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OCTONION WINDOWED LINEAR CANONICAL TRANSFORM

ARSHAD AHMAD KHAN ∗ AND K. RAVIKUMAR

Abstract. The Linear Canonical Transform (LCT) is a mathematical transform that generalizes
several well-known transforms, including the Fourier transform, the fractional Fourier transform,
and the Fresnel transform. It provides a unified framework for understanding and representing
a wide range of linear and linear-like transforms, allowing for the analysis and manipulation
of signals in various domains. Recently, Gao et al. extended the notion of LCT to octonion
domains and showed its efficacy in precisely representing the non-transient octonion-valued sig-
nals. However, the octonion LCT exhibits limitations in effectively localizing the frequency
characteristics of non-transient octonion-valued signals. As such, it is imperative to introduce
the Octonion Windowed Linear Canonical Transform (OCWLCT) and explore its fundamental
characteristics. We delve into the inversion formula and the orthogonality relation for the one-
dimensional OCWLCT. Additionally, we derive the inversion formula for the three-dimensional
Octonion Windowed Linear Canonical Transform (OCWLCT).

1. Introduction

The linear canonical transform has found wide applications in many fields of ap-
plied mathematics, optics, signal processing, filter design, radar system analysis, phase
retrieval and pattern recognition [10, 14, 16]. It is a four parameter class of linear in-
tegral transform and was first introduced in 1970s [19]. The LCT is also called as
ABCD transform, generalized Fresnel transform and the affine Fourier transform [1].
It is a generalization of many optical transforms like the Fourier transform (FT), the
Fractional Fourier transform (FRFT) [20], the Lorenz transform [1], the Fresnel trans-
form and scaling operations. With more degrees of freedom compared to the Fourier
transform and Fractional Fourier transform, the LCT is more flexible but with similar
computation cost as the conventional Fourier transform [13]. However, the LCT cannot
reveal the local LCT frequency contents due to its global kernel. The windowed Fourier
transform (WFT) with a local window function handles this kind of situation well, but
unfortunately, the WFT often performs unsatisfactorily for its low resolution. Therefore
in order to attain the local contents and high localization properties of signal, it is desir-
able to develop a new transform by replacing the Fourier transform kernel with the LCT
kernel in the definition of WFT. This new transform is called windowed linear canoni-
cal transform (WLCT) and was first introduced by Bultheel and Martinez-Sulbaran [6].
The WLCT offers a flexible local frequency content, eliminates cross term and enjoys
high resolution of a signal.
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In recent times, hyper-complex Fourier transforms have ignited a surge of interest,
presenting a compelling approach for treating multi-channel signals as unified alge-
braic entities without sacrificing crucial spectral information. This newborn paradigm
has yielded diverse applications in in signal and image compression, edge detection,
and pattern recognition [9, 17, 21, 24, 25, 26]. The landscape of hyper-complex Fourier
transforms is adorned with various formulations, each offering unique perspectives [8].
Among these, the two-dimensional quaternion Fourier transforms stand as fundamental
and paramount. Quaternions, also known as the Cayley-Dickson algebra of order 4,
have found substantial applications in filtering, image compression, reconstruction, and
beyond [2, 22]. Yet, beyond the realm of quaternions lies a domain deserving of equal
attention in hyper-complex signal processing: the octonions. Octonions, also known
as Cayley-Dickson algebra of order 8, have been captivating modern signal and image
processing, emerging as a demanding and vibrant research frontier since their discovery
by Hahn and Snopek in 2011 [12]. For more about applications and some interesting
properties of OFT, we refer to [3, 4, 5, 12, 18].

Recentl, W. B. Gao and B. Z. LI have expanded this fascination by introducing the
octonion linear canonical transform, creatively blending it with the Octonion Fourier
transform [11]. While octonions yield immense potential in diverse fields, their theo-
retical foundations are still in its infancy. Taking this opportunity, we extend the notion
of windowed linear canonical transform to the octonion domains. Our exploration un-
covers essential results, like the orthogonality relation and inversion formula, offering
exciting opportunities for representing multi-dimensional data. From signal and image
processing to remote sensing and data compression, this proposed transform has the
potential to advance various disciplines.

