CHARACTERIZATIONS OF CERTAIN SEQUENCES OF q-POLYNOMIALS

P. Nuionou Sadjang

Abstract. We provide a new characterization for those sequences of quasi-orthogonal polynomials which form also q-Appell sets.

1. Introduction

Throughout this paper, we use the following standard notations

$$
\mathbb{N}:=\{1,2,3, \ldots\}, \quad \mathbb{N}_{0}=\{0,1,2,3, \ldots\}=\mathbb{N} \cup\{0\} .
$$

Let $P_{n}(x), n=0,1,2, \ldots$ be a polynomial set, i.e. a sequence of polynomials with $P_{n}(x)$ of exact degree n. Assume further that

$$
\frac{d P_{n}(x)}{d x}=P_{n}^{\prime}(x)=n P_{n-1}(x) \quad \text { for } \quad n=0,1,2, \ldots
$$

Such polynomial sets are called Appell sets and received considerable attention since P. Appell [2] introduced them in 1880.

Let q be an arbitrary real number (with $q \neq 0,1$) and define the q-derivative [6] of a function $f(x)$ by means of

$$
\begin{equation*}
D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x}, \quad \text { if } x \neq 0 \tag{1}
\end{equation*}
$$

and $D_{q} f(0)=f^{\prime}(0)$ if f is differentiable at $x=0$, which furnishes a generalization of the differential operator $\frac{d}{d x}$.

A basic (q-)analogue of Appell sequences was first introduced by Sharma and Chak [9] as those polynomial sets $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ which satisfy

$$
\begin{equation*}
D_{q} P_{n}(x)=[n]_{q} P_{n-1}(x), \quad n=1,2,3, \cdots \tag{2}
\end{equation*}
$$

where $[n]_{q}=\left(1-q^{n}\right) /(1-q)$. They called them q-harmonic. Later, Al-Salam [1] studied these families and referred to them as q-Appell sets in analogy with ordinary Appell sets. Note that when $q \rightarrow 1$, (2) reduces to

$$
\frac{d P_{n}(x)}{d x}=n P_{n-1}(x), \quad n=1,2,3, \cdots
$$

Mathematics subject classification (2020): 33C65, 33C45, 33D05, 33D45, 11B68.
Keywords and phrases: Appell polynomial set, q-Bernoulli polynomials, q-Euler polynomials, orthogonal polynomials, quasi-orthogonal polynomials, q-difference equation.
so that we may think of q-Appell sets as a generalization of Appell sets. We will call these polynomial sets q-Appell sets of type I.

A sequence of polynomials $\left\{Q_{n}\right\}, n=0,1,2, \cdots \operatorname{deg} Q_{n}(x)=n$ is said to be quasi-orthogonal if there is an interval (a, b) and a non-decreasing function $\alpha(x)$ such that

$$
\int_{a}^{b} x^{m} Q_{n}(x) d \alpha(x) \begin{cases}=0 \text { for } & 0 \leqslant m \leqslant n-2 \\ \neq 0 \text { for } & 0 \leqslant m=n-1 \\ \neq 0 \text { for } & 0=m=n\end{cases}
$$

We say that two polynomial sets are related if one set is quasi-orthogonal with respect to the interval and the distribution of the orthogonality of the other set. Riesz [8] and Chihara [3] have shown that a necessary and sufficient condition for the quasi-orthogonality of the $\left\{Q_{n}(x)\right\}$ is that there exist non- zero constants, $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$, such that

$$
\begin{align*}
& Q_{n}(x)=a_{n} P_{n}(x)+b_{n} P_{n-1}(x) \\
& Q_{0}(x)=a_{0} P_{0}(x) \tag{3}
\end{align*}
$$

where the $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ are the related orthogonal polynomials.
In 1967, Al-Salam has given in a very short paper [1] a characterization of those sequences of orthogonal polynomials $\left\{P_{n}(x)\right\}$ which are also q-Appell sets. More precisely, He gave a characterization of those sequences of orthogonal polynomials for which $D_{q} P_{n}(x)=[n]_{q} P_{n-1}(x)$ for $n=1,2,3, \cdots$.

The purpose of this paper is to study those classes of polynomial sets $\left\{P_{n}(x)\right\}$ that are at the same time quasi-orthogonal sets and q-Appell sets of type I. Extension will be done to those polynomials $\left\{P_{n}(x)\right\}$ that satisfy

$$
D_{q} P_{n}(x)=[n]_{q} P_{n-1}(q x)
$$

The later polynomials will be called q-Appell polynomials of type II and appear already in [5] where some of their properties are given.

2. Preliminaries results and definitions

Let us introduce the so-called q-Pochhammer symbol

$$
(x ; q)_{n}= \begin{cases}(1-x)(1-x q) \ldots\left(1-x q^{n-1}\right) & n=1,2, \ldots \\ 1 & n=0 .\end{cases}
$$

For a non-negative integer n, the q-factorial is defined by

$$
[n]_{q}!=\prod_{k=0}^{n}[k]_{q} \quad \text { for } \quad n \geqslant 1, \quad \text { and } \quad[0]_{q}!=1
$$

The q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, \quad(0 \leqslant k \leqslant n) .
$$

We will use the following two q-analogues of the exponential function e^{x} (see for example [6, 7] and the references therein)

$$
\begin{equation*}
e_{q}(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{[k]_{q}!} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{q}(x)=\sum_{k=0}^{\infty} \frac{q^{\binom{k}{2}}}{[k]_{q}!} x^{k} \tag{5}
\end{equation*}
$$

