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SERIES INVOLVING POLYGAMMA FUNCTIONS

AND CERTAIN VARIANT EULER HARMONIC SUMS

ANTHONY SOFO AND JUNESANG CHOI ∗

Abstract. In this paper, we begin by introducing integral formulas related to the psi functions.
Following that, we delve into specific series that involve polygamma functions, leveraging Eule-
rian numbers to express them as finite series of double integrals. Subsequently, we employ the
findings from the second part to study variant Euler harmonic sums. Finally, we offer closed-
form evaluations for a number of distinct instances of these variant Euler harmonic sums.

1. Introduction and preliminaries

The generalized harmonic numbers H(s)
n (u) of order s are defined by

H(s)
n (u) :=

n

∑
j=1

1
( j +u)s (s ∈ C, u ∈ C\Z�−1, n ∈ N) , (1)

and H(s)
n := H(s)

n (0) are the n -harmonic numbers of order s . The classical harmonic

numbers Hn := H(1)
n are given by

Hn =
n

∑
j=1

1
j

= γ + ψ (n+1) (n ∈ Z�0) and H0 := 0. (2)

Here γ is the familiar Euler-Mascheroni constant (see, e.g., [23, Section 1.2]) and ψ (z)
denotes the digamma (or psi) function defined by

ψ (z) :=
d
dz

(logΓ(z)) =
Γ′ (z)
Γ(z)

(z ∈ C\Z�0) , (3)

where Γ(z) is the familiar Gamma function (see, e.g., [23, Section 1.1]). Among the
many identities associated with the psi function, the following one is brought to atten-
tion (see, e.g., [23, Section 1.3]):

ψ(z+n) = ψ(z)+
n

∑
k=1

1
z+ k−1

(n ∈ N). (4)
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Here and elsewhere, an empty sum is assumed to be nil. Here and in the sequel, let C ,
R , and Z stand for the sets of complex numbers, real numbers, and integers, respec-
tively. Also let S>� , S�� , S<� , and S�� be the subsets of the set S (R or Z) which are
greater than, greater than or equal to, less than , and less than or equal to some � ∈ R ,
respectively. Particularly, put N := Z�1 . The polygamma function ψ(k)(z) defined by

ψ(k)(z) :=
dk

dzk {ψ(z)} = (−1)k+1 k!
∞

∑
r=0

1

(r+ z)k+1 = (−1)k+1 k!ζ (k+1,z) (5)

(k ∈ N; z ∈ C\Z�0)

has the recurrence

ψ(k)(z+1) = ψ(k)(z)+
(−1)k k!

zk+1 (k ∈ Z�0; z ∈ C\Z�0) . (6)

Here ζ (s,z) is the generalized (or Hurwitz) zeta function defined by

ζ (s,z) =
∞

∑
m=0

1
(m+ z)s (ℜ(s) > 1, z ∈ C\Z�0) . (7)

The following identities are noteworthy:

ζ (s,1) = ζ (s) and ζ (s,z) = ζ (s,n+ z)+
n−1

∑
m=0

1
(m+ z)s (n ∈ N) , (8)

where ζ (s) is Riemann zeta function. Recall the following integral formula (see, e.g.,
[8, Entry 4.261-17]): For min{ℜ(μ), ℜ(ν)} > 0,

1∫
0

(lnx)2 xμ−1 (1− x)ν−1 dx

= B(μ ,ν)
{
[ψ(μ)−ψ(μ + ν)]2 + ψ ′(μ)−ψ ′(μ + ν)

}
,

(9)

where B(μ ,ν) is the Beta function (see, e.g., [23, pp. 7–10]).
The function b(z) is defined by (cf. [7, p. 20])

b(z) :=
1
2

{
ψ
(

z+1
2

)
−ψ

( z
2

)}
. (10)

Like the psi function ψ(z) , the function b(z) has a number of useful properties.
The Dirichlet beta function β (z) is defined by

β (z) :=
∞

∑
k=1

(−1)k+1

(2k−1)z (ℜ(z) > 0). (11)
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Among various properties and formulas for β (z) , we recall the followings:

β (z) = 4−z{ζ
(
z, 1

4

)− ζ
(
z, 3

4

)}
=

1

(−2)2z Γ(z)

{
ψ(z−1)( 1

4 )−ψ(z−1)( 3
4 )
}

=
i
2
{Liz(−i)−Liz(i)} ,

(12)

where the polylogarithm function Liz(u) of order z can be given as follows (see, e.g.,
[23, p. 198]):

Liz(u) :=
∞

∑
m=1

um

mz (13)

(z ∈ C and |u| < 1; ℜ(z) > 1 and |u| = 1) .