The paper is organized as follows, Section 2 provides general definitions and fun-
damental properties of octonion algebra. Section 3 focuses on introducing the Octonion
Windowed Linear Canonical Transform (OCWLCT) along with its basic properties. In
Section 4, we discuss the potential applications of the proposed integral transform. Fi-
nally, our expedition concludes with an enlightening epilogue in Section 5.

2. Preliminaries

In the present section, we mainly review some basic facts and notations on the
octonion algebra [7], which will be very useful in our study on octonion windowed
linear canonical transform.

In accordance with Cayley-Dickson construction, the octonion algebra is denoted
by O [7]. It is a non-associative and non-commutative algebra defined over R gener-
ated by the elements

e0 = (1,0), e1 = (i,0), e2 = ( j,0), e3 = (k,0),
e4 = (0,1), e5 = (0, i), e6 = (0, j), e7 = (0,k).

An arbitrary o ∈ O can be represented as

o = o0 +o1e1 +o2e2 +o3e3 +o4e4 +o5e5 +o6e6 +o7e7,
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where o0,o1,o2,o3,o4,o5,o6,o7 ∈ R . The conjugate of octonion is defined by

o = o0−o1e1−o2e2−o3e3 −o4e4−o5e5−o6e6−o7e7.

Also the norm of octonions can be given as

|o| = √
oo =

√
oo

or |o|2 =
7

∑
r=0

o2
r

and |o1o2| = |o1||o2|.
Each o ∈ O can be represented in the quaternionic form as

o = a+be4,

where a = o0 +o1e1 +o2e2 +o3e3 ∈ H

and b = o4 +o5e1 +o6e2 +o7e3 ∈ H.

Thus an octonion interms of quaternions is equal to the space H
⊕

H , and the multipli-
cation for any two pairs ∈ H

⊕
H is given as

(a,b)(c,d) = (ac−db,da+bc).

The multiplication rules for octonion algebra are presented in Table 1.

* 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 -1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 -1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 -1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 -1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 -1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 -1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 -1

Table 1: Multiplication rules in octonion algebra

The following useful properties are given in [3, 15].

PROPERTY 1. Let a,b ∈ H . Then
(a) e4a = ae4 ;
(b) e4(ae4) = −a ;
(c) (ae4)e4 = −a ;
(d) a(be4) = (ba)e4 ;
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(e) (ae4)b = (ab)e4 ;
( f ) (ae4)(be4) = −ba.

PROPERTY 2. The quaternionic form of any octonion a+be4 : a,b ∈ H satisfies

a+be4 = a−be4,

|a+be4|2 = |a|2 + |b|2.
Now we will present the definition of octonion Fourier transform (OFT) and octo-

nion linear canonical transform (OCLCT).

DEFINITION. [18] Let f : R → O be an octonion valued function, then one
dimensional OFT is given by

F1( f )(ω) =
∫

R

f (x)e−e42πxωdx (1)

and the inverse is given by

f (x) = F−1
1 (F1( f )) (x) =

∫
R

F1( f )(ω)ee42πxωdω . (2)

Also the three dimensional OFT [18, 23] of an octonion valued function f : R3 →
O is given by

Fo( f )(ωωωωω) =
∫

R3
f (x)e−e12πx1ω1e−e22πx2ω2e−e42πx3ω3dx, (3)

where x = (x1,x2,x3) ∈ R3 , ωωωωω = (ω1,ω2,ω3) ∈ R3 .
Since the octonions are non-associative and non-commutative, the order of imag-

inary units in formula (3) remains unaltered, as the changes in the position of these
imaginary units give other definition of hypercomplex Fourier transforms. Also the
multiplication in the OFT is done from left to right because of non-associativity of
octonions. Some properties of OFT presented in [3, 4, 12, 18] are:

• The inverse of 3D-OFT is

f (x) = F−1
o (Fo( f )) (x)

=
∫

R3
Fo( f )(ωωωωω)ee42πx3ω3ee22πx2ω2ee12πx1ω1dωωωωω , (4)

where x = (x1,x2,x3) ∈ R3,ωωωωω = (ω1,ω2,ω3) ∈ R3.