These two functions are related by the equation (see [6])

$$
\begin{equation*}
e_{q}(x) E_{q}(-x)=1 \tag{6}
\end{equation*}
$$

The basic hypergeometric or q-hypergeometric function ${ }_{r} \phi_{s}$ is defined by the series

$$
{ }_{r} \phi_{s}\left(\left.\begin{array}{l}
a_{1}, \cdots, a_{r} \\
b_{1}, \cdots, b_{s}
\end{array} \right\rvert\, q ; z\right):=\sum_{k=0}^{\infty} \frac{\left(a_{1}, \cdots, a_{r} ; q\right)_{k}}{\left(b_{1}, \cdots, b_{s} ; q\right)_{k}}\left((-1)^{k} q^{\binom{k}{2}}\right)^{1+s-r} \frac{z^{k}}{(q ; q)_{k}},
$$

where

$$
\left(a_{1}, \cdots, a_{r}\right)_{k}:=\left(a_{1} ; q\right)_{k} \cdots\left(a_{r} ; q\right)_{k}
$$

The Al Salam-Carlitz I polynomials [7, p. 534] have the q-hypergeometric representation

$$
U_{n}^{(a)}(x ; q)=(-a)^{n} q^{\binom{n}{2}}{ }_{2} \phi_{1}\left(\begin{array}{c|c}
q^{-n}, x^{-1} & q ; \frac{q x}{a} \\
0 &) .
\end{array}\right.
$$

The Al-Salam Carlitz I polynomials fulfil the three-term recurrence relation

$$
x U_{n}^{(a)}(x ; q)=U_{n+1}^{(a)}(x ; q)+(a+1) q^{n} U_{n}^{(a)}(x ; q)-a q^{n-1}\left(1-q^{n}\right) U_{n-1}^{(a)}(x ; q),
$$

and the q-derivative rule

$$
D_{q} U_{n}^{(a)}(x ; q)=[n]_{q} U_{n-1}^{(a)}(x ; q)
$$

It is therefore clear that the Al-Salam Carlitz I polynomials form a q-Appell set.
The Al-Salam-Carlitz II polynomials [7, p. 537] have the q-hypergeometric representation

$$
V_{n}^{(a)}(x ; q)=(-a)^{n} q^{\left(-{ }_{2}^{2}\right)}{ }_{2} \phi_{0}\left(\begin{array}{c|c}
q^{-n}, x \\
- & q ; \frac{q^{n}}{a}
\end{array}\right) .
$$

Note that the Al Salam-Carlitz I polynomials and the Al Salam-Carlitz II polynomials are related in the following way:

$$
U_{n}^{(a)}\left(x, q^{-1}\right)=V_{n}^{(a)}(x ; q)
$$

The Al-Salam Carlitz II polynomials fulfil the three-term recurrence relation

$$
x V_{n}^{(a)}(x ; q)=V_{n+1}^{(a)}(x ; q)+(a+1) q^{-n} V_{n}^{(a)}(x ; q)+a q^{-2 n+1}\left(1-q^{n}\right) V_{n-1}^{(a)}(x ; q),
$$

and the q-derivative rule

$$
D_{q} V_{n}^{(a)}(x ; q)=q^{-n+1}[n]_{q} V_{n-1}^{(a)}(q x ; q)
$$

Let us introduce the modified Al-Salam Carlitz II polynomials $\mathscr{V}_{n}^{(a)}(x ; q)$ by the relation

$$
\begin{equation*}
\mathscr{V}_{n}^{(a)}(x ; q)=q^{\binom{n}{2}} V_{n}^{(a)}(x ; q) \tag{7}
\end{equation*}
$$

Then we have the following proposition.

Proposition 1. The polynomial sequence $\left\{\mathscr{V}_{n}^{(a)}(x ; q)\right\}_{n=0}^{\infty}$ is a q-Appell polynomial set of type II.

Proposition 2. (See [4, Theorem 1]) For $\left\{Q_{n}(x)\right\}$ to be a set of polynomials quasi-orthogonal with respect to an interval (a, b) and a distribution d $\alpha(x)$, it is necessary and sufficient that there exist a set of nonzero constants $\left\{T_{k}\right\}_{k=0}^{\infty}$ and a set of polynomials $\left\{P_{n}(x)\right\}$ orthogonal with respect to (a, b) and $d \alpha(x)$ such that

$$
\begin{equation*}
P_{n}(x)=\sum_{k=0}^{n} T_{k} Q_{k}(x), \quad n \geqslant 0 \tag{8}
\end{equation*}
$$

Proposition 3. (See [4, Theorem 2]) A necessary and suffucient condition that the set $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ where each $Q_{n}(x)$ is a polynomial of degree precisely n, be quasiorthogonal is that it satisfies

$$
Q_{n+1}(x)=\left(x+b_{n}\right) Q_{n}(x)-c_{n} Q_{n-1}(x)+d_{n} \sum_{k=0}^{n-2} T_{k} Q_{k}(x)
$$

for all n, with $d_{0}=d_{1}=0$.

Proposition 4. (See [1, Theorem 4.1]) If $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set which are also orthogonal, then there exists a non zero constant b such that

$$
Q_{n}(x)=b^{n} U_{n}^{(a / b)}\left(\frac{x}{b}\right)
$$

for all $n \geqslant 0$.

