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CHARACTERIZATIONS OF CERTAIN SEQUENCES OF q–POLYNOMIALS

P. NJIONOU SADJANG

Abstract. We provide a new characterization for those sequences of quasi-orthogonal polynomi-
als which form also q -Appell sets.

1. Introduction

Throughout this paper, we use the following standard notations

N := {1,2,3, . . .}, N0 = {0,1,2,3, . . .} = N∪{0}.
Let Pn(x) , n = 0, 1, 2, . . . be a polynomial set, i.e. a sequence of polynomials with

Pn(x) of exact degree n . Assume further that

dPn(x)
dx

= P′
n(x) = nPn−1(x) for n = 0, 1, 2, . . . .

Such polynomial sets are called Appell sets and received considerable attention since
P. Appell [2] introduced them in 1880.

Let q be an arbitrary real number (with q �= 0,1) and define the q -derivative [6]
of a function f (x) by means of

Dq f (x) =
f (x)− f (qx)

(1−q)x
, if x �= 0 (1)

and Dq f (0) = f ′(0) if f is differentiable at x = 0, which furnishes a generalization of

the differential operator
d
dx

.

A basic (q -)analogue of Appell sequences was first introduced by Sharma and
Chak [9] as those polynomial sets {Pn(x)}∞

n=0 which satisfy

DqPn(x) = [n]qPn−1(x), n = 1, 2, 3, · · · (2)

where [n]q = (1− qn)/(1− q) . They called them q -harmonic. Later, Al-Salam [1]
studied these families and referred to them as q -Appell sets in analogy with ordinary
Appell sets. Note that when q → 1, (2) reduces to

dPn(x)
dx

= nPn−1(x), n = 1, 2, 3, · · ·
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so that we may think of q -Appell sets as a generalization of Appell sets. We will call
these polynomial sets q-Appell sets of type I.

A sequence of polynomials {Qn} , n = 0, 1, 2, · · · degQn(x) = n is said to be
quasi-orthogonal if there is an interval (a,b) and a non-decreasing function α(x) such
that

∫ b

a
xmQn(x)dα(x)

⎧⎪⎪⎨
⎪⎪⎩

= 0 for 0 � m � n−2

�= 0 for 0 � m = n−1

�= 0 for 0 = m = n.

We say that two polynomial sets are related if one set is quasi-orthogonalwith respect to
the interval and the distribution of the orthogonality of the other set. Riesz [8] and Chi-
hara [3] have shown that a necessary and sufficient condition for the quasi-orthogonality
of the {Qn(x)} is that there exist non- zero constants, {an}∞

n=0 and {bn}∞
n=1 , such that

Qn(x) = anPn(x)+bnPn−1(x),

Q0(x) = a0P0(x)
n � 1, (3)

where the {Pn(x)}∞
n=0 are the related orthogonal polynomials.

In 1967, Al-Salam has given in a very short paper [1] a characterization of those
sequences of orthogonal polynomials {Pn(x)} which are also q -Appell sets. More
precisely, He gave a characterization of those sequences of orthogonal polynomials for
which DqPn(x) = [n]qPn−1(x) for n = 1, 2, 3, · · · .

The purpose of this paper is to study those classes of polynomial sets {Pn(x)} that
are at the same time quasi-orthogonal sets and q -Appell sets of type I. Extension will
be done to those polynomials {Pn(x)} that satisfy

DqPn(x) = [n]qPn−1(qx).

The later polynomialswill be called q -Appell polynomials of type II and appear already
in [5] where some of their properties are given.

2. Preliminaries results and definitions

Let us introduce the so-called q -Pochhammer symbol

(x;q)n =

{
(1− x)(1− xq) . . .(1− xqn−1) n = 1,2, . . .

1 n = 0.

For a non-negative integer n , the q -factorial is defined by

[n]q! =
n

∏
k=0

[k]q for n � 1, and [0]q! = 1.

