m
)2 −∑n

j=1 | f j(τ j)|2m

n2−n
.

In particular, if f j(τ j) = 1 for all 1 � j � n, then

max
1� j,k�n, j �=k

| f j(τk) fk(τ j)|m �
n− rank(G◦m

f ,τ)

rank(G◦m

f ,τ)(n−1)

and

max
1� j,k�n, j �=k

| f j(τk)|m �

√√√√ n− rank(G◦m

f ,τ)

rank(G◦m

f ,τ)(n−1)
.

Proof. We note that

G◦m

f ,τ = [( f j(τk))m]1� j,k�n = [( f⊗m
j (τ⊗m

k ))]1� j,k�n.

Now the proof is similar to the proof of Theorem 9. �

3. Applications of discrete Welch bounds for Banach spaces

We begin by defining the RMS of vectors and functionals in Banach spaces.

DEFINITION 4. Let {τ j}n
j=1 be a collection in a finite dimensional Banach space

X of dimension d and { f j}n
j=1 be a collection in X ∗ satisfying f j(τ j) = 1 for all

1 � j � n . Assume that the frame operator S f ,τ is diagonalizable and its eigenvalues
are all non negative. We define the root-mean-square (RMS) absolute cross relation of
({ f j}n

j=1,{τ j}n
j=1) as

IRMS({ f j}n
j=1,{τ j}n

j=1) :=

(
1

n(n−1) ∑
1� j,k�n, j �=k

f j(τk) fk(τ j)

) 1
2

.

Theorem 5 gives the following result.

THEOREM 11. Let {τ j}n
j=1 and { f j}n

j=1 be as in Definition 4. Then

max
1� j,k�n, j �=k

| f j(τk)| � IRMS({ f j}n
j=1,{τ j}n

j=1) �
(

n−d
d(n−1)

) 1
2

.

Here is another notion similar to that of frame potential in Hilbert spaces.
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DEFINITION 5. Let {τ j}n
j=1 be a collection in a finite dimensional Banach space

X of dimension d and { f j}n
j=1 be a collection in X ∗ satisfying f j(τ j) = 1 for all

1 � j � n . Assume that the frame operator S f ,τ is diagonalizable and its eigenvalues
are all non negative. We define the pseudo frame potential of ({ f j}n

j=1,{τ j}n
j=1) as

PFP({ f j}n
j=1,{τ j}n

j=1) :=
n

∑
j=1

n

∑
k=1

f j(τk) fk(τ j).

Note that we defined the notion pseudo frame potential and not frame potential.
The reason is that frame potential for Banach spaces cannot be defined in the way in
Definition 5. One has to go to the theory of p-summing operators (see [19,61]) to define
frame potential in Banach spaces, see [12]. Theorem 5 again gives the following result.

THEOREM 12. Let {τ j}n
j=1 and { f j}n

j=1 be as in Definition 5. Then

n2 max
1� j,k�n

| f j(τk)|2 � PFP({ f j}n
j=1,{τ j}n

j=1) � n2

d
. (10)

We next introduce the notions of Grassmannian frames and equiangular frames for
Banach spaces. First we need a definition.

DEFINITION 6. Let ({ f j}n
j=1,{τ j}n

j=1) be an ASF for X satisfying f j(τ j) = 1,
∀1 � j � n . Assume that the frame operator S f ,τ is diagonalizable and its eigenvalues
are all non negative. We define the frame correlation of ({ f j}n

j=1,{τ j}n
j=1) as

M ({ f j}n
j=1,{τ j}n

j=1) := max
1� j,k�n, j �=k

| f j(τk)|.

DEFINITION 7. Let ({ f j}n
j=1,{τ j}n

j=1) be an ASF for X satisfying ‖ f j‖ = 1,
‖τ j‖ = 1, f j(τ j) = 1, ∀1 � j � n . Assume that the frame operator S f ,τ is diagonal-
izable and its eigenvalues are all non negative. ASF ({ f j}n

j=1,{τ j}n
j=1) is said to be a

Grassmannian frame for X if

M ({ f j}n
j=1,{τ j}n

j=1) = inf

{
M ({g j}n

j=1,{ω j}n
j=1) : ({g j}n

j=1,{ω j}n
j=1) is an ASF for

X satisfying ‖g j‖ = 1,‖ω j‖ = 1,g j(ω j) = 1,∀1 � j � n

and the frame operator Sg,ω is diagonalizable and its

eigenvalues are all non negative

}
.

