
Journal of
Classical

Analysis

Volume 23, Number 1 (2024), 1–9 doi:10.7153/jca-2024-23-01

GENERALIZATION OF GRACE’S THEOREM,

SCHUR–SZEGÖ COMPOSITION AND COHN–EGERVÁRY

THEOREM FOR BICOMPLEX POLYNOMIALS

ASHISH KUMAR ∗ AND B. A. ZARGAR

Abstract. The aim of this paper is to extend the domain of the Grace’s theorem, Schur-Szegö
composition theorem and Cohn-Egerváry theorem from the set of complex numbers to the set of
bicomplex numbers.

1. Introduction

Corrado Segre published a paper [5] in 1892, in which he studied an infinite set
of algebra whose elements he called bicomplex numbers. The work of Segre remained
unnoticed for almost a century, but recently mathematicians have started taking interest
in the subject and a new theory of special functions has started coming up [1, 3]. In this
paper, we introduce the mathematical tools necessary to investigate Grace’s theorem,
Schur-Szegö composition theorem and Cohn-Egerváry theorem for bicomplex poly-
nomials. This paper has four sections viz, first section covers some basic knowledge
about bicomplex numbers, second section contains main results, third section contains
required lemmas and the final section contains proofs of the results.

1.1. Preliminary definitions and notations

The set BC of bicomplex numbers is defined as BC = {Z : Z = z1 + jz2;z1,z2 ∈
C} , where C is the set of complex numbers with the imaginary unit i such that i j =
ji = k and i2 = j2 = −k2 = −1. Here k is known as a hyperbolic imaginary unit.
The bicomplex numbers are the complex numbers with complex coefficients whereas,
quaternions is a hypercomplex number that can be presented as linear combination

X = x0 + ix1 + jx2 + kx3

where i, j,k are units such that i2 = j2 = k2 = −1. Also, i j = − ji = k , jk = −k j = i
and ki = −ik = j .
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Addition and multiplication on BC is defined in the similar fashion as is defined
on C , it can be hence observed that BC forms a commutative ring. However due to the
presence of zero-divisors, BC is not a field. The set of zero-divisors in BC is given as:

O = {z1 + jz2 ∈ BC : z2
1 + z2

2 = 0} = {a(1± i j) : a ∈ C}.
Now as z1 = x1 + iy1 , z2 = x2 + iy2 , x1,x2,y1,y2 ∈R , we therefore have Z = z1 + jz2 =
x1 + ix2 + jy1 + jiy2. Thus BC can be viewed as a real vector space isomorphic to R4

via the map x1 + ix2 + jy1 + jiy2 → (x1,x2,y1,y2).

1.1.1. Conjugation of bicomplex numbers

As the structure of BC consists of two imaginary units and one hyperbolic unit in
it, therefore there are three possible conjugations on this structure:

1. Z := z1 + j z2 (the bar-conjugation);

2. Z† := z1 − jz2 (the †-conjugation);

3. Z∗ := (Z
†
) = Z† = z1− j z2 (the ∗ -conjugation).

1.1.2. Idempotent representation

One of the most important presentation of bicomplex numbers is idempotent rep-
resentation. The bicomplex number e = 1+i j

2 , e† = 1−i j
2 are linearly independent in

the linear space BC over C . From the simple calculations, it can be easily seen that
e+ e† = 1, e− e† = i j , e.e† = 0, e2 = e and (e†)2 = e† . From the simple calculations
again it can be seen that any bicomplex number Z = z1 + jz2 can be uniquely written as
Z = (z1 − iz2)e+(z1 + iz2)e† and this unique representation of the bicomplex numbers
is known as their idempotent representation.

1.1.3. Norm

If Z = z1 + jz2 = ζ1e+ ζ2e† , then the norm function ‖‖ : BC → R+(R+ denotes
the set of all non-negative real numbers) is defined as:

‖Z‖ = {|z1|2 + |z2|2}1/2 =
{ |ζ1|2 + |ζ2|2

2

}
.