The q -binomial coefficients are defined by[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
=

(q;q)n

(q;q)k(q;q)n−k
, (0 � k � n).
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We will use the following two q -analogues of the exponential function ex (see for
example [6, 7] and the references therein)

eq(x) =
∞

∑
k=0

xk

[k]q!
, (4)

and

Eq(x) =
∞

∑
k=0

q(k
2)

[k]q!
xk. (5)

These two functions are related by the equation (see [6])

eq(x)Eq(−x) = 1. (6)

The basic hypergeometric or q -hypergeometric function rφs is defined by the series

rφs

(
a1, · · · ,ar

b1, · · · ,bs

∣∣∣∣∣q;z

)
:=

∞

∑
k=0

(a1, · · · ,ar;q)k

(b1, · · · ,bs;q)k

(
(−1)kq(k

2)
)1+s−r zk

(q;q)k
,

where
(a1, · · · ,ar)k := (a1;q)k · · · (ar;q)k.

The Al Salam-Carlitz I polynomials [7, p. 534] have the q -hypergeometric repre-
sentation

U (a)
n (x;q) = (−a)nq(n

2)2φ1

(
q−n,x−1

0

∣∣∣∣∣q;
qx
a

)
.

The Al-Salam Carlitz I polynomials fulfil the three-term recurrence relation

xU (a)
n (x;q) = U (a)

n+1(x;q)+ (a+1)qnU (a)
n (x;q)−aqn−1(1−qn)U (a)

n−1(x;q),

and the q -derivative rule

DqU
(a)
n (x;q) = [n]qU

(a)
n−1(x;q).

It is therefore clear that the Al-Salam Carlitz I polynomials form a q -Appell set.
The Al-Salam-Carlitz II polynomials [7, p. 537] have the q -hypergeometric rep-

resentation

V (a)
n (x;q) = (−a)nq(−n

2 )
2φ0

(
q−n,x

−

∣∣∣∣∣q;
qn

a

)
.

Note that the Al Salam-Carlitz I polynomials and the Al Salam-Carlitz II polynomials
are related in the following way:

U (a)
n (x,q−1) = V (a)

n (x;q).
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The Al-Salam Carlitz II polynomials fulfil the three-term recurrence relation

xV (a)
n (x;q) = V (a)

n+1(x;q)+ (a+1)q−nV (a)
n (x;q)+aq−2n+1(1−qn)V (a)

n−1(x;q),

and the q -derivative rule

DqV
(a)
n (x;q) = q−n+1[n]qV

(a)
n−1(qx;q).

Let us introduce the modified Al-Salam Carlitz II polynomials V
(a)

n (x;q) by the rela-
tion

V
(a)

n (x;q) = q(n
2)V (a)

n (x;q). (7)

Then we have the following proposition.

PROPOSITION 1. The polynomial sequence {V (a)
n (x;q)}∞

n=0 is a q-Appell poly-
nomial set of type II.

PROPOSITION 2. (See [4, Theorem 1]) For {Qn(x)} to be a set of polynomials
quasi-orthogonal with respect to an interval (a,b) and a distribution dα(x) , it is nec-
essary and sufficient that there exist a set of nonzero constants {Tk}∞

k=0 and a set of
polynomials {Pn(x)} orthogonal with respect to (a,b) and dα(x) such that

Pn(x) =
n

∑
k=0

TkQk(x), n � 0. (8)

PROPOSITION 3. (See [4, Theorem 2]) A necessary and suffucient condition that
the set {Qn(x)}∞

n=0 where each Qn(x) is a polynomial of degree precisely n, be quasi-
orthogonal is that it satisfies

Qn+1(x) = (x+bn)Qn(x)− cnQn−1(x)+dn

n−2

∑
k=0

TkQk(x),

for all n , with d0 = d1 = 0 .

PROPOSITION 4. (See [1, Theorem 4.1]) If {Qn(x)}∞
n=0 is a q-Appell set which

are also orthogonal, then there exists a non zero constant b such that

Qn(x) = bnU (a/b)
n

( x
b

)
,

for all n � 0 .
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3. Some notes on q -Appell polynomials of type II

As mentioned earlier in the manuscript, q -Appell polynomials of type II are those
polynomial sets {Pn} satisfying the relation

DqPn(x) = [n]qPn−1(qx).

Let us recall that the following Cauchy product for infinite series applies(
∞

∑
n=0

An

)(
∞

∑
n=0

Bn

)
=

∞

∑
n=0

(
n

∑
k=0

AkBn−k

)
. (9)

In particular, if An =
anxn

[n]q!
and Bn =

bnxn

[n]q!
, then we have

(
∞

∑
n=0

anxn

[n]q!