THEOREM 13. Grassmannian frames exist in every dimension for every Banach
space.
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Proof. Our arguments are motivated by the arguments given in [3] for Hilbert
spaces. We give arguments only for real Banach spaces and complex case follows by
considering real and imaginary parts (of the linear functionals). Define

Sn
X := {(x1, . . . ,xn) : x1, . . . ,xn ∈ X ,‖x1‖ = · · · = ‖xn‖ = 1},

Sn
X ∗ := {(φ1, . . . ,φn) : φ1, . . . ,φn ∈ X ∗,‖φ1‖ = · · · = ‖φn‖ = 1},

W := {((x1, . . . ,xn),(φ1, . . . ,φn)) : ((x1, . . . ,xn),(φ1, . . . ,φn)) ∈ Sn
X ×Sn

X ∗ ,

φ j(x j) = 1,∀1 � j � n,({φ j}n
j=1,{x j}n

j=1) is an ASF for X and the frame

operator Sφ ,xis diagonalizable and its eigenvalues are all non negative},
Φ : W → [0,1], Φ((x1, . . . ,xn),(φ1, . . . ,φn)) := M ({φ j}n

j=1,{x j}n
j=1).

We re-norm X n×X ∗n by

‖((x1, . . . ,xn),(φ1, . . . ,φn))‖ :=
n

∑
j=1

(‖x j‖+‖φ j‖)

and consider W in this norm. Then W is compact. We show that Φ is continuous on
W which proves the theorem. In fact, in this situation, Φ being continuous on a com-
pact set attains its infimum. But then, from the definition of Grassmannian frame, every
element in W attaining infimum is a Grassmannian frame. Let ({τ j}n

j=1,{ f j}n
j=1)

∈ W . Let ε > 0 be given. Define

R := 1+ max
1� j,k�n

{‖τ j‖,‖ fk‖}

and let

0 < δ <

√
1+ ε −1

R
.

Now for any given ({ω j}n
j=1,{g j}n

j=1) ∈ W , with

‖((ω1, . . . ,ωn),(g1, . . . ,gn))− ((τ1, . . . ,τn),( f1, . . . , fn))‖ < δ ,

if we define h j := g j − f j,ρ j := ω j − τ j,∀1 � j � n, then ‖h j‖ < δ ,‖ρ j‖ < δ . Then

|Φ((ω1, . . . ,ωn),(g1, . . . ,gn))−Φ((τ1, . . . ,τn),( f1, . . . , fn))|

=
∣∣∣∣ max
1� j,k�n, j �=k

|g j(ωk)|− max
1� j,k�n, j �=k

| f j(τk)|
∣∣∣∣� max

1� j,k�n, j �=k

∣∣|g j(ωk)|− | f j(τk)|
∣∣

� max
1� j,k�n, j �=k

∣∣g j(ωk)− f j(τk)
∣∣= max

1� j,k�n, j �=k

∣∣( f j +h j)(τk + ρk)− f j(τk)
∣∣

= max
1� j,k�n, j �=k

∣∣ f j(τk)+ f j(ρk)+h j(τk)+h j(ρk)− f j(τk)
∣∣

� max
1� j,k�n, j �=k

| f j(ρk)|+ max
1� j,k�n, j �=k

|h j(τk)|+ max
1� j,k�n, j �=k

|h j(ρk)|

� max
1� j,k�n, j �=k

‖ f j‖‖ρk‖+ max
1� j,k�n, j �=k

‖h j‖‖τk‖+ max
1� j,k�n, j �=k

‖h j‖‖ρk‖

� R ·δ + δ ·R+ δ 2 � R ·δ + δ ·R+Rδ 2 < ε. �
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DEFINITION 8. Let ({ f j}n
j=1,{τ j}n

j=1) be an ASF for X satisfying f j(τ j) = 1,
∀1 � j � n . Assume that the frame operator S f ,τ is diagonalizable and its eigenvalues
are all non negative. ASF ({ f j}n

j=1,{τ j}n
j=1) is said to be γ -equiangular if there exists

γ � 0 such that

| f j(τk)|2 = γ, ∀1 � j,k � n, j �= k.

Following theorem again follows from Theorem 5.

THEOREM 14. Let ({ f j}n
j=1,{τ j}n

j=1) be as in Definition 7. Then

M ({ f j}n
j=1,{τ j}n

j=1) �
√

n−d
d(n−1)

=: γ. (11)

If the ASF is γ -equiangular, then we have equality in (11).

4. Continuous Welch bounds for Banach spaces

Given a finite collection in a Banach space and in its dual, three maps defined in
Definition 1 are well-defined. We cannot do this for collections indexed with a measure
space and hence certain conditions have to be imposed on the collections to get well-
defined bounded linear operators. First we recall the notion of weak integral also known
as Pettis integrals [58]. Let (Ω,μ) be a measure space and X be a Banach space. A
function f : Ω → X is said to be weak integrable or Pettis integrable if following
conditions hold.

(i) For every φ ∈ X ∗ , the map φ f : Ω → K is measurable and φ f ∈ L 1(Ω,μ) .

(ii) For every measurable subset E ∈ Ω , there exists an (unique) element xE ∈ X
such that

φ(xE) =
∫

E
φ( f (α))dμ(α), ∀φ ∈ X ∗.