1.1.4. Auxiliary complex spaces

From the idempotent representation of any bicomplex number Z = z1 + jz2 as
Z = (z1 − iz2)e+(z1 + iz2)e† , we get the idea of defining two spaces A = {z1 − iz2 :
z1,z2 ∈C} and A = {z1 + iz2 : z1,z2 ∈C} , known as auxiliary complex spaces. Though
A and A contain same elements as in C but this convenient notation are used for
special representation of elements in the sense that each Z = z1 + jz2 = (z1 − iz2)e+
(z1 + iz2)e† ∈ BC associates the points (z1 − iz2) ∈ A and (z1 + iz2) ∈ A and also to
each point (z1 − iz2,z1 + iz2) ∈ A×A , there is a unique point in BC .
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1.1.5. Cartesian product in BC

BC -cartesian set determined by X1 ⊂ A and X2 ⊂ A is defined as X1 ×e X2 :=
{z1 + jz2 ∈ BC : z1 + jz2 = ω1e+ ω2e†,(ω1,ω2) ∈ X1×X2} .

1.1.6. BC -discus

An open discus D(a;r1,r2) with centre a = a1e+a2e† and radii r1 > 0, r2 > 0 is
defined as

D(a;r1,r2) =B(a1,r1)×eB(a2,r2)= {w1e+w2e
† ∈BC : |w1−a1|< r1, |w2−a2|< r2}

and a closed discus D(a;r1,r2) with centre a = a1e+a2e† and radii r1 > 0, r2 > 0 is
defined as

D(a;r1,r2)= B(a1,r1)×eB(a2,r2)= {w1e+w2e
† ∈BC : |w1−a1|� r1, |w2−a2|� r2},

where B(z,r) and B(z,r) respectively represent open and closed ball with centre z and
radius r .

It is worth here to mention that D(a;r1,r2) , the product of two disks of respec-
tively radii r1 and r2 , geometrically represents a duocylinder or double cylinder in
4-dimensional Euclidean space. This duocylinder or double cylinder in 4-dimensional
Euclidean space is analogous to a cylinder in 3-dimensional Euclidean space, which is
the cartesian product of a disk with a line segment.

1.1.7. BC -disc

If both r1 > 0 and r2 > 0 are equal to r , then the discus is called a BC−Disc and
is denoted by D(a;r,r) = D(a;r).

1.2. Polynomial of a bicomplex variable

A bicomplex polynomial of degree n is a function of the form

P(Z) =
n

∑
i=0

AiZ
i, An �= 0,

where Ai for all i = 0,1,2, . . . ,n are bicomplex numbers and Z is a bicomplex variable.
Now if we write Z = z1 + jz2 = ζ1e+ζ2e† and Ai = αie+βie† for all i = 0,1,2, . . . ,n,
then Zi = ζ i

1e+ ζ i
2e

† and we can re-write our polynomial in the idempotent represen-
tation as

P(Z) =
n

∑
i=0

(αiζ i
1)e+

n

∑
i=0

(βiζ i
2)e

† = f1(ζ1)e+ f2(ζ2)e†.

Now if we denote the set of distinct zeros of f1 and f2 by S1 and S2 , and if S denotes
the set of distinct zeros of the polynomial P , then

S = S1e+S2e
†,

and thus the following three cases fully describe the structure of the null-set of the
polynomial P(Z) of degree n:
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1. If both polynomials f1 and f2 are of degree at least one, and if S1 = {z1,1,z1,2, . . . ,
z1,k} and S2 = {z2,1,z2,2, . . . ,z2,l} , then the set of distinct zeros of the polynomial
P(z) is given by

S = {Zs,t = z1,se+ z2,te
† : s = 1, . . . ,k,t = 1, . . . , l}.

2. If f1 is identically zero, then S1 = C and S2 = {z2,1,z2,2, . . . ,z2,l} , with l � n.
Hence

S = {Ztλ + z2,te
† : λ ∈ C,t = 1, . . . , l}.