3. Some notes on q-Appell polynomials of type II

As mentioned earlier in the manuscript, q-Appell polynomials of type II are those polynomial sets $\left\{P_{n}\right\}$ satisfying the relation

$$
D_{q} P_{n}(x)=[n]_{q} P_{n-1}(q x)
$$

Let us recall that the following Cauchy product for infinite series applies

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} A_{n}\right)\left(\sum_{n=0}^{\infty} B_{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} A_{k} B_{n-k}\right) . \tag{9}
\end{equation*}
$$

In particular, if $A_{n}=\frac{a_{n} x^{n}}{[n]_{q}!}$ and $B_{n}=\frac{b_{n} x^{n}}{[n]_{q}!}$, then we have

$$
\left(\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{[n]_{q}!}\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n}}{[n]_{q}!}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{10}\\
k
\end{array}\right]_{q} a_{k} b_{n-k}\right) \frac{x^{n}}{[n]_{q}!} .
$$

3.1. Four equivalent statements

In this section, we give several characterizations of q-Appell sets of type II.
THEOREM 1. Let $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$ be a sequence of polynomials. Then the following are all equivalent:

1. $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set of type II.
2. There exists a sequence $\left(a_{k}\right)_{k \geqslant 0}$; independent of $n ; a_{0} \neq 0$; such that

$$
f_{n}(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{\left(\frac{n-k}{2}\right)} a_{k} x^{n-k}
$$

3. $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$ is generated by

$$
A(t) E_{q}(x t)=\sum_{n=0}^{\infty} f_{n}(x) \frac{t^{n}}{[n]_{q}!},
$$

where

$$
\begin{equation*}
A(t)=\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{[n]_{q}!}, \tag{11}
\end{equation*}
$$

is called the determining function for $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$.
4. There exists a sequence $\left(a_{k}\right)_{k \geqslant 0}$; independent of $n ; a_{0} \neq 0$; such that

$$
f_{n}(x)=\left(\sum_{k=0}^{\infty} \frac{a_{k} q^{\left(\frac{n-k}{2}\right)}}{[k]_{q}!} D_{q}{ }^{k}\right) x^{n} .
$$

Proof. First, we prove that $(1) \Longrightarrow(2) \Longrightarrow(3) \Longrightarrow(1)$.
$(1) \Longrightarrow(2)$. Since $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$ is a polynomial set, it is possible to write

$$
f_{n}(x)=\sum_{k=0}^{n} a_{n, k}\left[\begin{array}{l}
n \tag{12}\\
k
\end{array}\right]_{q} q^{\left(n_{2}^{n-k}\right)} x^{n-k}, \quad n=1,2, \ldots
$$

where the coefficients $a_{n, k}$ depend on n and k and $a_{n, 0} \neq 0$. We need to prove that these coefficients are independent of n. By applying the operator D_{q} to each member of (12) and taking into account that $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell polynomial set of type II, we obtain

$$
f_{n-1}(q x)=\sum_{k=0}^{n-1} a_{n, k}\left[\begin{array}{c}
n-1 \tag{13}\\
k
\end{array}\right]_{q} q^{\left({ }_{2-1-k}^{2}\right)}(q x)^{n-1-k}, \quad n=1,2, \ldots
$$

since $D_{q} x^{0}=0$. Shifting index $n \rightarrow n+1$ in (13) and making the substitution $x \rightarrow x q^{-1}$, we get

$$
f_{n}(x)=\sum_{k=0}^{n} a_{n+1, k}\left[\begin{array}{l}
n \tag{14}\\
k
\end{array}\right]_{q} q^{\binom{n-k}{2}} x^{n-k}, \quad n=0,1, \ldots
$$

Comparing (12) and (14), we have $a_{n+1, k}=a_{n, k}$ for all k and n, which means that $a_{n, k}=a_{k}$ is independent of n.
$(2) \Longrightarrow(3)$. From (2), and the identity (10), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} f_{n}(x) \frac{t^{n}}{[n]_{q}!} & \left.\left.=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{(n-k}\right)^{(n-k}\right) a_{k} x^{n-k}\right) \frac{t^{n}}{[n]_{q}!} \\
& =\left(\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{[n]_{q}!}\right)\left(\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{[n]_{q}!}(x t)^{n}\right) \\
& =A(t) E_{q}(x t) .
\end{aligned}
$$

$(3) \Longrightarrow(1)$. Assume that $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$ is generated by

$$
A(t) E_{q}(x t)=\sum_{n=0}^{\infty} f_{n}(x) \frac{t^{n}}{[n]_{q}!}
$$

Then, applying the operator D_{q} to each side of this equation,

$$
t A(t) E_{q}(q x t)=\sum_{n=0}^{\infty} D_{q} f_{n}(x) \frac{t^{n}}{[n]_{q}!}
$$

Moreover, we have

$$
t A(t) E_{q}(q x t)=\sum_{n=0}^{\infty} f_{n}(q x) \frac{t^{n+1}}{[n]_{q}!}=\sum_{n=0}^{\infty}[n]_{q} f_{n-1}(q x) \frac{t^{n}}{[n]_{q}!}
$$

By comparing the coefficients of t^{n}, we obtain (1).
Next, $(2) \Longleftrightarrow(4)$ is obvious. This ends the proof of the theorem.