• The Parsevals theorem for OFT is

‖ f‖2 = ‖Fo( f )‖2.

• The Hausdorff-Young inequality for OFT is

‖Fo( f )‖q = ‖ f‖p ; 1 � p � 2 and
1
p

+
1
q

= 1.
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DEFINITION. [11] Let f : R → O be an octonion valued function, then the one
dimensional octonion linear canonical transform (OCLCT) is given by

L o
1,M( f )(ω) =

∫
R

f (x)K e4
M (x,ω)dx, (5)

where M =
[
a b
c d

]
∈ R2×2 be a matrix parameter satisfying detM = 1, and the kernel

signal is given by

K e4
M (x,ω) =

⎧⎪⎨
⎪⎩

1√
2π |b|e

e4( a
2b x2− xω

b + d
2b ω2− π

2 ), b �= 0

√
dee4

cd
2 ω2δ (x−dω), b = 0

.

Here we only consider the case b �= 0, as for the case b = 0 the OCLCT of a signal is
essentially a chirp multiplication.

The inverse for the one dimensional OCLCT is

f (x) =
∫

R

L o
1,M( f )(ω)K −e4

M (x,ω)dω ,

where K −e4
M (x,ω)= K e4

M−1(ω ,x)= 1√
2π |b|e

−e4( a
2b x2− xω

b + d
2b ω2− π

2 ) , M−1 =
[

d −b
−c a

]
∈

R2×2 and b �= 0.

DEFINITION. [11] Let f : R3 → O be an octonion valued signal, then the three
dimensional OCLCT is defined as

L o
M1,M2,M3

( f )(ωωωωω) =
∫

R3
f (x)K e1

M1
(x1,ω1)K

e2
M2

(x2,ω2)K
e4

M3
(x3,ω3)dx, (6)

where x = (x1,x2,x3)∈R3 , ωωωωω = (ω1,ω2,ω3)∈R3 , Mk =
[
ak bk

ck dk

]
∈R2×2 be a matrix

parameter satisfying det(MK) = 1, for k = 1,2,3 and the kernel signals are given by

K e1
M1

(x1,ω1) =

⎧⎪⎪⎨
⎪⎪⎩

1√
2π |b1|

e
e1

(
a1
2b1

x2
1−

x1ω1
b1

+ d1
2b1

ω2
1− π

2

)
, b1 �= 0

√
d1ee1

c1d1
2 ω2

1 δ (x1−d1ω1), b1 = 0

(7)

K e2
M2

(x2,ω2) =

⎧⎪⎪⎨
⎪⎪⎩

1√
2π |b2|

e
e2

(
a2
2b2

x2
2−

x2ω2
b2

+ d2
2b2

ω2
2− π

2

)
, b2 �= 0

√
d2ee2

c2d2
2 ω2

2 δ (x2−d2ω2), b2 = 0

(8)
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K e4
M3

(x3,ω3) =

⎧⎪⎪⎨
⎪⎪⎩

1√
2π |b3|

e
e4

(
a3
2b3

x2
3−

x3ω3
b3

+ d3
2b3

ω2
3− π

2

)
, b3 �= 0

√
d3ee4

c3d3
2 ω2

3 δ (x3 −d3ω3), b3 = 0,

(9)

where δ (x) represents the Dirac function.
The OCLCT of a signal is essentially a chirp multiplication for bk = 0, (k =

1,2,3) . Thus we will set bk �= 0, (k = 1,2,3) from onwards unless stated otherwise.
Using the definition of OCLCT, we can formulate the definition of octonion win-

dowed linear canonical transform (OCWLCT).