Similarly, if f2 is identically zero, then S2 = C and S1 = {z1,1,z1,2, . . . ,z1,k} ,
with k � n . Hence

S = {Zs = z1,se+ λe† : λ ∈ C,s = 1, . . . ,k}.

3. If all the coefficients Ai with the exception A0 = α0e+ β0e† are complex multi-
ples of e (respectively of e† ), but β0 �= 0 (respectively α0 �= 0) , then polynomial
P has no zeros.

1.3. Apolarity for bicomplex polynomials

Two bicomplex polynomials

P(Z) =
n

∑
j=0

(
n
j

)
AjZ

j =
( n

∑
j=0

(
n
j

)
α jζ j

1

)
e+

( n

∑
j=0

(
n
j

)
β jζ j

2

)
e† = p1(ζ1)e+ p2(ζ2)e†

and

Q(Z) =
n

∑
j=0

(
n
j

)
BjZ

j =
( n

∑
j=0

(
n
j

)
ω jζ j

1

)
e+

( n

∑
j=0

(
n
j

)
ν jζ j

2

)
e† = q1(ζ1)e+q2(ζ2)e†

are said to be apolar if

A0Bn −
(

n
1

)
A1Bn−1 +

(
n
2

)
A2Bn−2 + · · ·+(−1)nAnB0

= (α0e+ β0e
†)(ωne+ νne

†)−
(

n
1

)
(α1e+ β1e

†)(ωn−1e+ νn−1e
†)

+ (α2e+ β2e
†)(ωn−2e+ νn−2e

†)+ · · ·+(−1)n(αne+ βne
†)(ω0e+ ν0e

†)

=
(

αoωn−
(

n
2

)
α1ωn−1 +

(
n
1

)
α2ωn−2 + · · ·+(−1)nαnω0

)
e

+
(

βoνn −
(

n
2

)
β1νn−1 +

(
n
1

)
β2νn−2 + · · ·+(−1)nβnν0

)
e†

= 0
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that is, if

αoωn−
(

n
1

)
α1ωn−1 +

(
n
2

)
α2ωn−2 + · · ·+(−1)nαnω0 = 0 , (1)

βoνn−
(

n
1

)
β1νn−1 +

(
n
2

)
β2νn−2 + · · ·+(−1)nβnν0 = 0. (2)

From (1) and (2), it is clear that P(Z) and Q(Z) are said to be apolar, if the coefficients
of their corresponding idempotent parts satisfy the following two conditions simultane-
ously

αoωn−
(

n
1

)
α1ωn−1 +

(
n
2

)
α2ωn−2 + · · ·+(−1)nαnω0 = 0

and

βoνn−
(

n
1

)
β1νn−1 +

(
n
2

)
β2νn−2 + · · ·+(−1)nβnν0 = 0.

Let us state three well known results on polynomials, whose analogues for bicomplex
polynomials will be established in this paper.

THEOREM 1.1. (Grace’s theorem [2]) If P(z) =
n

∑
j=0

(
n
j

)
Ajz

j and Q(z) =

n

∑
j=0

(
n
j

)
Bjz

j , AnBn �= 0 are apolar polynomials and if one of them has all its zeros

in a circular region C , then the other will also have atleast one zero in C .

THEOREM 1.2. (Schur-Szegö composition theorem [2]) Let P(z) =
n

∑
j=0

(
n
j

)
Ajz

j

and Q(z) =
n

∑
j=0

(
n
j

)
Bjz

j be two polynomials of degree n and the composite polynomial

be R(z) =
n

∑
j=0

(
n
j

)
AjB jz

j . If all the zeros of P(z) lie in a circular region C , then every

zero γ of R(z) has the form γ = −αβ where α is suitably chosen point in C and β
is a zero of Q(z) .