3.2. Algebraic structure

We denote a given polynomial set $\left\{f_{n}(x)\right\}_{n=0}^{\infty}$ by a single symbol f and refer to $f_{n}(x)$ as the n-th component of f. We define (see $[2,10]$) on the set \mathscr{P} of all polynomial sets the following operation + . This operation is given by the rule that $f+g$ is the polynomial set whose n-th component is $f_{n}(x)+g_{n}(x)$ provided that the degree of $f_{n}(x)+g_{n}(x)$ is exactly n. We also define the operation $*$ (which appears here for the fist time) such that if f and g are two sets whose n-th components are, respectively,

$$
f_{n}(x)=\sum_{k=0}^{n} \alpha(n, k) x^{k}, \quad g_{n}(x)=\sum_{k=0}^{n} \beta(n, k) x^{k}
$$

then $f * g$ is the polynomial set whose n-th component is

$$
(f * g)_{n}(x)=\sum_{k=0}^{n} \alpha(n, k) q^{-\binom{k}{2}} g_{k}(x)
$$

If λ is a real or complex number, then λf is defined as the polynomial set whose n-th component is $\lambda f_{n}(x)$. We obviously have

$$
\begin{array}{r}
f+g=g+f \quad \text { for all } \quad f, g \in \mathscr{P} \\
\lambda f * g=(f * \lambda g)=\lambda(f * g)
\end{array}
$$

Clearly, the operation $*$ is not commutative on \mathscr{P}. One commutative subclass is the set \mathscr{A} of all Appell polynomials (see [2]).

In what follows, $\mathscr{A}(q)$ denotes the class of all q-Appell sets of type II.
In $\mathscr{A}(q)$ the identity element (with respect to $*$) is the q-Appell set of type II $\mathscr{I}=\left\{q^{\binom{n}{2}} x^{n}\right\}$. Note that \mathscr{I} has the determining function $A(t)=1$. This is due to the identity (5). Next we state the following Lemma.

Lemma 1. Let $f, g, h \in \mathscr{A}(q)$ with the determining functions $A(t), B(t)$ and $C(t)$ respectively. Then

1. $f+g \in \mathscr{A}(q)$ if $A(0)+B(0) \neq 0$,
2. $f+g$ belongs to the determining function $A(t)+B(t)$,
3. $f+(g+h)=(f+g)+h$.

Next we state and prove the following theorem.
THEOREM 2. If $f, g, h \in \mathscr{A}(q)$ with the determining functions $A(t), B(t)$ and $C(t)$ respectively, then

1. $f * g \in \mathscr{A}(q)$,
2. $f * g=g * f$,
3. $f * g$ belongs to the determining function $A(t) B(t)$,
4. $f *(g * h)=(f * g) * h$.

Proof. It is enough to prove the first part of the theorem. The rest follows directly. According to Theorem 1, we may put

$$
f_{n}(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{\binom{n-k}{2}} a_{k} x^{n-k}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{\binom{k}{2}} a_{n-k} x^{k}
$$

so that

$$
A(t)=\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{[n]_{q}!} .
$$

Hence

$$
\begin{aligned}
\sum_{n=0}^{\infty}(f * g)_{n}(x) \frac{t^{n}}{[n]_{q}!} & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} a_{n-k} g_{k}(x)\right) \frac{t^{n}}{[n]_{q}!} \\
& =\left(\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{[n]_{q}!}\right)\left(\sum_{n=0}^{\infty} g_{n}(x) \frac{t^{n}}{[n]_{q}!}\right) \\
& =A(t) B(t) E_{q}(x t) .
\end{aligned}
$$

This ends the proof of the theorem.
Corollary 1. Let $f \in \mathscr{A}(q)$ then there is a set $g \in \mathscr{A}(q)$ such that

$$
f * g=g * f=\mathscr{I} .
$$

Indeed g belongs to the determining function $(A(t))^{-1}$ where $A(t)$ is the determining function for f.

In view of Corollary 1 we shall denote this element g by f^{-1}. We are further motivated by Theorem 2 and its corollary to define $f^{0}=\mathscr{I}, f^{n}=f *\left(f^{n-1}\right)$ where n is a non-negative integer, and $f^{-n}=f^{-1} *\left(f^{-n+1}\right)$. We note that we have proved that the system $(\mathscr{A}(q), *)$ is a commutative group. In particular this leads to the fact that if

$$
f * g=h
$$

and if any two of the elements f, g, h are q-Appell of type II then the third is also q-Appell of type II.

Proposition 5. If f is a q-Appell set of type II with the determining function $A(t)$, if we put

$$
A^{-1}(t)=\sum_{n=0}^{\infty} b_{n} \frac{t^{n}}{[n]_{q}!},
$$

therefore

$$
x^{n}=q^{-\binom{n}{2}} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} b_{k} f_{n-k}(x)
$$

Proof. Since f is a q-Appell set of type II, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} q^{\binom{n}{2}} x^{n} \frac{t^{n}}{[n]_{q}!} & =(A(t))^{-1} A(t) E_{q}(x t) \\
& =\left(\sum_{n=0}^{\infty} b_{n} \frac{t^{n}}{[n]_{q}!}\right)\left(\sum_{n=0}^{\infty} f_{n}(x) \frac{t^{n}}{[n]_{q}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} b_{k} f_{n-k}(x)\right) \frac{t^{n}}{[n]_{q}!}
\end{aligned}
$$

The result follows by comparing the coefficients of t^{n}.