The element xE ∈ X is denoted by
∫
E f (α)dμ(α) . With this notion, we have

φ
(∫

E
f (α)dμ(α)

)
=
∫

E
φ( f (α))dμ(α), ∀φ ∈ X ∗,∀E ∈ Ω.

Following definition is motivated by the notion of continuous frames for Hilbert spaces
[1, 35], continuous framings for Banach spaces [42], continuous Schauder frames for
Banach spaces [23] and approximate Schauder frames for Banach spaces [25, 60]. We
wish to say that there is a long way which led to the notion of approximate Schauder
frames. First, the Han-Larson-Naimark dilation theorem [16] for Hilbert space frames
[30] motivated the notion of unconditional Schauder frames (also known as framings)
due to Casazza, Han and Larson [11]. A decade later, Casazza, Dilworth, Odell,
Schlumprecht and Zsak [9] introduced the notion of Schauder frames.
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DEFINITION 9. Let (Ω,μ) be a measure space. Let {τα}α∈Ω be a collection in a
Banach space X and { fα}α∈Ω be a collection in X ∗ . The pair ({ fα}α∈Ω,{τα}α∈Ω)
is said to be a continuous approximate Schauder frame for X if the following holds.

(i) For every x ∈ X and for every φ ∈ X ∗ , the map

Ω � α 	→ fα (x)φ(τα ) ∈ K

is measurable and integrable.

(ii) The frame operator

S f ,τ : X � x 	→ S f ,τx :=
∫

Ω
fα (x)τα dμ(α) ∈ X

is a well-defined invertible bounded linear operator, where the integral is weak
integral.

If S f ,τ = λ IX , for some non zero scalar λ , then ({ fα}α∈Ω,{τα}α∈Ω) is called a tight
continuous ASF for X . If we do not demand the invertibility of S f ,τ , then we say that
({ fα}α∈Ω,{τα}α∈Ω) is a continuous approximate Bessel family for X .

Our first observation is that there is a large supply of continuous ASFs for finite
dimensional Banach spaces. Here is a result of existence of them for Banach spaces.
Our result is motivated by the work in [45].

THEOREM 15. Let X be a finite dimensional Banach space of dimension d . Let
(Ω,μ) be a finite measure space such that there are measurable subsets Ω1, . . . ,Ωn

satisfying

Ω = Ω1∪·· ·∪Ωn, Ω j ∩Ωk = /0, ∀1 � j,k � n, j �= n.

If n � d , then there exists a continuous ASF ({ fα}α∈Ω,{τα}α∈Ω) for X .

Proof. Let ({g j}n
j=1,{ω j}n

j=1) be an ASF for X . Note that ASF always exists.
Infact, it is easy to see that spanning collection can be turned to an ASF. It is also known
that a pair of basis for the space and its dual is an ASF [41]. Define

fα :=
g j√

μ(Ω j)
, ∀α ∈ Ω j,∀1 � j � n, τα :=

ω j√
μ(Ω j)

, ∀α ∈ Ω j,∀1 � j � n.

Then∫
Ω

fα (x)τα dμ(α) =
n

∑
j=1

∫
Ω j

fα (x)τα dμ(α) =
n

∑
j=1

∫
Ω j

g j(x)√
μ(Ω j)

ω j√
μ(Ω j)

dμ(α)

=
n

∑
j=1

g j(x)ω j, ∀x ∈ X .

Hence ({ fα}α∈Ω,{τα}α∈Ω) is a continuous ASF for X . �
Like in discrete case, we can get trace of frame operator using continuous ASFs.
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THEOREM 16. Let ({ fα}α∈Ω,{τα}α∈Ω) be a continuous approximate Bessel fam-
ily for X . Then

Tra(S f ,τ) =
∫

Ω
fα (τα )dμ(α),

Tra(S2
f ,τ) =

∫
Ω

∫
Ω

fβ (τα ) fα (τβ )dμ(α)dμ(β ).

Proof. Let {ω j}d
j=1 be any basis for X , where d is the dimension of X . Let

{ζ j}d
j=1 be the dual basis associated with {ω j}d

j=1 . Then S f ,τx = ∑n
j=1 ζ j(x)(S f ,τω j)

which gives

Tra(S f ,τ) =
n

∑
j=1

ζ j(S f ,τ ω j) =
n

∑
j=1

ζ j

(∫
Ω

fα(ω j)τα dμ(α)
)

=
n

∑
j=1

∫
Ω

fα (ω j)ζ j(τα )dμ(α) =
∫

Ω
fα

(
n

∑
j=1

ζ j(τα)ω j

)
dμ(α)

=
∫

Ω
fα (τα )dμ(α)

and

Tra(S2
f ,τ) =

n

∑
j=1

ζ j(S2
f ,τω j) =

n

∑
j=1

ζ j

(∫
Ω

fα (S f ,τ ω j)τα dμ(α)
)