THEOREM 1.3. (Cohn-Egerváry theorem [2]) If all the zeros of P(z)=
n

∑
j=0

(
n
j

)
Ajz

j

lie in the circle |z|< r and if all the zeros of Q(z) =
n

∑
j=0

(
n
j

)
Bjz

j lie in |z|< s, then all

the zeros of R(z) =
n

∑
j=0

(
n
j

)
AjB jz

j lie in |z| < rs.
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2. Main results

In this paper we prove the analogue of Grace’s theorem, Schur-Szegö composition
and Cohn-Egerváry theorem for bicomplex polynomials as follows:

THEOREM 1. If two bicomplex polynomials P(Z) =
n

∑
j=0

(
n
j

)
AjZ

j and Q(Z) =

n

∑
j=0

(
n
j

)
BjZ

j are apolar and if any one of them has all its zeros in a closed discus

D(c;r1,r2) , where c = c1e+ c2e† then other will have atleast one zero in D(c;r1,r2) .

THEOREM 2. Let P(Z) =
n

∑
j=0

(
n
j

)
AjZ

j and Q(Z) =
n

∑
j=0

(
n
j

)
BjZ

j be two bicom-

plex polynomials and the composite polynomial be R(Z) =
n

∑
j=0

(
n
j

)
AjB jZ

j . If all the

zeros of P(Z) lie in a closed discus D(c;r1,r2) , then every zero γ = γ1e+ γ2e† of R(z)
has the form γ = −μδ where μ = μ1e+ μ2e† is suitably chosen point in D(c;r1,r2)
and δ = δ1e+ δ2e† is a zero of Q(Z) .

THEOREM 3. If all the zeros of a polynomial P(Z) =
n

∑
j=0

(
n
j

)
AjZ

j lie in open

discus D(c;r1,r2) and if all the zeros of the polynomial Q(Z) =
n

∑
j=0

(
n
j

)
BjZ

j lie in

a closed discus D(c;s1,s2) , then all the zeros of the composite polynomial R(Z) =
n

∑
j=0

(
n
j

)
AjB jZ

j lie in an open discus D(c;r1s1,r2s2) .

3. Lemmas

Before presenting the main results, here we present a lemma [4] that is required
for the proofs of the theorems:

LEMMA 1. Let F(z) be a bicomplex holomorphic function defined in a domain
X = X1e+X2e† := {ζ1e1+ζ2e† : ζ1 ∈X1,ζ2 ∈X2} such that F(z) = f1(ζ1)e+ f2(ζ2)e† ,
for all z = ζ1e+ ζ2e† ∈ X . Then F(z) has zero on X if and only if f1(ζ1) and f2(ζ2)
both have zero at ζ1 in X1 and at ζ2 in X2 respectively.
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4. Proofs of theorems

Proof of Theorem 1. Consider the two bicomplex polynomials in their idempotent
representation as

P(Z) =
n

∑
j=0

(
n
j

)
AjZ

j = p1(ζ1)e+ p2(ζ2)e†

and

Q(Z) =
n

∑
j=0

(
n
j

)
BjZ

j = q1(ζ1)e+q2(ζ2)†.

Without loss of generality, let us suppose that all the zeros of P(Z)= p1(ζ1)e+ p2(ζ2)e†

lie in a discus D(c;r1,r2) , where c = c1e+ c2e† . Therefore by Lemma 1, p1(ζ1) and
p2(ζ2) have all their zeros in

X1 = {ζ1 ∈ A : |ζ1−c1|� r1}⊂C and X2 = {ζ2 ∈ A : |ζ2−c2|� r2}⊂C respectively.

Since P(Z) and Q(Z) are apolar bicomplex polynomials which implies by section 1.3
that p1(ζ1) and q1(ζ1) , p2(ζ2) and q2(ζ2) are apolar simultaneously. Therefore by
Theorem 1.3, we conclude that atleast one zero of q1(ζ1) and q2(ζ2) lie in X1 and X2

respectively.
Hence by Lemma 1, Q(Z) = q1(ζ1)e+q2(ζ2)† has atleast one zero in X = X1e+

X2e†.
That is, Q(Z) = q1(ζ1)e+q2(ζ2)† has atleast one zero in a discus D(c;r1,r2) .
This completes the proof of Theorem 1. �

Proof of Theorem 2. Consider the two bicomplex polynomials in their idempotent
representation as

P(Z) =
n

∑
j=0

(
n
j

)
AjZ

j = p1(ζ1)e+ p2(ζ2)e†

and

Q(Z) =
n

∑
j=0

(
n
j

)
BjZ

j = q1(ζ1)e+q2(ζ2)e†.