3. Octonion windowed linear canonical transform

DEFINITION. Let M =
[

a b
c d

]
∈R2×2 be a matrix parameter satisfying det(M) =

1 and φ ∈ L2(R,O)\ {0} be a window function . Then the octonion windowed linear
canonical transform (OCWLCT) is given by

G M
φ f (ω ,u) =

∫
R

f (x)φ(x−u)K e4
M (x,ω)dx, (10)

where K e4
M (x,ω) is the octonion LCT kernel and is given by

K e4
M (x,ω) =

⎧⎪⎨
⎪⎩

1√
2π |b|e

e4( a
2b x2− xω

b + d
2b ω2− π

4 ), b �= 0

√
dee4

cd
2 ω2δ (x−dω), b = 0

.

Here we only consider the case b �= 0, as the OCWLCT is just a chirp multiplication
for the case b = 0.

For a fixed u , we have

G M
φ f (ω ,u) = L O

M

{
f (x)φ(x−u)

}
(ω). (11)

This implies

f (x)φ(x−u) = (L O
M )−1{G M

φ f (ω ,u)
}

=
∫

R

G M
φ f (ω ,u)K e4

M (x,ω)dω . (12)

Now we derive some important properties of one dimensional octonion windowed lin-
ear canonical transform.

THEOREM 1. (Boundedness) Let φ ∈ L2(R,O)\ {0} be a window function and
f ∈ L

2(R,O) , then

∣∣G M
φ f (ω ,u)

∣∣� 1√
2π |b|‖ f‖

L2(R,O)‖φ‖
L2(R,O).
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Proof. By Cauchy-Schwartz inequality, we have

∣∣G M
φ f (ω ,u)

∣∣2 =
∣∣∣∣
∫

R

f (x)φ(x−u)K e4
M (x,ω)dx

∣∣∣∣
2

�
(∫

R

∣∣∣ f (x)φ(x−u)K e4
M (x,ω)

∣∣∣dx

)2

=

(
1√

2π |b|
∫

R

∣∣∣ f (x)φ(x−u)
∣∣∣dx

)2

� 1
2π |b|

(∫
R

| f (x)|2 dx

)(∫
R

∣∣∣φ(x−u)
∣∣∣2 dx

)

=
1

2π |b|‖ f‖2
L2(R,O)‖φ‖2

L2(R,O).

We apply the change of variables x−u = t in the last step. Then we have

∣∣G M
φ f (ω ,u)

∣∣� 1√
2π |b|‖ f‖

L2(R,O)‖φ‖
L2(R,O).

This completes the proof. �

THEOREM 2. (Linearity) Let φ ∈ L2(R,O) \ {0} be a window function and
f ,g ∈ L2(R,O) , then OCWLCT is a linear operator

G M
φ
[
(α f + βg)

]
(ω ,u) = αG M

φ f (ω ,u)+ βG M
φ g(ω ,u)

for arbitrary constants α and β .

Proof. By definition of OCWLCT, we have

G M
φ
[
(α f + βg)

]
(ω ,u) =

∫
R

[
α f + βg

]
(x)φ(x−u)K e4

M (x,ω)dx

= α
∫

R

f (x)φ(x−u)K e4
M (x,ω)dx

+ β
∫

R

g(x)φ(x−u)K e4
M (x,ω)dx

= αG M
φ f (ω ,u)+ βG M

φ g(ω ,u).

This completes the proof. �

THEOREM 3. (Shift) Let φ ∈ L2(R,O) \ {0} be a window function and f ∈
L2(R,O) then we have

G M
φ { f (x− k)}(ω ,u) = ee4kωce−e4

ak2
2 cG M

φ f (ω − ka,u− k).
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Proof. By definition of OCWLCT, we have for any real no k

G M
φ { f (x− k)}(ω ,u) =

∫
R

f (x− k)φ(x−u)K e4
M (x,ω)dx

=
∫

R

f (t)φ(t − (u− k))K e4
M (t + k,ω)dt

=
∫

R

f (t)φ(t − (u− k))

× 1√
2π |b|e

e4

(
a
2b (t+k)2− (t+k)ω

b + d
2b ω2− π

2

)
dt

=
1√

2π |b|
∫

R

f (t)φ(t − (u− k))

× ee4( a
2b (t2+k2+2tk)− tω

b − kω
b + d

2b ω2− π
2 )dt

=
1√

2π |b|
∫

R

f (t)φ(t − (u− k))

× ee4( a
2b t2− t

b (ω−ka)+ d
2b ω2− π

2 )

× ee4( 1
2

a
b k2)ee4(−kω

b )dt.