)(
∞

∑
n=0

bnxn

[n]q!

)
=

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q
akbn−k

)
xn

[n]q!
. (10)

3.1. Four equivalent statements

In this section, we give several characterizations of q -Appell sets of type II.

THEOREM 1. Let { fn(x)}∞
n=0 be a sequence of polynomials. Then the following

are all equivalent:

1. { fn(x)}∞
n=0 is a q-Appell set of type II.

2. There exists a sequence (ak)k�0 ; independent of n; a0 �= 0 ; such that

fn(x) =
n

∑
k=0

[
n
k

]
q
q(n−k

2 )akx
n−k.

3. { fn(x)}∞
n=0 is generated by

A(t)Eq(xt) =
∞

∑
n=0

fn(x)
tn

[n]q!
,

where

A(t) =
∞

∑
n=0

an
tn

[n]q!
, (11)

is called the determining function for { fn(x)}∞
n=0 .

4. There exists a sequence (ak)k�0 ; independent of n; a0 �= 0 ; such that

fn(x) =

(
∞

∑
k=0

akq(n−k
2 )

[k]q!
Dq

k

)
xn.
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Proof. First, we prove that (1) =⇒ (2) =⇒ (3) =⇒ (1) .

(1) =⇒ (2). Since { fn(x)}∞
n=0 is a polynomial set, it is possible to write

fn(x) =
n

∑
k=0

an,k

[
n
k

]
q
q(n−k

2 )xn−k, n = 1,2, . . . , (12)

where the coefficients an,k depend on n and k and an,0 �= 0. We need to prove
that these coefficients are independent of n . By applying the operator Dq to each
member of (12) and taking into account that { fn(x)}∞

n=0 is a q -Appell polyno-
mial set of type II, we obtain

fn−1(qx) =
n−1

∑
k=0

an,k

[
n−1

k

]
q
q(n−1−k

2 )(qx)n−1−k, n = 1,2, . . . , (13)

since Dqx0 = 0. Shifting index n → n + 1 in (13) and making the substitution
x → xq−1 , we get

fn(x) =
n

∑
k=0

an+1,k

[
n
k

]
q
q(n−k

2 )xn−k, n = 0,1, . . . , (14)

Comparing (12) and (14), we have an+1,k = an,k for all k and n , which means
that an,k = ak is independent of n .

(2) =⇒ (3). From (2) , and the identity (10), we have

∞

∑
n=0

fn(x)
tn

[n]q!
=

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q
q(n−k

2 )akx
n−k

)
tn

[n]q!

=

(
∞

∑
n=0

an
tn

[n]q!

)(
∞

∑
n=0

q(n
2)

[n]q!
(xt)n

)

= A(t)Eq(xt).

(3) =⇒ (1). Assume that { fn(x)}∞
n=0 is generated by

A(t)Eq(xt) =
∞

∑
n=0

fn(x)
tn

[n]q!
.

Then, applying the operator Dq to each side of this equation,

tA(t)Eq(qxt) =
∞

∑
n=0

Dq fn(x)
tn

[n]q!
.

Moreover, we have

tA(t)Eq(qxt) =
∞

∑
n=0

fn(qx)
tn+1

[n]q!
=

∞

∑
n=0

[n]q fn−1(qx)
tn

[n]q!
.

By comparing the coefficients of tn , we obtain (1) .

Next, (2) ⇐⇒ (4) is obvious. This ends the proof of the theorem. �



CHARACTERIZATIONS OF CERTAIN SEQUENCES OF q -POLYNOMIALS 155

3.2. Algebraic structure

We denote a given polynomial set { fn(x)}∞
n=0 by a single symbol f and refer

to fn(x) as the n -th component of f . We define (see [2, 10]) on the set P of all
polynomial sets the following operation + . This operation is given by the rule that
f + g is the polynomial set whose n -th component is fn(x)+ gn(x) provided that the
degree of fn(x)+ gn(x) is exactly n . We also define the operation ∗ (which appears
here for the fist time) such that if f and g are two sets whose n -th components are,
respectively,

fn(x) =
n

∑
k=0

α(n,k)xk, gn(x) =
n

∑
k=0

β (n,k)xk,

then f ∗ g is the polynomial set whose n -th component is

( f ∗ g)n(x) =
n

∑
k=0

α(n,k)q−(k
2)gk(x).