4. Characterization results

4.1. Quasi-orthogonal q-Appell polynomials of type I

In this section, we characterize quasi-orthogonal polynomial sets that are also q Appell set of type I.

THEOREM 3. If $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set which are quasi-orthogonal. Then, there exist three real numbers b, c and λ, such that

$$
\begin{equation*}
Q_{n+1}(x)=\left(x+b q^{n}\right) Q_{n}(x)-c q^{n-1}[n]_{q} Q_{n-1}(x)+d_{n} \sum_{k=0}^{n-2} \frac{\lambda^{k}}{[k]_{q}!} Q_{k}(x) \tag{15}
\end{equation*}
$$

Proof. Assume that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set which are quasi-orthogonal and $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ the related orthogonal family. From Proposition 3, there exist three sequences $\left\{a_{n}\right\}_{n=0}^{\infty},\left\{b_{n}\right\}_{n=0}^{\infty}$ and $\left\{d_{n}\right\}_{n=0}^{\infty}$ with $d_{0}=d_{1}=0$ such that

$$
\begin{equation*}
Q_{n+1}(x)=\left(x+b_{n}\right) Q_{n}(x)-c_{n} Q_{n-1}(x)+d_{n} \sum_{k=0}^{n-2} T_{k} Q_{k}(x) \tag{16}
\end{equation*}
$$

If we q-differentiate (16) and using the fact that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell, we get after some simplifications

$$
\begin{equation*}
Q_{n}(x)=\left(x+\frac{b_{n}}{q}\right) Q_{n-1}(x)-\frac{c_{n}}{q} \frac{[n-1]_{q}}{[n]_{q}} Q_{n-2}(x)+\frac{d_{n}}{q[n]_{q}} \sum_{k=0}^{n-3}[k+1]_{q} T_{k+1} Q_{k}(x) \tag{17}
\end{equation*}
$$

Next, if we replace n by $n-1$ in (16), we obtain

$$
\begin{equation*}
Q_{n}(x)=\left(x+b_{n-1}\right) Q_{n}(x)-c_{n-1} Q_{n-2}(x)+d_{n-1} \sum_{k=0}^{n-3} T_{k} Q_{k}(x) \tag{18}
\end{equation*}
$$

If we compare (17) and (18), we see that we should have

$$
\begin{equation*}
b_{n}=q b_{n-1}, \quad c_{n}=q \frac{[n]_{q}}{[n-1]_{q}} c_{n-1} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n}[k+1]_{q} T_{k+1}=q[n]_{q} d_{n-1} T_{k}, \quad k=0,1, \cdots n-3 . \tag{20}
\end{equation*}
$$

Equation (19) gives

$$
b_{n}=q^{n} b_{0}, \quad \text { and } \quad c_{n}=q^{n-1}[n]_{q} c_{1} .
$$

Next, (20) gives for $k=0$ and $k=n-3$ the relations

$$
\begin{equation*}
d_{n}=\frac{q[n]_{q}}{T_{1}} d_{n-1} \quad \text { and } \quad d_{n}=\frac{q[n]_{q} T_{n-1}}{[n-2]_{q} T_{n-2}} d_{n-1} \tag{21}
\end{equation*}
$$

If, for a given $k \geqslant 2, d_{k}=0$, it follows from (21) that $d_{k}=0$ for all k. In this case (16) becomes a three-term recurrence relation

$$
\begin{equation*}
Q_{n+1}(x)=\left(x+b_{n}\right) Q_{n}(x)-c_{n} Q_{n-1}(x) . \tag{22}
\end{equation*}
$$

In this case, from Proposition 4 , it is seen that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is essentially the sequence of Al-Salam Carlitz I polynomials. Thus, in this case, $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is not a sequence of quasi-orthogonal polynomials. Thus, we must have $d_{k} \neq 0$ for $k \geqslant 2$.

Again, using (21), we have for all $n \geqslant 0 \frac{T_{n-1}}{[n]_{q} T_{n}}=\frac{1}{T_{1}}$. This last relation gives $T_{n}=\frac{T_{1}^{n}}{[n]_{q}!}$. Seting $b_{0}=b, c_{1}=c$ and $T_{1}=\lambda$, this ends the proof or the theorem.

THEOREM 4. Let $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ be a monic polynomial set with $Q_{0}(x)=1$. The following assertions are equivalent:

1. $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is quasi-orthogonal and is a q-Appell set, $n \geqslant 1$.
2. There exists three constants α, β and $\lambda(\beta, \lambda \neq 0)$ such that

$$
Q_{n}(x)=\beta^{n} U_{n}^{(\alpha / \beta)}\left(\frac{x}{\beta} ; q\right)-\frac{\beta^{n}[n]_{q}}{\lambda} U_{n-1}^{(\alpha / \beta)}\left(\frac{x}{\beta} ; q\right), \quad n \geqslant 1,
$$

where $U_{n}^{(a)}(x ; q)$ are the Al-Salam Carlitz I polynomials.
Proof. Suppose first that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is quasi-orthogonal and is a q-Appell set, $n \geqslant 1$. Then, by Theorem 3, the Q_{n} 's satisfy a recurrence relation of the form (15). Let us define the polynomial set $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ by

$$
\begin{equation*}
P_{n}(x)=\frac{[n]_{q}!}{\lambda^{n}} \sum_{k=0}^{n} \frac{\lambda^{k}}{[k]_{q}!} Q_{k}(x) . \tag{23}
\end{equation*}
$$