Therefore, we get

G M
φ { f (x− k)}(ω ,u) =

1√
2π |b|

∫
R

f (t)φ(t − (u− k))

× ee4( a
2b t2− t

b (ω−ka)+ d
2b (ω−ka)2− π

2 )

× ee4
d
2b(2(ω−ka)ka+(ka)2)ee4( a

2b k2)ee4(−kω
b )dt.

By using the definition of OCWLCT, the above equation can be written as

G M
φ { f (x− k)}(ω ,u) = ee4

d
2b (2(ω−ka)ka+(ka)2)ee4( a

2b k2)

× ee4(−kω
b )G M

φ f (ω − ka,u− k)

= ee4
d
2b (2ωka−2(ka)2+(ka)2)ee4( a

2b k2)

× ee4(−kω
b )G M

φ f (ω − ka,u− k)

= ee4
d
b (ωka)e−e4

d
2b (ka)2ee4( a

2b k2)

× ee4(−kω
b )G M

φ f (ω − ka,u− k)

= ee4kω( ad
b − 1

b )e−e4
ak2
2 ( ad

b − 1
b )G M

φ f (ω − ka,u− k)

= ee4kωce−e4
ak2
2 cG M

φ f (ω − ka,u− k).

This completes the proof. �
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THEOREM 4. (parity) Let φ ∈ L2(R,O) \ {0} be a window function and f ∈
L2(R,O) then we have

G M
Pφ {P f} (ω ,u) = G M

φ f (−ω ,−u),

where Pφ(x) = φ(−x) for every φ ∈ L
2(R) .

Proof. For every f ∈ L2(R) , we have

G M
Pφ {P f}(ω ,u) =

∫
R

f (−x)φ (−(x−u))K e4
M (x,ω)dx

=
∫

R

f (−x)φ (−(x−u))
1√

2π |b|e
e4( a

2b x2− xω
b + d

2b ω2− π
2 )dx

=
∫

R

f (−x)φ (−(x−u))

× 1√
2π |b|e

e4

(
a
2b (−x)2− (−x)(−ω)

b + d
2b (−ω)2− π

2

)
dx.

This completes the proof according to definition of OCWLCT. �
Now we will derive the relationship between one dimensional OFT and the one

dimensional OCWLCT as follows:

G M
φ f (ω ,u) =

1√
2π |b|

∫
R

f (x)φ(x−u)ee4( a
2b x2− xω

b + d
2b ω2− π

2 )dx, b �= 0

=
1√

2π |b|
∫

R

f (x)φ(x−u)ee4( a
2b x2)ee4( d

2b ω2− π
2 )e−e4( xω

b )dx, b �= 0

=
1√

2π |b|
∫

R

f (x)φ(x−u)ee4( a
2b x2)e−e4( 2πxω

2πb )dxee4( d
2b ω2− π

2 ), b �= 0

=
1√

2π |b|F1(g)
(

ω
2π |b|

)
ee4( d

2b ω2− π
2 ).

Hence,

G M
φ f (ω ,u) =

1√
2π |b|F1(g)

(
ω

2π |b|
)

ee4( d
2b ω2− π

2 ), (13)

where b �= 0 and g(x) = f (x)φ(x−u)ee4( a
2b x2) .

THEOREM 5. (Inversion formula for one dimensional Octonion windowed linear
canonical transform) Let φ ∈L2(R,O)\{0} be a window function, 0 < ‖φ‖2 < ∞ and
f ∈ L2(R,O) .Then we have

f (x) =
1

φ(x−u)

∫
R

G M
φ f (ω ,u)K e4

M (x,ω)dω . (14)
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Proof. From (13), we have

G M
φ f (ω ,u) = ee4( d

2b ω2− π
2 ) 1√

2π |b|F1(g)
(

ω
2π |b|

)
,

where b �= 0 and g(x) = f (x)φ(x−u)ee4( a
2b x2) . This implies,

√
2π |b|G M

φ f (ω ,u)e−e4( d
2b ω2− π

2 ) = F1(g)
(

ω
2π |b|

)
.