If λ is a real or complex number, then λ f is defined as the polynomial set whose n -th
component is λ fn(x) . We obviously have

f +g = g+ f for all f ,g ∈ P,

λ f ∗ g = ( f ∗λg) = λ ( f ∗ g).

Clearly, the operation ∗ is not commutative on P . One commutative subclass is the
set A of all Appell polynomials (see [2]).

In what follows, A (q) denotes the class of all q -Appell sets of type II.
In A (q) the identity element (with respect to ∗ ) is the q -Appell set of type II

I =
{

q(n
2)xn

}
. Note that I has the determining function A(t) = 1. This is due to the

identity (5). Next we state the following Lemma.

LEMMA 1. Let f , g, h ∈ A (q) with the determining functions A(t) , B(t) and
C(t) respectively. Then

1. f +g ∈ A (q) if A(0)+B(0) �= 0 ,

2. f +g belongs to the determining function A(t)+B(t) ,

3. f +(g+h) = ( f +g)+h.

Next we state and prove the following theorem.

THEOREM 2. If f , g, h ∈ A (q) with the determining functions A(t) , B(t) and
C(t) respectively, then

1. f ∗ g ∈ A (q) ,

2. f ∗ g = g ∗ f ,
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3. f ∗ g belongs to the determining function A(t)B(t) ,

4. f ∗ (g ∗ h) = ( f ∗ g)∗ h.

Proof. It is enough to prove the first part of the theorem. The rest follows directly.
According to Theorem 1, we may put

fn(x) =
n

∑
k=0

[
n
k

]
q
q(n−k

2 )akx
n−k =

n

∑
k=0

[
n
k

]
q
q(k

2)an−kx
k

so that

A(t) =
∞

∑
n=0

an
tn

[n]q!
.

Hence

∞

∑
n=0

( f ∗ g)n(x)
tn

[n]q!
=

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q
an−kgk(x)

)
tn

[n]q!

=

(
∞

∑
n=0

an
tn

[n]q!

)(
∞

∑
n=0

gn(x)
tn

[n]q!

)

= A(t)B(t)Eq(xt).

This ends the proof of the theorem. �

COROLLARY 1. Let f ∈ A (q) then there is a set g ∈ A (q) such that

f ∗ g = g ∗ f = I .

Indeed g belongs to the determining function (A(t))−1 where A(t) is the deter-
mining function for f .

In view of Corollary 1 we shall denote this element g by f−1 . We are further
motivated by Theorem 2 and its corollary to define f 0 = I , f n = f ∗ ( f n−1) where n
is a non-negative integer, and f−n = f−1 ∗ ( f−n+1) . We note that we have proved that
the system (A (q),∗) is a commutative group. In particular this leads to the fact that if

f ∗ g = h

and if any two of the elements f , g, h are q -Appell of type II then the third is also
q -Appell of type II.

PROPOSITION 5. If f is a q-Appell set of type II with the determining function
A(t) , if we put

A−1(t) =
∞

∑
n=0

bn
tn

[n]q!
,

therefore

xn = q−(n
2)

n

∑
k=0

[
n
k

]
q
bk fn−k(x).
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Proof. Since f is a q -Appell set of type II, we have

∞

∑
n=0

q(n
2)xn tn

[n]q!
= (A(t))−1A(t)Eq(xt)

=

(
∞

∑
n=0

bn
tn

[n]q!

)(
∞

∑
n=0

fn(x)
tn

[n]q!

)

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
q
bk fn−k(x)

)
tn

[n]q!
.

The result follows by comparing the coefficients of tn . �

4. Characterization results

4.1. Quasi-orthogonal q -Appell polynomials of type I

In this section, we characterize quasi-orthogonal polynomial sets that are also q -
Appell set of type I.