It is not difficult to see that

$$
\begin{aligned}
D_{q} P_{n}(x) & =\frac{[n]_{q}!}{\lambda^{n}} \sum_{k=1}^{n} \frac{\lambda^{k}}{[k]_{q}!}[k]_{q} Q_{k-1}(x) \\
& =[n]_{q} \frac{[n-1]_{q}!}{\lambda^{n-1}} \sum_{k=0}^{n-1} \frac{\lambda^{k}}{[k]_{q}!} Q_{k}(x) \\
& =[n]_{q} P_{n-1}(x) .
\end{aligned}
$$

Hence, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set. Moreover, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ are the orthogonal set (see Proposition 2) related to $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$. By Proposition 4, there exist α and β such that

$$
P_{n}(x)=\beta^{n} U_{n}^{(\alpha / \beta)}\left(\frac{x}{\beta} ; q\right)
$$

Next, from (23), it follows that

$$
Q_{n}(x)=\frac{[n]_{q}!}{\lambda^{n}}\left(P_{n}(x)-P_{n-1}(x)\right)
$$

The first implication of the theorem follows.
Conversely, assume that there exists three constants α, β and $\lambda(\beta, \lambda \neq 0)$ such that

$$
Q_{n}(x)=\beta^{n} U_{n}^{(\alpha / \beta)}\left(\frac{x}{\beta} ; q\right)-\frac{\beta^{n}[n]_{q}}{\lambda} U_{n-1}^{(\alpha / \beta)}\left(\frac{x}{\beta} ; q\right), \quad n \geqslant 1
$$

It can be seen that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is quasi orthogonal set. It remains to prove that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is q-Appell. Using the fact that $D_{q}[f(a x)]=a\left[D_{q} f\right](a x)$. We have $D_{q} U_{n}^{(\alpha / \beta)}\left(\frac{x}{\beta} ; q\right)=\frac{1}{\beta} U_{n-1}^{(\alpha / \beta)}\left(\frac{x}{\beta} ; q\right)$. It follows that $D_{q} Q_{n}(x)=[n]_{q} Q_{n-1}(x)$. This ends the proof of the theorem.

4.2. Orthogonal q-Appell polynomials of type II

In this section we determine those real sets in $\mathscr{A}(q)$ which are also orthogonal. It is well known [11] that a set of real orthogonal polynomials satisfies a recurrence relation of the form

$$
\begin{equation*}
P_{n+1}(x)=\left(A_{n} x+B_{n}\right) P_{n}(x)+C_{n} P_{n-1}(x), \quad n \geqslant 1 \tag{24}
\end{equation*}
$$

with

$$
P_{0}(x)=1, \quad P_{1}(x)=A_{0} x+B_{0}
$$

Here A_{n}, B_{n} and C_{n} are real constants which do not depend on n.
If we q-differentiate (24) and assume that the polynomial set $\left\{P_{n}(x)\right\}$ is q-Appell of type II, we get:

$$
\begin{equation*}
[n+1]_{q} P_{n}(q x)=[n]_{q}\left(A_{n} x+B_{n}\right) P_{n-1}(q x)+A_{n} P_{n}(q x)+[n-1]_{q} C_{n} P_{n-2}(q x) \tag{25}
\end{equation*}
$$

Substituting n by $n+1$ and x by $x q^{-1}$ in (25), it follows that

$$
\begin{equation*}
P_{n+1}(x)=\left(\frac{[n+1]_{q} q^{-1} A_{n+1}}{[n+2]_{q}-A_{n+1}} x+\frac{[n+1]_{q} B_{n+1}}{[n+2]_{q}-A_{n+1}}\right) P_{n}(x)+\frac{[n]_{q} C_{n+1}}{[n+2]_{q}-A_{n+1}} P_{n-1}(x) \tag{26}
\end{equation*}
$$

By comparing (24) and (26) we get

$$
\frac{[n+1]_{q} A_{n+1}}{[n+2]_{q}-A_{n+1}}=q A_{n}, \quad \frac{[n+1]_{q} B_{n+1}}{[n+2]_{q}-A_{n+1}}=B_{n} \quad \text { and } \quad \frac{[n]_{q} C_{n+1}}{[n+2]_{q}-A_{n+1}}=C_{n}
$$

so that

$$
A_{n}=q^{n}, \quad B_{n}=B_{0} \quad \text { and } \quad C_{n}=C_{1}\left(1-q^{n}\right)
$$

Hence, $\left\{P_{n}(x)\right\}$ is given by

$$
\begin{gather*}
P_{n+1}(x)=\left(q^{n} x+B_{0}\right) P_{n}(x)+C_{1}\left(1-q^{n}\right) P_{n-1}(x) \tag{27}\\
P_{0}(x)=1, \quad P_{1}(x)=x+B_{0} .
\end{gather*}
$$