Now we have the composite polynomial

R(Z) =P(Z)∗Q(Z)

=
n

∑
j=0

(
n
j

)
AjB jZ

j

=R1(ζ1)e+R2(ζ2)e†,

where R1(ζ1) = (p1 ∗ q1)(ζ1) and R2(ζ1) = (p2 ∗ q2)(ζ2) .
It is given that δ = δ1e+ δ2e† is a zero of Q(Z) = q1(ζ1)e+q2(ζ2)e† , therefore

δ1 and δ2 are the zeros of q1(ζ1) and q2(ζ2) respectively. Also ν = ν1e+ ν2e† is a
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suitably chosen point in a discus D(c;r1,r2) , therefore ν1 ∈ X1 = {ζ1 ∈ A : |ζ1− c1| �
r1} ⊂ C and ν2 ∈ X2 = {ζ2 ∈ A : |ζ2 − c2| � r2} ⊂ C respectively. With the help of
Theorem 1.3, we conclude that all the zeros of R1(ζ1) = (p1 ∗ q1)(ζ1) and R2(ζ1) =
(p2 ∗ q2)(ζ2) are of the form γ1 = −ν1δ1 and γ2 = −ν2δ2 respectively. Therefore by
Lemma 1, all the zeros of the polynomial R(Z) = R1(ζ1)e+R2(ζ2)e† are of the form

γ =γ1e+ γ2e
†

=(−ν1δ1)e+(−ν2δ2)e†

=−{ν1δ1e+ ν2δ2}
=−νδ .

This completes the proof of Theorem 2. �

Proof of Theorem 3. Consider the two bicomplex polynomials in their idempotent
representation as

P(Z) =
n

∑
j=0

(
n
j

)
AjZ

j = p1(ζ1)e+ p2(ζ2)e†

and

Q(Z) =
n

∑
j=0

(
n
j

)
BjZ

j = q1(ζ1)e+q2(ζ2)e†.

Now we have the composite polynomial

R(Z) =P(Z)∗Q(Z)

=
n

∑
j=0

(
n
j

)
AjB jZ

j

=R1(ζ1)e+R2(ζ2)e†,

where R1(ζ1) = (p1 ∗ q1)(ζ1) and R2(ζ1) = (p2 ∗ q2)(ζ2) .
It is given that δ = δ1e+ δ2e† is a zero of Q(Z) = q1(ζ1)e+q2(ζ2)e† , therefore

δ1 and δ2 are the zeros of q1(ζ1) and q2(ζ2) respectively. Therefore from the proof
of the Theorem 2, we conclude that every zero of R1(ζ1) = (p1 ∗q1)(ζ1) and R2(ζ2) =
(p2 ∗ q2)(ζ2) are of the form γ1 = −ν1δ1 and γ2 = −ν2δ2 .

This implies that

|γ1| =|−ν1δ1|
=|ν1||δ1|
< r1s1.

Similarly, |γ2| < r2s2 . Thus we conclude that all the zeros of R1(ζ1) lie in X1 = {ζ1 ∈
A : |ζ1 − c1| < r1s1} ⊂ C and all the zeros of R2(ζ2) lie in X2 = {ζ2 ∈ A : |ζ2 − c2| <
r2s2} ⊂ C . Hence by Lemma 1, polynomial R(Z) = R1(ζ1)e + R2(ζ2)e† has all its
zeros in X1e+X2e† = D(c : r1s1,r2s2) .
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This completes the proof of Theorem 3. �
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