THEOREM 3. If {Qn(x)}∞
n=0 is a q-Appell set which are quasi-orthogonal. Then,

there exist three real numbers b, c and λ , such that

Qn+1(x) = (x+bqn)Qn(x)− cqn−1[n]qQn−1(x)+dn

n−2

∑
k=0

λ k

[k]q!
Qk(x). (15)

Proof. Assume that {Qn(x)}∞
n=0 is a q -Appell set which are quasi-orthogonal and

{Pn(x)}∞
n=0 the related orthogonal family. From Proposition 3, there exist three se-

quences {an}∞
n=0 , {bn}∞

n=0 and {dn}∞
n=0 with d0 = d1 = 0 such that

Qn+1(x) = (x+bn)Qn(x)− cnQn−1(x)+dn

n−2

∑
k=0

TkQk(x). (16)

If we q -differentiate (16) and using the fact that {Qn(x)}∞
n=0 is a q -Appell, we get after

some simplifications

Qn(x) =
(

x+
bn

q

)
Qn−1(x)− cn

q
[n−1]q

[n]q
Qn−2(x)+

dn

q[n]q

n−3

∑
k=0

[k+1]qTk+1Qk(x). (17)

Next, if we replace n by n−1 in (16), we obtain

Qn(x) = (x+bn−1)Qn(x)− cn−1Qn−2(x)+dn−1

n−3

∑
k=0

TkQk(x). (18)

If we compare (17) and (18), we see that we should have

bn = qbn−1, cn = q
[n]q

[n−1]q
cn−1, (19)
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and
dn[k+1]qTk+1 = q[n]qdn−1Tk, k = 0, 1, · · ·n−3. (20)

Equation (19) gives
bn = qnb0, and cn = qn−1[n]qc1.

Next, (20) gives for k = 0 and k = n−3 the relations

dn =
q[n]q
T1

dn−1 and dn =
q[n]qTn−1

[n−2]qTn−2
dn−1. (21)

If, for a given k � 2, dk = 0, it follows from (21) that dk = 0 for all k . In this case (16)
becomes a three-term recurrence relation

Qn+1(x) = (x+bn)Qn(x)− cnQn−1(x). (22)

In this case, from Proposition 4, it is seen that {Qn(x)}∞
n=0 is essentially the sequence

of Al-Salam Carlitz I polynomials. Thus, in this case, {Qn(x)}∞
n=0 is not a sequence of

quasi-orthogonal polynomials. Thus, we must have dk �= 0 for k � 2.

Again, using (21), we have for all n � 0
Tn−1

[n]qTn
=

1
T1

. This last relation gives

Tn =
Tn
1

[n]q!
. Seting b0 = b , c1 = c and T1 = λ , this ends the proof or the theorem. �

THEOREM 4. Let {Qn(x)}∞
n=0 be a monic polynomial set with Q0(x) = 1 . The

following assertions are equivalent:

1. {Qn(x)}∞
n=0 is quasi-orthogonal and is a q-Appell set, n � 1 .

2. There exists three constants α , β and λ (β ,λ �= 0 ) such that

Qn(x) = β nU (α/β )
n

(
x
β

;q

)
− β n[n]q

λ
U (α/β )

n−1

(
x
β

;q

)
, n � 1,

where U (a)
n (x;q) are the Al-Salam Carlitz I polynomials.

Proof. Suppose first that {Qn(x)}∞
n=0 is quasi-orthogonal and is a q -Appell set,

n � 1. Then, by Theorem 3, the Qn ’s satisfy a recurrence relation of the form (15). Let
us define the polynomial set {Pn(x)}∞

n=0 by

Pn(x) =
[n]q!
λ n

n

∑
k=0

λ k

[k]q!
Qk(x). (23)

It is not difficult to see that

DqPn(x) =
[n]q!
λ n

n

∑
k=1

λ k

[k]q!
[k]qQk−1(x)

= [n]q
[n−1]q!

λ n−1

n−1

∑
k=0

λ k

[k]q!
Qk(x)

= [n]qPn−1(x).
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Hence, {Pn(x)}∞
n=0 is a q -Appell set. Moreover, {Pn(x)}∞

n=0 are the orthogonal set (see
Proposition 2) related to {Qn(x)}∞

n=0 . By Proposition 4, there exist α and β such that

Pn(x) = β nU (α/β )
n

(
x
β

;q

)
.

Next, from (23), it follows that

Qn(x) =
[n]q!
λ n (Pn(x)−Pn−1(x)) .

The first implication of the theorem follows.
Conversely, assume that there exists three constants α , β and λ (β ,λ �= 0) such

that

Qn(x) = β nU (α/β )
n

(
x
β

;q

)
− β n[n]q

λ
U (α/β )

n−1

(
x
β

;q

)
, n � 1.