=
n

∑
j=1

∫
Ω

fα (S f ,τ ω j)ζ j(τα )dμ(α) =
∫

Ω
fα

(
n

∑
j=1

ζ j(τα)S f ,τω j

)
dμ(α)

=
∫

Ω
fα (S f ,ττα )dμ(α) =

∫
Ω

fα

(∫
Ω

fβ (τα)τβ dμ(β )
)

dμ(α)

=
∫

Ω

∫
Ω

fβ (τα ) fα (τβ )dμ(α)dμ(β ). �

Note that we did not assume any condition on set of vectors and functionals to
derive Theorem 4. The reason is that frame operator always exists in discrete case. To
get the existence of frame operator we assumed Besselness in Theorem 16. We now
derive continuous versions of Theorem 5 and Theorem 6.

THEOREM 17. (First order continuousWelch bound for Banach spaces) Let (Ω,μ)
be a σ -finite measure space and ({ fα}α∈Ω,{τα}α∈Ω) be a continuous Bessel family
for finite dimensional Banach space X of dimension d . If the diagonal Δ := {(α,α) :
α ∈ Ω} is measurable in the measure space Ω×Ω ,

∫
Ω×Ω

| fα (τβ ) fβ (τα )|d(μ × μ)(α,β ) < ∞,
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and the operator S f ,τ : X � x 	→ S f ,τx :=
∫

Ω fα(x)τα dμ(α) ∈ X is diagonalizable
and its eigenvalues are all non negative, then

∫
Ω×Ω

fα (τβ ) fβ (τα )d(μ × μ)(α,β ) � 1
d

(∫
Ω

fα (τα)dμ(α)
)2

(12)

and

sup
α ,β∈Ω,α �=β

| fα (τβ )| �
√

1
d (
∫

Ω fα(τα )dμ(α))2− ∫Δ | fα(τα )|2 d(μ × μ)(α,α)
(μ × μ)((Ω×Ω)\Δ)

.

Furthermore, equality holds in (12) if and only if ({ fα}α∈Ω,{τα}α∈Ω) is a tight con-
tinuous ASF for X . In particular, if fα(τα ) = 1 for all α ∈ Ω , then

sup
α ,β∈Ω,α �=β

| fα (τβ ) fβ (τα )| � 1
(μ × μ)((Ω×Ω)\Δ)

[
μ(Ω)2

d
− (μ × μ)(Δ)

]

and we have first order continuous Welch bound for Banach spaces

sup
α ,β∈Ω,α �=β

| fα (τβ )| �
√

1
(μ × μ)((Ω×Ω)\Δ)

[
μ(Ω)2

d
− (μ × μ)(Δ)

]
.

Proof. Let λ1, . . . ,λd be eigenvalues of the frame operator S f ,τ . Then λ1, . . . ,λd �
0. Now using Theorem 16 we get

(∫
Ω

fα(τα )dμ(α)
)2

= (Tra(S f ,τ))2 =

(
d

∑
k=1

λk

)2

� d
d

∑
k=1

λ 2
k

= d Tra(S2
f ,τ) = d

∫
Ω

∫
Ω

fβ (τα) fα (τβ )dμ(α)dμ(β ).

which gives the first inequality. Using Fubini’s theorem, now we get

1
d

(∫
Ω

fα(τα )dμ(α)
)2

�
∫

Ω

∫
Ω

fα (τβ ) fβ (τα )dμ(α)dμ(β )

=
∫

Ω×Ω
fα (τβ ) fβ (τα )d(μ × μ)(α,β )

=
∫

Δ
fα(τβ ) fβ (τα)d(μ × μ)(α,β )+

∫
(Ω×Ω)\Δ

fα (τβ ) fβ (τα )d(μ × μ)(α,β )

=
∫

Δ
| fα(τα )|2 d(μ × μ)(α,α)+

∫
(Ω×Ω)\Δ

fα (τβ ) fβ (τα )d(μ × μ)(α,β )

�
∫

Δ
| fα(τα )|2 d(μ × μ)(α,α)+ (μ × μ)((Ω×Ω)\Δ) sup

α ,β∈Ω,α �=β
| fα (τβ ) fβ (τα )|. �
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THEOREM 18. (Continuous Welch bounds for Banach spaces) Let m∈N , (Ω,μ)
be a σ -finite measure space and ({ fα}α∈Ω,{τα}α∈Ω) be a continuous Bessel family
for finite dimensional Banach space X of dimension d . If the diagonal Δ := {(α,α) :
α ∈ Ω} is measurable in the measure space Ω×Ω ,∫

Ω×Ω
| fα (τβ ) fβ (τα )|m d(μ × μ)(α,β ) < ∞,

and the operator S f ,τ : Symm(X ) � x 	→ ∫
Ω f⊗m

α (x)τ⊗m
α dμ(α) ∈ Symm(X ) is diago-

nalizable and its eigenvalues are all non negative, then

∫
Ω×Ω

fα (τβ )m fβ (τα)m d(μ × μ)(α,β ) � 1(d+m−1
m

) (∫
Ω

fα(τα )m dμ(α)
)2

(13)

and

sup
α ,β∈Ω,α �=β

| fα (τβ )|m �

√√√√ 1
(d+m−1

m )
(
∫

Ω fα (τα)m dμ(α))2−∫Δ | fα(τα )|2m d(μ × μ)(α,α)

(μ × μ)((Ω×Ω)\Δ)
.