Using (2), we obtain

f (x)φ(x−u)ee4( a
2b x2) =

∫
R

√
2π |b|G M

φ f (ω ,u)e−e4( d
2b ω2− π

2 )

× ee4( 2πxω
2πb )d

(
ω

2π |b|
)

.

Hence,

f (x) =
1

φ(x−u)

∫
R

G M
φ f (ω ,u)

1√
2π |b|e

−e4( d
2b ω2− π

2 )

× ee4( 2πxω
2πb )e−e4( a

2b x2)dω .

Or

f (x) =
1

φ(x−u)

∫
R

G M
φ f (ω ,u)K e4

M (x,ω)dω .

This completes the proof. �

THEOREM 6. (Orthogonality relation) Let φ ,ψ ∈ L2(R,O) \ {0} be window
functions and f ,g ∈ L2(R,O) then we have〈

G M
φ f (ω ,u),G M

ψ g(ω ,u)
〉

= 〈 f ,g〉 〈φ ,ψ〉 . (15)

Proof. Using the definition of OCWLCT and the inner product relation, we have〈
G M

φ f (ω ,u),G M
ψ g(ω ,u)

〉
=
∫

R

∫
R

G M
φ { f}(ω ,u),G M

ψ {g}(ω ,u)dωdu

=
∫

R

∫
R

[
G M

φ { f}(ω ,u)
∫

R

g(x)(ψ(x−u))K e4
M (x,ω)dx

]
dωdu

=
∫

R

∫
R

∫
R

[
[G M

φ { f}(ω ,u)K −e4
M (x,ω)ψ(x−u)g(x)

]
dωdudx

=
∫

R

∫
R

[∫
R

G M
φ { f}(ω ,u)K −e4

M (x,ω)dω
]

ψ(x−u)g(x)dudx.
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By using (14), we have

〈
G M

φ f (ω ,u),G M
ψ g(ω ,u)

〉
=
∫

R

∫
R

f (x)φ(x−u))ψ(x−u)g(x)dudx.

Using the change of variables x−u = y , we have

〈
G M

φ f (ω ,u),G M
ψ g(ω ,u)

〉
=
∫

R

∫
R

f (x)φ(y))ψ(y)g(x)dydx

=
∫

R

f (x)g(x)dx
∫

R

ψ(y)φ(y)dy

= 〈 f ,g〉 〈φ ,ψ〉 .
This completes the proof. �

Now we will give the definition of three dimensional octonion windowed linear
canonical transform (OCWLCT).

DEFINITION. Let f : R3 → O be an octonion valued signal, then three dimen-
sional octonion windowed linear canonical transform (OCWLCT) is given by

G M1,M2,M3
φ { f}(ωωωωω ,u) =

∫
R3

f (x)φ(x−u)K e1
M1

(x1,ω1)K
e2

M2
(x2,ω2)

×K e4
M3

(x3,ω3)dx, (16)

where x = (x1,x2,x3) ∈ R3 , u = (u1,u2,u3) ∈ R3 , ωωωωω = (ω1,ω2,ω3) ∈ R3 , Mk =[
ak bk

ck dk

]
∈ R2×2 be a matrix parameter satisfying det(Mk) = 1 for k = 1,2,3 and

K e1
M1

(x1,ω1) , K e2
M2

(x2,ω2) and K e4
M3

(x3,ω3) are given by (7), (8) and (9) respectively.
Next, we will prove the inversion formula for the three dimensional OCWLCT,

but in its proof we need definition of QWLCT.
The Quaternion windowed linear canonical transform of a function f : R2 → H

with a window function φ is given by

G M1,M2
φ { f}(ωωωωω ,u) =

∫
R2

f (x)φ(x−u)K e1
M1

(x1,ω1)K
e2

M2
(x2,ω2)dx, (17)

and its inverse is given by

f (x) =
∫

R2
G M1,M2

φ { f}(ωωωωω ,u)φ(x−u)K −e2
M2

(ω2,x2)K
−e1

M1
(ω1,x1)dωωωωω , (18)

where x = (x1,x2),ωωωωω = (ω1,ω2) and K e1
M1

(x1,ω1) and K e2
M2

(x2,ω2) are given by (7)
and (8), respectively.