It can be seen that {Qn(x)}∞
n=0 is quasi orthogonal set. It remains to prove that

{Qn(x)}∞
n=0 is q -Appell. Using the fact that Dq[ f (ax)] = a[Dq f ](ax) . We have

DqU
(α/β )
n

(
x
β

;q

)
=

1
β

U (α/β )
n−1

(
x
β

;q

)
. It follows that DqQn(x) = [n]qQn−1(x) . This

ends the proof of the theorem. �

4.2. Orthogonal q -Appell polynomials of type II

In this section we determine those real sets in A (q) which are also orthogonal.
It is well known [11] that a set of real orthogonal polynomials satisfies a recurrence
relation of the form

Pn+1(x) = (Anx+Bn)Pn(x)+CnPn−1(x), n � 1, (24)

with
P0(x) = 1, P1(x) = A0x+B0.

Here An , Bn and Cn are real constants which do not depend on n .
If we q -differentiate (24) and assume that the polynomial set {Pn(x)} is q -Appell

of type II, we get:

[n+1]qPn(qx) = [n]q (Anx+Bn)Pn−1(qx)+AnPn(qx)+ [n−1]qCnPn−2(qx). (25)

Substituting n by n+1 and x by xq−1 in (25), it follows that

Pn+1(x) =
(

[n+1]qq−1An+1

[n+2]q−An+1
x+

[n+1]qBn+1

[n+2]q−An+1

)
Pn(x)+

[n]qCn+1

[n+2]q−An+1
Pn−1(x).

(26)
By comparing (24) and (26) we get

[n+1]qAn+1

[n+2]q−An+1
= qAn,

[n+1]qBn+1

[n+2]q−An+1
= Bn and

[n]qCn+1

[n+2]q−An+1
= Cn,
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so that

An = qn, Bn = B0 and Cn = C1(1−qn).

Hence, {Pn(x)} is given by

Pn+1(x) = (qnx+B0)Pn(x)+C1(1−qn)Pn−1(x), (27)

P0(x) = 1, P1(x) = x+B0.

From the recurrence relation of the Al-Salam Carlitz II polynomials (see [7, p. 538]),
one can see that the polynomial sequence {Rn(x)} with

Rn(x) = β nq(n
2)V

( α
β )

n

(
x
β

;q

)
,

satisfies the recurrence relation

xRn(x) = Rn+1(x)+ (qnx− (α + β ))Rn(x)−αβ (1−qn)Rn−1(x), (28)

with R0(x) = 1 and R1(x) = x− (α + β ) . It is therefore clear that

Pn(x) = β nq(n
2)V

( α
β )

n

(
x
β

;q

)
. (29)

where α + β = −B0 and αβ = −C1 .
We thus have the following theorem.

THEOREM 5. The set of q-Appell polynomials of type II which are also orthogo-
nal is given (27) or (29).

4.3. Quasi-orthogonal q -Appell polynomials of type II

THEOREM 6. If {Qn(x)}∞
n=0 is a q-Appell set of type II of quasi-orthogonal poly-

nomials, then there exist three reel numbers B0 , C1 and λ , such that

Qn+1(x) = (qnx+B0)Qn(x)+C1(1−qn)Qn−1(x)+
[n]q!
λ n

n−2

∑
k=0

λ k

[k]q!
Qk(x). (30)

Proof. Assume that {Qn(x)}∞
n=0 is a q -Appell set which is quasi-orthogonal and

{Pn(x)}∞
n=0 the related orthogonal family. From Proposition 3, there exist four se-

quences {An}∞
n=0 , {Bn}∞

n=0 , {Cn}∞
n=0 and {En}∞

n=0 with E0 = E1 = 0 such that

Qn+1(x) = (Anx+Bn)Qn(x)+CnQn−1(x)+En

n−2

∑
k=0

TkQk(x). (31)
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If we q -differentiate (31) and use the fact that {Qn(x)}∞
n=0 is a q -Appell set of type II,

we get after some simplifications

Qn+1(x) =
(

[n+1]qq−1An+1

[n+2]q−An+1
x+

[n+1]qBn+1

[n+2]q−An+1

)
Qn(x)