(14)

Furthermore, equality holds in (13) if and only if ({ fα}α∈Ω,{τα}α∈Ω) is a tight con-
tinuous ASF for Symm(X ) . In particular, if fα(τα ) = 1 for all α ∈ Ω , then

sup
α ,β∈Ω,α �=β

| fα(τβ ) fβ (τα )|m � 1
(μ × μ)((Ω×Ω)\Δ)

[
μ(Ω)2(d+m−1

m

) − (μ × μ)(Δ)

]

and we have continuous Welch bound for Banach spaces

sup
α ,β∈Ω,α �=β

| fα (τβ )|m �

√√√√ 1
(μ × μ)((Ω×Ω)\Δ)

[
μ(Ω)2(d+m−1

m

) − (μ × μ)(Δ)

]
. (15)

Proof. Let λ1, . . . ,λdim(Symm(X )) be eigenvalues of S f ,τ . Then

(∫
Ω

fα (τα)m dμ(α)
)2

=
(∫

Ω
f⊗m
α (τ⊗m

α )dμ(α)
)2

= (Tra(S f ,τ))2 =

(
dim(Symm(X ))

∑
l=1

λl

)2

� dim(Symm(X ))
dim(Symm(X ))

∑
l=1

λ 2
l =

(
d +m−1

m

)
Tra(S2

f ,τ)

=
(

d +m−1
m

)∫
Ω

∫
Ω

f⊗m
α (τ⊗m

β ) f⊗m
β (τ⊗m

α )dμ(α)dμ(β )

=
(

d +m−1
m

)∫
Ω

∫
Ω

fα (τβ )m fβ (τα )m dμ(α)dμ(β )



DISCRETE AND CONTINUOUS WELCH BOUNDS 101

and

1(d+m−1
m

) (∫
Ω

fα(τα )m dμ(α)
)2

=
∫

Ω

∫
Ω

fα (τβ )m fβ (τα )m dμ(α)dμ(β )

=
∫

Ω×Ω
fα (τβ )m fβ (τα)m d(μ × μ)(α,β )

=
∫

(Ω×Ω)\Δ
fα (τβ )m fβ (τα)m d(μ × μ)(α,β )+

∫
Δ

fα (τα )2m d(μ × μ)(α,α)

�
∫

(Ω×Ω)\Δ
| fα (τβ ) fβ (τα )|m d(μ × μ)(α,β )+

∫
Δ
| fα (τα)|2m d(μ × μ)(α,α)

� (μ × μ)((Ω×Ω)\Δ) sup
α ,β∈Ω,α �=β

| fα (τβ ) fβ (τα )|m +
∫

Δ
| fα (τα )|2m d(μ × μ)(α,α).

�

REMARK 5. For m � 2, we call family of inequalities in (15) as continuous higher
order Welch bounds.

COROLLARY 1. Theorem 6 is a corollary of Theorem 18.

Proof. Take Ω = {1, . . . ,n} and μ as the counting measure. �

THEOREM 19. Theorem 3 is a corollary of Theorem 18.

Proof. Let {τα}α∈Ω be a normalized continuous Bessel family for H of dimen-
sion d . We define

fα : H � h 	→ 〈h,τα〉 ∈ K, ∀α ∈ Ω

and apply Theorem 18. �
As observed in [40], we again observe that given a measure space Ω , the diagonal

Δ need not be measurable (see [21]). Now we derive continuous versions of Theorem
7 and Theorem 8.

THEOREM 20. Let (Ω,μ) be a σ -finite measure space and ({ fα}α∈Ω,{τα}α∈Ω)
be a continuous Bessel family for finite dimensional Banach space X of dimension d .
If the diagonal Δ := {(α,α) : α ∈ Ω} is measurable in the measure space Ω×Ω and
the operator S f ,τ : X � x 	→ S f ,τx :=

∫
Ω fα (x)τα dμ(α) ∈X is diagonalizable and its

eigenvalues are all non negative, then

1
d

Tra(S f ,τ)r �
(

1
d

∫
Ω

fα (τα)dμ(α)
)r

, ∀r ∈ [1,∞)



102 K. M. KRISHNA

and

1
d

Tra(S f ,τ)r �
(

1
d

∫
Ω

fα(τα )dμ(α)
)r

, ∀r ∈ (0,1).