The functional equation for the Dirichlet beta function β (z) is expressed as follows:

β (1− z) =
(

2
π

)z

sin
(πz

2

)
Γ(z)β (z) . (14)

This equation can be analytically extended to the left-half plane ℜ(z) � 0 (refer to
[25]). Euler first proposed this conjecture in 1749, and it was later proven by Malmsten
in 1842 (see [4]). It is intriguing to juxtapose the functional equation of the Dirichlet
beta function β (z) in (14) with the renowned functional equation of the Riemann zeta
function ζ (z) (refer to [23, p. 166]).

The Catalan constant G is given as

G = β (2) =
∞

∑
n=0

(−1)n

(2n+1)2
≈ 0.91597. (15)

There are also numerous identities for G . For example,

G = −
1∫

0

lnx
1+ x2 dx =

1∫
0

arctanx
x

dx = ℑ(Li2 (i)) . (16)

H(m)
α are extended harmonic numbers of order m ∈ N with index α ∈ C \Z�−1

defined by (see [21])

H(m)
α :=

⎧⎨
⎩

γ + ψ(α +1) (m = 1),

ζ (m)+ (−1)m−1

(m−1)! ψ(m−1)(α +1) (m ∈ Z�2).
(17)

The case m = 1 in (17) is given in (2). Employing (17) in (6) gives

H(m)
α = H(m)

α−1 +
1

αm (m ∈ N, α ∈ C\Z�0) . (18)
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Applying (17) to the multiplication formula for polygamma functions (see, e.g., [11, p.
14]):

ψ(n)(mz) = δn,0 logm+
1

mn+1

m

∑
j=1

ψ(n)
(
z+ j−1

m

)
(m ∈ N, n ∈ Z�0) , (19)

δn, j being the Kronecker delta, can provide the following multiplication formula for
the extended harmonic numbers:

H(p)
mα =

1
mp

m

∑
j=1

H(p)
α+ j

m−1
+
(
1−m1−p) ζ (p)

(
m ∈ N, p ∈ Z�2; mα +1, α +

j
m

∈ C\Z�0

)
.

(20)

The Eulerian numbers An,k (n, k ∈ Z�0) are defined by (see, e.g., [1], [2], [15])

An,k :=
k

∑
j=0

(−1) j
(

n+1
j

)
(k− j)n. (21)

These numbers gratify the following conditions

A0,0 = 1, An,0 = 0 (n ∈ N), An,k = 0 (k > n), (22)

and the recurrence relations{
An,k = An,n−k+1,
An+1,k = kAn,k +(n− k+2)An,k−1.

(23)

These numbers are included in the expansion

xm =
m

∑
k=0

Am,k

(
x+m− k

m

)
(m ∈ Z�0) , (24)

which is known as the Worpitzky identity (refer to [1, p. 4]).
The Pochhammer symbol (λ )n is defined (for λ ∈ C) by (see, e.g., [23, p. 2 and

pp. 4–6])

(λ )n =

{
1 (n = 0)
λ (λ +1) · · ·(λ +n−1) (n ∈ N)

=
Γ(λ +n)

Γ(λ )
(λ ∈ C\Z�0) .