+
[n]qCn+1

[n+2]q−An+1
Qn−1(x)

+
En+1

[n+2]q−An+1

n−2

∑
k=0

[k+1]qTk+1Qk(x). (32)

By comparing (31) and (32) we get

An = qn, Bn = B0 and Cn = C1(1−qn),

and

EnTk =
En+1[k+1]qTk+1

[n+2]q−An+1
=

[k+1]qTk+1

[n+1]q
En+1,

For k = 0 and k = n−2, we obtain the following

En+1 =
[n+1]q

T1
En, Tn =

En+1

En+2

[n+2]q
[n]q

Tn−1. (33)

If, for a given k � 2, Ek = 0, it follows from (33) that Ek = 0 for all k . In this case
(31) becomes a three-term recurrence relation

Qn+1(x) = (Anx+Bn)Qn(x)+CnQn−1(x). (34)

In this case, from Theorem 5, it is seen that {Qn(x)}∞
n=0 is essentially the sequence of

Al-Salam Carlitz II polynomials. Thus, in this case, {Qn(x)}∞
n=0 is not a sequence of

quasi-orthogonal polynomials. Thus, we must have Ek �= 0 for k � 2.

Again, using (33), we have for all n � 0 the identities En =
[n]q!
Tn
1

and
Tn−1

[n]qTn
=

1
T1

. This last relation gives Tn =
Tn
1

[n]q!
. Seting T1 = λ , this ends the proof of the

theorem. �

THEOREM 7. Let {Qn(x)}∞
n=0 be a polynomial set. The following assertions are

equivalent:

1. {Qn(x)}∞
n=0 is quasi-orthogonal and is a q-Appell set of type II.

2. There exists three constants α , β and γ (β ,γ �= 0 ) such that

Qn(x) = β nq(n
2)V

( α
β )

n

(
x
β

;q

)
− β n−1q(n−1

2 )[n]q!
λ n V

( α
β )

n−1

(
x
β

;q

)
, (n � 1),

where V (a)
n (x;q) are the Al-Salam Carlitz II polynomials.
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Proof. Suppose first that {Qn(x)}∞
n=0 is quasi-orthogonal and is a q -Appell set of

type II. Then, by Theorem 6, the Qn ’s satisfy a recurrence relation of the form (30).
Let us define the polynomial set {Pn(x)}∞

n=0 by

Pn(x) =
[n]q!
λ n

n

∑
k=0

λ k

[k]q!
Qk(x). (35)

It is not difficult to see that

DqPn(x) =
[n]q!
λ n

n

∑
k=1

λ k

[k]q!
[k]qQk−1(qx)

= [n]q
[n−1]q!

λ n−1

n−1

∑
k=0

λ k

[k]q!
Qk(qx)

= [n]qPn−1(qx).

Hence, {Pn(x)}∞
n=0 is a q -Appell set of type II. Moreover, {Pn(x)}∞

n=0 is the orthogonal
set (see Proposition 2) related to {Qn(x)}∞

n=0 . By Theorem 5, there exist α and β such
that

Pn(x) = β nq(n
2)V

( α
β )

n

(
x
β

;q

)
.

Next, from (35), it follows easily that

Qn(x) = Pn(x)− [n]q!
λ n Pn−1(x)

= β nq(n
2)V

( α
β )

n

(
x
β

;q

)
− β n−1q(n−1

2 )[n]q!
λ n V

( α
β )

n−1

(
x
β

;q

)

The first implication of the theorem follows.
Conversely, assume that there exist three constants α , β and γ (β ,γ �= 0) such

that

Qn(x) = β nq(n
2)V

( α
β )

n

(
x
β

;q

)
− β n−1q(n−1

2 )[n]q!
λ n V

( α
β )

n−1

(
x
β

;q

)
, (n � 1).

It can be seen that {Qn(x)}∞
n=0 is a quasi-orthogonal set. It remains to prove that

{Qn(x)}∞
n=0 is a q -Appell set. Using the fact that Dq[ f (ax)] = a[Dq f ](ax) , we get

DqV
(α/β )
n

(
x
β

;q

)
=

[n]qq−n+1

β
V (α/β )

n−1

(
qx
β

;q

)
.

It follows that DqQn(x) = [n]qQn−1(qx) . This ends the proof of the theorem. �
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