In particular, if fα (τα) = 1 for all α ∈ Ω , then

1
μ(Ω)

Tra(S f ,τ)r �
(

μ(Ω)
d

)r−1

, ∀r ∈ [1,∞)

and

1
μ(Ω)

Tra(S f ,τ)r �
(

μ(Ω)
d

)r−1

, ∀r ∈ (0,1).

Proof. Let λ1, . . . ,λd be eigenvalues of S f ,τ . Let r ∈ [1,∞) . Jensen’s inequality
gives

(
1
d

d

∑
k=1

λk

)r

� 1
d

d

∑
k=1

λ r
k .

Therefore (
1
d

∫
Ω

fα(τα )dμ(α)
)r

=
(

1
d

Tra(S f ,τ)
)r

� 1
d

Tra(Sr
f ,τ).

Similarly the case r ∈ (0,1) follows by using Jensen’s inequality. �

THEOREM 21. Let 2 < p < ∞ , (Ω,μ) be a σ -finite measure space and ({ fα}α∈Ω ,
{τα}α∈Ω) be a continuous Bessel family for finite dimensional Banach space X of di-
mension d such that fα(τα ) = 1 for all α ∈ Ω . If the diagonal Δ := {(α,α) : α ∈ Ω}
is measurable in the measure space Ω×Ω ,

∫
Ω×Ω

| fα (τβ ) fβ (τα )|d(μ × μ)(α,β ) < ∞,

and the operator S f ,τ : X � x 	→ S f ,τx :=
∫

Ω fα(x)τα dμ(α) ∈ X is diagonalizable
and its eigenvalues are all non negative, then

∫
Ω×Ω

| fα (τβ ) fβ (τα )| p
2 d(μ × μ)(α,β )

� 1

(μ × μ)((Ω×Ω)\Δ)
p
2−1

(
μ(Ω)2

d
− (μ × μ)(Δ)

) p
2

+(μ × μ)(Δ).
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Proof. Define r := 2p/(p− 2) and q be the conjugate index of p/2. Then q =
r/2. Using Theorem 17 and Holder’s inequality, we have

μ(Ω)2

d
− (μ × μ)(Δ) �

∫
(Ω×Ω)\Δ

| fα (τβ ) fβ (τα )|d(μ × μ)(α,β )

�
(∫

(Ω×Ω)\Δ
| fα (τβ ) fβ (τα )| p

2 d(μ × μ)(α,β )
) 2

p
(∫

(Ω×Ω)\Δ
d(μ × μ)(α,β )

) 1
q

=
(∫

(Ω×Ω)\Δ
| fα (τβ ) fβ (τα )| p

2 d(μ × μ)(α,β )
) 2

p

(μ × μ)((Ω×Ω)\Δ)
1
q

=
(∫

(Ω×Ω)\Δ
| fα (τβ ) fβ (τα )| p

2 d(μ × μ)(α,β )
) 2

p

(μ × μ)((Ω×Ω)\Δ)
2
r

=
(∫

(Ω×Ω)\Δ
| fα (τβ ) fβ (τα )| p

2 d(μ × μ)(α,β )
) 2

p

(μ × μ)((Ω×Ω)\Δ)
p−2
p

which gives

(
μ(Ω)2

d
− (μ × μ)(Δ)

) p
2

�
(∫

(Ω×Ω)\Δ
| fα (τβ ) fβ (τα )| p

2 d(μ × μ)(α,β )
)

(μ × μ)((Ω×Ω)\Δ)
p
2−1.

Therefore

1

(μ × μ)((Ω×Ω)\Δ)
p
2 −1

(
μ(Ω)2

d
− (μ × μ)(Δ)

) p
2

+(μ × μ)(Δ)

=
1

(μ × μ)((Ω×Ω)\Δ)
p
2 −1

(
μ(Ω)2

d
− (μ × μ)(Δ)

) p
2

+
∫

Δ
| fα (τβ ) fβ (τα )| p

2 d(μ × μ)(α,β )

�
∫

(Ω×Ω)\Δ
| fα (τβ ) fβ (τα )| p

2 d(μ × μ)(α,β )+
∫

Δ
| fα (τα) fα (τα )| p

2 d(μ × μ)(α,α)

=
∫

Ω×Ω
| fα (τβ ) fβ (τα )| p

2 d(μ × μ)(α,β ). �

5. Applications of continuous Welch bounds for Banach spaces

Here we list continuous versions of corresponding concepts, results and open prob-
lems stated in Section 3. Throughout this section, (Ω,μ) is a σ -finite measure space.
We furthermore assume that the diagonal Δ is measurable.

DEFINITION 10. Let ({ fα}α∈Ω,{τα}α∈Ω) be a continuous Bessel family for a
finite dimensional Banach space X of dimension d satisfying fα(τα ) = 1 for all
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α ∈ Ω . Assume that the frame operator S f ,τ is diagonalizable and its eigenvalues are
all non negative. Also assume that∫

Ω×Ω
| fα (τβ ) fβ (τα )|d(μ × μ)(α,β ) < ∞.