From the recurrence relation of the Al-Salam Carlitz II polynomials (see [7, p. 538]), one can see that the polynomial sequence $\left\{R_{n}(x)\right\}$ with

$$
R_{n}(x)=\beta^{n} q^{\binom{n}{2}} V_{n}^{\left(\frac{\alpha}{\beta}\right)}\left(\frac{x}{\beta} ; q\right)
$$

satisfies the recurrence relation

$$
\begin{equation*}
x R_{n}(x)=R_{n+1}(x)+\left(q^{n} x-(\alpha+\beta)\right) R_{n}(x)-\alpha \beta\left(1-q^{n}\right) R_{n-1}(x), \tag{28}
\end{equation*}
$$

with $R_{0}(x)=1$ and $R_{1}(x)=x-(\alpha+\beta)$. It is therefore clear that

$$
\begin{equation*}
P_{n}(x)=\beta^{n} q^{\binom{n}{2}} V_{n}^{\left(\frac{\alpha}{\beta}\right)}\left(\frac{x}{\beta} ; q\right) \tag{29}
\end{equation*}
$$

where $\alpha+\beta=-B_{0}$ and $\alpha \beta=-C_{1}$.
We thus have the following theorem.

THEOREM 5. The set of q-Appell polynomials of type II which are also orthogonal is given (27) or (29).

4.3. Quasi-orthogonal q-Appell polynomials of type II

THEOREM 6. If $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set of type II of quasi-orthogonal polynomials, then there exist three reel numbers B_{0}, C_{1} and λ, such that

$$
\begin{equation*}
Q_{n+1}(x)=\left(q^{n} x+B_{0}\right) Q_{n}(x)+C_{1}\left(1-q^{n}\right) Q_{n-1}(x)+\frac{[n]_{q}!}{\lambda^{n}} \sum_{k=0}^{n-2} \frac{\lambda^{k}}{[k]_{q}!} Q_{k}(x) \tag{30}
\end{equation*}
$$

Proof. Assume that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set which is quasi-orthogonal and $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ the related orthogonal family. From Proposition 3, there exist four sequences $\left\{A_{n}\right\}_{n=0}^{\infty},\left\{B_{n}\right\}_{n=0}^{\infty},\left\{C_{n}\right\}_{n=0}^{\infty}$ and $\left\{E_{n}\right\}_{n=0}^{\infty}$ with $E_{0}=E_{1}=0$ such that

$$
\begin{equation*}
Q_{n+1}(x)=\left(A_{n} x+B_{n}\right) Q_{n}(x)+C_{n} Q_{n-1}(x)+E_{n} \sum_{k=0}^{n-2} T_{k} Q_{k}(x) \tag{31}
\end{equation*}
$$

If we q-differentiate (31) and use the fact that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set of type II, we get after some simplifications

$$
\begin{align*}
Q_{n+1}(x)= & \left(\frac{[n+1]_{q} q^{-1} A_{n+1}}{[n+2]_{q}-A_{n+1}} x+\frac{[n+1]_{q} B_{n+1}}{[n+2]_{q}-A_{n+1}}\right) Q_{n}(x) \\
& +\frac{[n]_{q} C_{n+1}}{[n+2]_{q}-A_{n+1}} Q_{n-1}(x) \\
& +\frac{E_{n+1}}{[n+2]_{q}-A_{n+1}} \sum_{k=0}^{n-2}[k+1]_{q} T_{k+1} Q_{k}(x) . \tag{32}
\end{align*}
$$

By comparing (31) and (32) we get

$$
A_{n}=q^{n}, \quad B_{n}=B_{0} \quad \text { and } \quad C_{n}=C_{1}\left(1-q^{n}\right)
$$

and

$$
E_{n} T_{k}=\frac{E_{n+1}[k+1]_{q} T_{k+1}}{[n+2]_{q}-A_{n+1}}=\frac{[k+1]_{q} T_{k+1}}{[n+1]_{q}} E_{n+1}
$$

For $k=0$ and $k=n-2$, we obtain the following

$$
\begin{equation*}
E_{n+1}=\frac{[n+1]_{q}}{T_{1}} E_{n}, \quad T_{n}=\frac{E_{n+1}}{E_{n+2}} \frac{[n+2]_{q}}{[n]_{q}} T_{n-1} \tag{33}
\end{equation*}
$$

If, for a given $k \geqslant 2, E_{k}=0$, it follows from (33) that $E_{k}=0$ for all k. In this case (31) becomes a three-term recurrence relation

$$
\begin{equation*}
Q_{n+1}(x)=\left(A_{n} x+B_{n}\right) Q_{n}(x)+C_{n} Q_{n-1}(x) \tag{34}
\end{equation*}
$$

In this case, from Theorem 5, it is seen that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is essentially the sequence of Al-Salam Carlitz II polynomials. Thus, in this case, $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is not a sequence of quasi-orthogonal polynomials. Thus, we must have $E_{k} \neq 0$ for $k \geqslant 2$.

Again, using (33), we have for all $n \geqslant 0$ the identities $E_{n}=\frac{[n]_{q}!}{T_{1}^{n}}$ and $\frac{T_{n-1}}{[n]_{q} T_{n}}=$ $\frac{1}{T_{1}}$. This last relation gives $T_{n}=\frac{T_{1}^{n}}{[n]_{q}!}$. Seting $T_{1}=\lambda$, this ends the proof of the theorem.