Also {z}n (for z ∈ C) is the falling factorial defined by

{z}n =

{
z(z−1) · · ·(z−n+1) (n ∈ N),

1 (n = 0).
(25)
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During his contact with Goldbach, which began in 1742, Euler initiated a series of
investigations for the linear harmonic sums (26), and he was the first to investigate the
sums that followed (see, e.g., [6, 9])

Sp,q :=
∞

∑
n=1

H(p)
n

nq . (26)

Euler, whose research was finished by Nielsen in 1906 (see [13]), revealed that the
linear harmonic sums in (26) can be evaluated in the subsequent instances: p = 1;
p = q ; p+q odd; p+q even, but with only the pair (p,q) being the set {(2,4), (4.2)} .
Of these specific cases, in the ones with p �= q , if Sp,q is assessed, then Sq,p can be
decided by use of the shuffle relation

Sp,q +Sq,p = ζ (p)ζ (q)+ ζ (p+q) (27)

and vice versa. After the investigation of Euler’s linear harmonic sums, many re-
searchers have focused their attention on this topic. They have delved into numerous
Euler-type sums using a range of techniques. For instance, they have explored paramet-
ric linear Euler sums and their extensions, as evidenced in sources like [3], [14], [20],
and the references mentioned therein. Additionally, they have ventured into nonlinear
Euler harmonic sums, as documented in sources such as [6], [9], [24], and their respec-
tive references. Furthermore, other variant Euler harmonic sums have been examined,
as can be seen in sources like [12], [17], [19], [21], and the accompanying references.

In this study, our objectives are fourfold. Firstly, we present integral formulae
associated with the function b(z) in equation (10). Secondly, we delve into a series
involving polygamma functions, represented as a finite series of double integrals, by
incorporating Eulerian numbers from equation (21). Building on these second findings,
we proceed to investigate various Euler harmonic sums. Lastly, we provide closed-form
evaluations for several specific instances of these variant Euler harmonic sums.

2. Integrals involving the function b(z)

Like the psi function ψ(z) , a number of integrals associated with the function b(z)
have been presented (see, e.g., [7, p. 20], [8]). Take some examples.

b(z) =
∫ 1

0

tz−1

1+ t
dt (ℜ(z) > 0). (28)

b
(

z
p

)
= p

∫ 1

0

tz−1

1+ t p dt (ℜ(z) > 0, p ∈ R>0) . (29)

∫ 1

0

tz

(1+ t)2 dt = zb(z)− 1
2

(ℜ(z) > −1) . (30)

∫ 1

0

tz

(1+ t p)2 dt =
z+1− p

p2 b
(

z+1− p
p

)
− 1

2p
(31)

(ℜ(z) > −1, p ∈ R>0) .
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∫ 1

0

tz

(1+ t)3 dt =
z(z−1)

2
b(z−1)− z

4
− 1

8
(ℜ(z) > −1) . (32)

∫ 1

0

tz

(1+ t p)3 dt =
(z− p+1)(z−2p+1)

2p3 b
(

z−2p+1
p

)
− z+1

4p
+

1
8

(33)

(ℜ(z) > −1, p ∈ R>0) .∫ π
4

0
tanz t dt =

1
2

b
(

z+1
2

)
(ℜ(z) > −1) . (34)

∫ π
4

0
tanz t cos2 t dt =

z−1
4

b
(

z−1
2

)
− 1

4
(ℜ(z) > −1) . (35)

∫ π
4

0
tanz t cos4 t dt =

(z−1)(z−3)
16

b
(

z−3
2

)
− z

8
(ℜ(z) > −1) . (36)

An observation of the integrals (28), (30), and (32) enables us to derive generic
integral formulae as described in the following theorem.

THEOREM 1. Let n ∈ N and {z}n be the falling factorial in (25). Then the fol-
lowing integral formulas hold true:

∫ 1

0

tz

(1+ t)n dt =
{z}n−1

(n−1)!
b(z−n+2)+Qn(z) (ℜ(z) > −1) , (37)

where Qn(z) is a polynomial in z of degree n− 2 which is given by the following
recursive relation:

Q1(z) = 0, and Qn+1(z) =
z
n
Qn(z−1)− 1

n2n . (38)

∫ ∞

0

e−zt

(1+ e−t)n dt =
{z−1}n−1

(n−1)!
b(z−n+1)+Pn(z) (ℜ(z) > 0) , (39)

where Pn(z) is a polynomial in z of degree n−2 which is given by the following recur-
sive relation:

P1(z) = 0, and Pn+1(z) =
z−1

n
Pn(z−1)− 1

n2n . (40)

Proof. We prove (37) by induction on n . The case n = 1 of (37) gives
∫ 1

0

tz

1+ t
dt = b(z+1),

which is equivalent to (28). Assume that (37) is true for some n ∈ N . Integrating the
left-sided integral in (37) by parts offers

∫ 1

0

tz+1

(1+ t)n+1 dt =
(z+1) · {z}n−1

n!
b(z−n+2)+

z+1
n

Qn(z)− 1
n2n ,
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which, upon replacing z by z−1, yields∫ 1

0

tz

(1+ t)n+1 dt =
{z}n

n!
b(z− (n+1)+2)+

z
n
Qn(z−1)− 1

n2n ,

whose right member with the aid of (38) is equal to the same expression of the right
member of (37) when n is replaced by n+1. This completes the proof of (37).

Substituting e−t for t in (28) gives

b(z) =
∫ ∞

0

e−zt

1+ e−t dt (ℜ(z) > 0). (41)

Applying the same method as the proof of (37) to (41) may prove (39). �

REMARK 1. The integral (41) can be equivalently expressed as follows:

b
(

z+1
2

)
=
∫ ∞

0

e−zt

cosht
dt (ℜ(z) > −1). (42)

The first few of Qn(z) and Pn(z) are

Q2(z) = −1
2
, Q3(z) = − z

4
− 1

8
, Q4(z) = − z2

12
+

z
24

− 1
24

;

P2(z) = −1
2
, P3(z) = − z

4
+

1
8
, P4(z) = − z2

12
+

5
24

z− 1
6
.

Replacing e−t by t in (39) gives∫ 1

0

tz

(1+ t)n dt =
{z}n−1

(n−1)!
b(z−n+2)+Pn(z+1) (n ∈ N, ℜ(z) > −1) ,

which, in view of (37), yields

Qn(z) = Pn(z+1) ⇐⇒ Pn(z) = Qn(z−1) (n ∈ N).

In this respect, integral formulas (37) and (39) might be considered equivalent.

COROLLARY 1. Let n ∈ N , ℜ(z) > −1 , and p ∈ R>0 . Then the following for-
mulas hold true:

∫ 1

0

tz

(1+ t p)n dt =

{
z−p+1

p

}
n−1

p(n−1)!
b
(

z+1
p

−n+1

)
+

1
p

Qn

(
z− p+1

p

)
. (43)

∫ 1

0

tz

(1+ t2)n dt =

{
z−1
2

}
n−1

2(n−1)!
b
(

z+1
2

−n+1

)
+

1
2

Qn

(
z−1

2

)
. (44)

∫ π
4

0
tanz t cos2(n−1) t dt =

{
z−1
2

}
n−1

2(n−1)!
b
(

z+1
2

−n+1

)
+

1
2

Qn

(
z−1

2

)
. (45)

Proof. Replacing t by t p in (37), multiplying both sides of the resulting identity
by 1

p , and setting pz+ p− 1 = z′ in the last resulting identity and, then, dropping the
prime on z , we get (43). The particular case p = 2 of (43) gives (44).

Substituting tan t for t in the left-sided integral in (44), we derive (45). �
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3. Double integral for a series involving polygamma functions

This section establishes a double integral formula for a series associated with
polygamma functions.

THEOREM 2. Let a ∈ R>0 , (p,t) ∈ N2 and m ∈ Z�0 with t > m−1 . Then

χ (a,m, p, t) := ∑
n�0

(−1)n nm
{

ψ(p)
(

an
2 +1

)−ψ(p)
(

an
2 + 1

2

)}
(2n+1)t+1

=
(−1)t 2p+1

t!

m

∑
k=0

(−1)k Am,k

1∫
0

1∫
0

lnp (x) lnt (y)
(
x

a
2 y
)2k

(1+ x)(1+ xay2)m+1 dxdy

+(−1)p+1 p!
m−1

∑
n=0

(−1)n

(2n+1)t+1

m

∑
k=n+1

Am,k

(
n+m− k

m

)

×{ζ
(
p+1, an

2 +1
)− ζ

(
p+1, an+1

2

)}
.