We define the continuous root-mean-square (RMS) absolute cross relation of
({ fα}α∈Ω,{τα}α∈Ω) as

ICRMS({ fα}α∈Ω,{τα}α∈Ω)

:=
(

1
(μ × μ)((Ω×Ω)\Δ)

∫
(Ω×Ω)\Δ

fα (τβ ) fβ (τα )d(μ × μ)(α,β )
) 1

2

.

THEOREM 22. Let ({ fα}α∈Ω,{τα}α∈Ω) be as in Definition 10. Then

sup
α ,β∈Ω,α �=β

| fα (τβ )| � ICRMS({ fα}α∈Ω,{τα}α∈Ω)

�
(

1
(μ × μ)((Ω×Ω)\Δ)

[
μ(Ω)2

d
− (μ × μ)(Δ)

]) 1
2

.

DEFINITION 11. Let ({ fα}α∈Ω,{τα}α∈Ω) be a continuous Bessel family for a
finite dimensional Banach space X of dimension d satisfying fα(τα ) = 1 for all
α ∈ Ω . Assume that the frame operator S f ,τ is diagonalizable and its eigenvalues are
all non negative. Also assume that∫

Ω×Ω
| fα (τβ ) fβ (τα )|d(μ × μ)(α,β ) < ∞.

We define the continuous pseudo frame potential of ({ fα}α∈Ω,{τα}α∈Ω) as

CPFP({ fα}α∈Ω,{τα}α∈Ω) :=
∫

Ω×Ω
fα(τβ ) fβ (τα)d(μ × μ)(α,β ).

THEOREM 23. Let ({ fα}α∈Ω,{τα}α∈Ω) be as in Definition 11. Then

μ(Ω)2 sup
α ,β∈Ω

| fα (τβ )|2 � CPFP({ fα}α∈Ω,{τα}α∈Ω) � μ(Ω)2

d
. (16)

DEFINITION 12. Let ({ fα}α∈Ω,{τα}α∈Ω) be a continuous ASF for X satisfy-
ing fα(τα ) = 1 for all α ∈ Ω . Assume that the frame operator S f ,τ is diagonalizable
and its eigenvalues are all non negative. Also assume that∫

Ω×Ω
| fα (τβ ) fβ (τα )|d(μ × μ)(α,β ) < ∞.

We define the continuous frame correlation of ({ fα}α∈Ω,{τα}α∈Ω) as

M ({ fα}α∈Ω,{τα}α∈Ω) := sup
α ,β∈Ω,α �=β

| fα(τβ )|.
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DEFINITION 13. Let ({ fα}α∈Ω,{τα}α∈Ω) be a continuous ASF for X satisfy-
ing ‖ fα‖ = 1,‖τα‖ = 1, fα (τα) = 1 for all α ∈ Ω . Assume that the frame operator
S f ,τ is diagonalizable and its eigenvalues are all non negative. Also assume that

∫
Ω×Ω

| fα (τβ ) fβ (τα )|d(μ × μ)(α,β ) < ∞.

Continuous ASF ({ fα}α∈Ω,{τα}α∈Ω) is said to be a continuous Grassmannian frame
for X if

M ({ fα}α∈Ω,{τα}α∈Ω) = inf

{
M ({gα}α∈Ω,{ωα}α∈Ω) : ({gα}α∈Ω,{ωα}α∈Ω) is a

continuous ASF for X satisfying ‖gα‖ = 1,‖ωα‖ = 1,

gα(ωα) = 1,∀α ∈ Ω, the frame operator Sg,ω is

diagonalizable and its eigenvalues are all non negative

and
∫

Ω×Ω
|gα(ωβ )gβ (ωα)|d(μ × μ)(α,β ) < ∞

}
.

DEFINITION 14. Let ({ fα}α∈Ω,{τα}α∈Ω) be a continuous ASF for X satisfy-
ing fα(τα ) = 1 for all α ∈ Ω . Assume that the frame operator S f ,τ is diagonalizable
and its eigenvalues are all non negative. Continuous ASF ({ fα}α∈Ω,{τα}α∈Ω) is said
to be γ -equiangular if there exists γ � 0 such that

| fα(τβ )| = γ, ∀α,β ∈ Ω,α �= β .

THEOREM 24. Let ({ fα}α∈Ω,{τα}α∈Ω) be as in Definition 13. Then

M ({ fα}α∈Ω,{τα}α∈Ω) �
(

1
(μ × μ)((Ω×Ω)\Δ)

[
μ(Ω)2

d
− (μ × μ)(Δ)

]) 1
2

=: γ.

(17)

If the continuous ASF is γ -equiangular, then we have equality in (17).

6. Problems for future research

Based on the results in this paper, results and conjectures in Hilbert space frame
theory, we formulate following problems for future research.