THEOREM 7. Let $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ be a polynomial set. The following assertions are equivalent:

1. $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is quasi-orthogonal and is a q-Appell set of type II.
2. There exists three constants α, β and $\gamma(\beta, \gamma \neq 0)$ such that

$$
Q_{n}(x)=\beta^{n} q^{\binom{n}{2}} V_{n}^{\left(\frac{\alpha}{\beta}\right)}\left(\frac{x}{\beta} ; q\right)-\frac{\beta^{n-1} q^{\left(\frac{n-1}{2}\right)}[n]_{q}!}{\lambda^{n}} V_{n-1}^{\left(\frac{\alpha}{\beta}\right)}\left(\frac{x}{\beta} ; q\right), \quad(n \geqslant 1)
$$

where $V_{n}^{(a)}(x ; q)$ are the Al-Salam Carlitz II polynomials.

Proof. Suppose first that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is quasi-orthogonal and is a q-Appell set of type II. Then, by Theorem 6, the Q_{n} 's satisfy a recurrence relation of the form (30). Let us define the polynomial set $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ by

$$
\begin{equation*}
P_{n}(x)=\frac{[n]_{q}!}{\lambda^{n}} \sum_{k=0}^{n} \frac{\lambda^{k}}{[k]_{q}!} Q_{k}(x) \tag{35}
\end{equation*}
$$

It is not difficult to see that

$$
\begin{aligned}
D_{q} P_{n}(x) & =\frac{[n]_{q}!}{\lambda^{n}} \sum_{k=1}^{n} \frac{\lambda^{k}}{[k]_{q}!}[k]_{q} Q_{k-1}(q x) \\
& =[n]_{q} \frac{[n-1]_{q}!}{\lambda^{n-1}} \sum_{k=0}^{n-1} \frac{\lambda^{k}}{[k]_{q}!} Q_{k}(q x) \\
& =[n]_{q} P_{n-1}(q x) .
\end{aligned}
$$

Hence, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set of type II. Moreover, $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is the orthogonal set (see Proposition 2) related to $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$. By Theorem 5, there exist α and β such that

$$
P_{n}(x)=\beta^{n} q^{\binom{n}{2}} V_{n}^{\left(\frac{\alpha}{\beta}\right)}\left(\frac{x}{\beta} ; q\right)
$$

Next, from (35), it follows easily that

$$
\begin{aligned}
Q_{n}(x) & =P_{n}(x)-\frac{[n] q!}{\lambda^{n}} P_{n-1}(x) \\
& =\beta^{n} q^{\binom{n}{2}} V_{n}^{\left(\frac{\alpha}{\beta}\right)}\left(\frac{x}{\beta} ; q\right)-\frac{\beta^{n-1} q^{\binom{n-1}{2}}[n]_{q}!}{\lambda^{n}} V_{n-1}^{\left(\frac{\alpha}{\beta}\right)}\left(\frac{x}{\beta} ; q\right)
\end{aligned}
$$

The first implication of the theorem follows.
Conversely, assume that there exist three constants α, β and $\gamma(\beta, \gamma \neq 0)$ such that

$$
Q_{n}(x)=\beta^{n} q^{\binom{n}{2}} V_{n}^{\left(\frac{\alpha}{\beta}\right)}\left(\frac{x}{\beta} ; q\right)-\frac{\left.\beta^{n-1} q^{(n-1} 2\right)}{\lambda^{n}}[n]_{q}!V_{n-1}^{\left(\frac{\alpha}{\beta}\right)}\left(\frac{x}{\beta} ; q\right), \quad(n \geqslant 1)
$$

It can be seen that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a quasi-orthogonal set. It remains to prove that $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$ is a q-Appell set. Using the fact that $D_{q}[f(a x)]=a\left[D_{q} f\right](a x)$, we get

$$
D_{q} V_{n}^{(\alpha / \beta)}\left(\frac{x}{\beta} ; q\right)=\frac{[n]_{q} q^{-n+1}}{\beta} V_{n-1}^{(\alpha / \beta)}\left(\frac{q x}{\beta} ; q\right)
$$

It follows that $D_{q} Q_{n}(x)=[n]_{q} Q_{n-1}(q x)$. This ends the proof of the theorem.

REFERENCES

[1] W. A. AL-Salam, q-Appell polynomials, Ann. Mat. Pura Appl. vol 774 (1967), pp. 31-45.
[2] P. Appell, Une classe de polynomes, Annalles scientifique, Ecole Normale Sup., ser. 2, vol. 9 (1880), pp. 119-144.
[3] T. S. Chihara, On quasi-orthogonal polynomials, Proc. Amer. Math. Soc., 8 (1957), pp. 765-767.
[4] D. Dickinson, On quasi-orthogonal polynomials, Proc. Amer. Math. Soc., 12 (1961), pp. 185-194.
[5] T. ERNST, A comprehensive treatment of q-calculus, Birkhäuser (2012).
[6] V. Kac, P. Cheung, Quantum calculus, Springer, (2001).
[7] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and their q-Analogues, Springer, Berlin, (2010).
[8] M. RIESZ, Sur le problème des moments. Troisième note, Arkiv för Mathematik Astronomi och Fysik, 17 (1923), pp. 1-52.
[9] A. Sharma, A. CHAK, The basic analogue of a class of polynomials, Revisita di Matematica della Università di Parma, vol 5 (1954) pp. 15-38.
[10] I. M. SHEFFER, On sets of polynomials and associated linear functional operator and equations, Amer. J. Math. 53 (1931), pp. 15-38.
[11] G. SzEGO, Ein Beitrag zur Theorie der Thetafunktionen, Preussiche Akademie der Wissenschaften, Sitzung der phys.-math. Klasse, (1926), pp. 242-251.