(46)

In particular,

χ (a,0, p,t) = ∑
n�0

(−1)n
{

ψ(p) ( an
2 +1

)−ψ(p) ( an
2 + 1

2

)}
(2n+1)t+1

=
(−1)t 2p+1

t!

1∫
0

1∫
0

lnp (x) lnt (y)
(1+ x)(1+ xay2)

dxdy.

(47)

Proof. From (10) and (28), one gets

1∫
0

xan

1+ x
dx =

1
2

{
ψ
(

an
2 +1

)−ψ
(

an
2 + 1

2

)}
,

both sides of which, upon differentiating with respect to a , p times, gives

1∫
0

xan lnp (x)
1+ x

dx =
1

2p+1

{
ψ(p) ( an

2 +1
)−ψ(p) ( an

2 + 1
2

)}

=
(−1)p+1p!

2p+1

{
ζ
(
p+1, an

2 +1
)− ζ

(
p+1, an+1

2

)}
.

(48)

Recall the following integral formula (see, e.g., [16, p. 110, Entry 18.90])

1∫
0

y2n lnt (y)dy =
(−1)t t!

(2n+1)t+1 (2n ∈ Z�0, t ∈ Z�0) . (49)
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Setting (48) and (49) in the right member of the first equality in (46) offers

χ (a,m, p, t) =
(−1)t 2p+1

t! ∑
n�0

(−1)n nm

1∫
0

1∫
0

(
x

a
2 y
)2n

lnp (x) lnt (y)

1+ x
dxdy

=
(−1)t 2p+1

t!

1∫
0

1∫
0

lnp (x) lnt (y)
1+ x ∑

n�0
(−1)n nm

(
x

a
2 y
)2n

dxdy.

(50)

Consider

E(m;a,x,y) :=
m

∑
k=0

(−1)k Am,k

(
x

a
2 y
)2k

(1+ xay2)m+1 .

Using Am,0 = 0 (m ∈ N) , Am,k = 0 (k > m) , and

(
1+ xay2)−m−1

= ∑
n�0

(−1)n (m+1)n

n!

(
x

a
2 y
)2n

= ∑
n�0

(−1)n
(

m+n
m

) (
x

a
2 y
)2n

,

we have

E(m;a,x,y) = ∑
n�0

m

∑
k=0

(−1)n+k Am,k

(
m+n

m

)(
x

a
2 y
)2(n+k)

=
∞

∑
n=0

∞

∑
k=0

(−1)n+k Am,k

(
m+n

m

)(
x

a
2 y
)2(n+k)

.

Employing a double series manipulation, we get

E(m;a,x,y) =
∞

∑
n=0

∞

∑
k=0

(−1)n+k Am,k

(
m+n

m

)(
x

a
2 y
)2(n+k)

n→n−k=
∞

∑
n=0

n

∑
k=0

(−1)n Am,k

(
n+m− k

m

)(
x

a
2 y
)2n

.

Separate the first sum into two parts:

E(m;a,x,y) =
∞

∑
n=0

∞

∑
k=0

(−1)n+k Am,k

(
m+n

m

)(
x

a
2 y
)2(n+k)

=

(
∞

∑
n=m

+
m−1

∑
n=0

)
n

∑
k=0

(−1)n Am,k

(
n+m− k

m

)(
x

a
2 y
)2n

.

Since Am,k = 0 (k > m) , we obtain

E(m;a,x,y) =
∞

∑
n=m

m

∑
k=0

Am,k

(
n+m− k

m

)
(−1)n

(
x

a
2 y
)2n

+
m−1

∑
n=0

n

∑
k=0

Am,k

(
n+m− k

m

)
(−1)n

(
x

a
2 y
)2n

.
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We therefore have

E(m;a,x,y) =
∞

∑
n=0

m

∑
k=0

Am,k

(
n+m− k

m

)
(−1)n

(
x

a
2 y
)2n

−
m−1

∑
n=0

m

∑
k=0

Am,k

(
n+m− k

m

)
(−1)n

(
x

a
2 y
)2n

+
m−1

∑
n=0

n

∑
k=0

Am,k

(
n+m− k

m

)
(−1)n

(
x

a
2 y
)2n

.