(I) Recall the definition of Gerzon’s bound which allows us to recall the bounds
which are in the same way to discrete Welch bounds in Hilbert spaces.

DEFINITION 15. [32] Given d ∈ N , define Gerzon’s bound

Z (d,K) :=
{

d2 if K = C

d(d+1)
2 if K = R.
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THEOREM 25. Define m := dimR(K)/2 . If {τ j}n
j=1 is any collection of unit vec-

tors in Kd , then

(i) [8, 44] (Bukh-Cox bound)

max
1� j,k�n, j �=k

|〈τ j,τk〉| � Z (n−d,K)
n(1+m(n−d−1)

√
m−1 +n−d)−Z (n−d,K)

if n > d.

(ii) [15, 46] (Orthoplex/Rankin bound)

max
1� j,k�n, j �=k

|〈τ j,τk〉| � 1√
d

if n > Z (d,K).

(iii) [27, 32] (Levenstein bound)

max
1� j,k�n, j �=k

|〈τ j,τk〉| �
√

n(m+1)−d(md+1)
(n−d)(md+1)

if n > Z (d,K).

(iv) [43, 67] (Exponential bound)

max
1� j,k�n, j �=k

|〈τ j,τk〉| � 1−2n
−1
d−1 .

Theorem 25, Theorem 5 and Theorem 17 give the following question.

PROBLEM 1. What is the discrete and continuous versions of

(i) Bukh-Cox bound for Banach spaces?

(ii) Orthoplex/Rankin bound for Banach spaces?

(iii) Levenstein bound for Banach spaces?

(iv) Exponential bound for Banach spaces?

(II) Benedetto and Fickus characterized unit norm frames for finite dimensionalHilbert
spaces using frame potential (see [4]). Theorems 12 and 23 give the following
problem.

PROBLEM 2.

(i) What is a characterization of ({ f j}n
j=1,{τ j}n

j=1) by using equality in (10)?

(ii) What is a characterization of ({ fα}α∈Ω,{τα}α∈Ω) by using equality in (16)?
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(III) Celebrated Zauner’s conjecture for Hilbert spaces (see [2, 26, 36, 47, 68] for Za-
uner’s conjecture and its connections with Hilbert’s 12-problem and Stark con-
jecture) asserts the existence of d2 unit vectors {τ j}d2

j=1 in Cd for every d such
that

|〈τ j,τk〉|2 =
1

d +1
, ∀1 � j,k � d2, j �= k.

Motivated by this conjecture and Definitions 8 and 14 we formulate following
problems.

PROBLEM 3. Given a Banach space X of dimension d and a γ > 0, for which
n ∈ N , there exists a collection {τ j}n

j=1 in X and a collection {τ j}n
j=1 in X ∗ satis-

fying the following.

(a) ‖ f j‖ = ‖τ j‖ = f j(τ j) = 1,∀1 � j � n .

(b) For every x ∈ X ,

x =
d
n

n

∑
j=1

f j(x)τ j.

(c) For every 1 � j,k � n, j �= k ,

| f j(τk)| = γ.

PROBLEM 4. Given a Banach space X of dimension d and a γ > 0, for which
measure spaces (Ω,μ) , there exists a continuous Bessel family ({ fα}α∈Ω, {τα}α∈Ω)
for X satisfying the following.

(a) ‖ fα‖ = ‖τα‖ = fα (τα ) = 1,∀α ∈ Ω .

(b) For every x ∈ X ,

x =
d

μ(Ω)

∫
Ω

fα (x)τα dμ(α).

(c) For every α,β ∈ Ω,α �= β ,

| fα (τβ )| = γ.

(IV) In [55] Strohmer and Heath showed that there is a relation between the number
of elements in the ASF and dimension of the space. Inequalities (11) and (17)
then give following problems.

PROBLEM 5.

(i) Whether the equality in (11) implies that the ASF ({ f j}n
j=1,{τ j}n

j=1) is γ -equian-
gular?

(ii) Whether the validity of (11) implies there is a relation between the number of
elements in the ASF and dimension of the space?
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PROBLEM 6.

(i) Whether the equality in (17) implies that the continuousASF ({ fα}α∈Ω,{τα}α∈Ω)
is γ -equiangular?

(ii) Whether the validity of (17) implies there is a relation between the measure of Ω
and dimension of the space?

(V) In Theorem 13 we showed that (discrete) Grassmannian frames always exist.
However, the arguments used in the proof of that theorem cannot be carried to
measure spaces. Hence we have following problem.

PROBLEM 7. Classify measure spaces and (finite dimensional) Banach spaces so
that continuous Grassmannian ASFs exist.

(VI) Theorem 18 gives the following problem.

PROBLEM 8. Classify measure spaces (Ω,μ) such that Theorem 18 holds? In
other words, given a measure space (Ω,μ) , does the validity of (13) or (14) implies
conditions on measure space (Ω,μ) , say σ -finite?
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