THEOREM 7. (Inversion formula for three dimensional OCWLCT) Let f : R3 →
O be an octonion valued function, then we have,

f (x) =
∫

R3
G M1,M2,M3

φ { f}(ωωωωω ,u)K e4

M−1
3

(ω3,x3)K
e2

M−1
2

(ω2,x2)K
e1

M−1
1

(ω1,x1)dωωωωω . (19)
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Proof. Using the definition of QWLCT, the one dimensional OCWLCT and three
dimensional OCWLCT, we have

G M1,M2,M3
φ { f}(ωωωωω ,u) =

∫
R

G M1,M2
φ { f}(ω1,u1)(ω2,u2)φ(x−u)K e4

M3
(x3,ω3)dx3

= G M3
φ

[
G M1,M2

φ { f}
]
(ω1,u1)(ω2,u2).

By assumption f : R3 → O , then G M1,M2
φ : R3 → O . Therefore,

∫
R3

G M1,M2,M3
φ { f}(ωωωωω ,u)K e4

M−1
3

(ω3,x3)K
e2

M−1
2

(ω2,x2)K
e1

M−1
1

(ω1,x1)dωωωωω

=
∫

R2

∫
R

G M3
φ

[
G M1,M2

φ { f}
]
(ωωωωω ,u)K e4

M−1
3

(ω3,x3)dω3

×K e2

M−1
2

(ω2,x2)K
e1

M−1
1

(ω1,x1)dω1dω2.

By using Theorem 5 and relation (18), we have∫
R3

G M1,M2,M3
φ { f}(ωωωωω ,u)K e4

M−1
3

(ω3,x3)K
e2

M−1
2

(ω2,x2)K
e1

M−1
1

(ω1,x1)dωωωωω

=
∫

R2
G M1,M2

φ { f}(ωωωωω ,u)φ(x−u)K e2

M−1
2

(ω2,x2)K
e1

M−1
1

(ω1,x1)dω1dω2

= f (x).

This completes the proof. �

4. Potential applications

As highlighted in the introduction, hyper-complex algebra-based transforms have
emerged as indispensable tools within the realms of contemporary science and engi-
neering. Their application spans across diverse domains, signifying their significance
at the forefront of modern advances. Among these transformative algebraic concepts,
octonions have attracted substantial scientific interest, finding utility in an array of
crucial areas. These encompass structural design, seismic signal analysis for earth-
quake prediction, computer graphics, aerospace engineering, quantum mechanics, time-
frequency analysis, optics, signal processing, image refinement, pattern recognition,
artificial intelligence, and beyond.

In existing literature, the Octonion-based linear canonical transform has been a
prevalent choice, yet it is tailored solely for multi-channel stationary signals, thereby
excluding non-stationary signals. In contrast, the Three-Dimensional Windowed Octo-
nion-based LCT emerges as a pivotal tool that transcends this limitation. Designed to
accommodate both multi-channel stationary and non-stationary signals, its real-world
application presents a significant advantage. This advantage lies in its capability to
manipulate signals through a window function, an approach that concurrently localizes
hyper-complex signals within the time and frequency domains. This dynamic ability
enhances its relevance and utility in addressing complex signal processing challenges.
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Conclusion

In this article, we have introduced a novel integral transform within the fascinat-
ing domain of octonions. Through a comprehensive exploration, we have delved into
its fundamental mathematical properties and carefully examined the impact of transla-
tion on this innovative transform. These valuable findings hold significant importance
and will undoubtedly prove to be a guiding light for both the mathematical and signal
processing communities, offering valuable insights and heuristic knowledge.
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