Using (24) gives
∞

∑
n=0

nm(−1)n
(
x

a
2 y
)2n

= E(m;a,x,y)

+
m−1

∑
n=0

m

∑
k=n+1

Am,k

(
n+m− k

m

)
(−1)n

(
x

a
2 y
)2n

.

(51)

Substituting (51) into the summation in the second equality in (50), with the aid of the
integral formulas (48) and (49), we can readily obtain the desired identity (46). �

4. Certain variant Euler harmonic sums

This section delves into specific variants of Euler harmonic sums, examining their
relevance to the content discussed in Section 3.

THEOREM 3. Let a ∈ R>0 , (p,t) ∈ N2 and m ∈ Z�0 with t > m−1 . Then

∑
n�0

(−1)n nm

(
H(p+1)

an
2

−H(p+1)
an
2 − 1

2

)
(2n+1)t+1

=
(−1)t+p2p+1

t!p!

m

∑
k=0

(−1)k Am,k

1∫
0

1∫
0

lnp (x) lnt (y)
(
x

a
2 y
)2k

(1+ x)(1+ xay2)m+1 dxdy

−
m−1

∑
n=0

(−1)n

(2n+1)t+1

m

∑
k=n+1

Am,k

(
n+m− k

m

)

×{ζ
(
p+1, an

2 +1
)− ζ

(
p+1, an+1

2

)}
.

(52)

Particularly,

∑
n�0

(−1)n
(

H(p+1)
an
2

−H(p+1)
an
2 − 1

2

)
(2n+1)t+1

=
(−1)t+p2p+1

t!p!

1∫
0

1∫
0

lnp (x) lnt (y)
(1+ x)(1+ xay2)

dxdy.

(53)
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Proof. The identity (17) provides

ψ(p) (an
2 +1

)−ψ(p) ( an
2 + 1

2

)
= (−1)p p!

(
H(p+1)

an
2

−H(p+1)
an
2 − 1

2

)
,

which is utilized in Theorem 2 to yield the results here. �

COROLLARY 2. Let a ∈ R>0 , (p,t) ∈ N2 and m ∈ Z�0 with t > m−1 . Then

∑
n�0

(−1)n nm
(
2H(p+1)

an
2

−2p+1H(p+1)
an

)
(2n+1)t+1

=
(−1)t+p2p+1

t!p!

m

∑
k=0

(−1)k Am,k

1∫
0

1∫
0

lnp (x) lnt (y)
(
x

a
2 y
)2k

(1+ x)(1+ xay2)m+1 dxdy

−
m−1

∑
n=0

(−1)n

(2n+1)t+1

m

∑
k=n+1

Am,k

(
n+m− k

m

)

×{ζ
(
p+1, an

2 +1
)− ζ

(
p+1, an+1

2

)}
−2p+1−mη(p+1)

m

∑
j=0

(−1)m− j
(

m
j

)
β (t +1− j),

(54)

where η(s) is Dirichlet eta function defined by

η(s) := ∑
n�1

(−1)n−1

ns =
(
1−21−s) ζ (s) (ℜ(s) > 0). (55)

Particularly,

∑
n�0

(−1)n
(
2H(p+1)

an
2

−2p+1H(p+1)
an

)
(2n+1)t+1

= −2p+1 η(p+1)β (t +1)+
(−1)p+t 2p+1

p! t!

1∫
0

1∫
0

lnp (x) lnt (y)
(1+ x)(1+ xay2)

dxdy.

(56)

Proof. Let L be the left member of (52). Using (20) gives

H(p+1)
an
2 − 1

2
= 2p+1H(p+1)

an −H(p+1)
an
2

−2p+1η(p+1),

which is employed to offer

L = ∑
n�0

(−1)n nm
(
2H(p+1)

an
2

−2p+1H(p+1)
an

)
(2n+1)t+1 +2p+1η(p+1) ∑

n�0

(−1)n nm

(2n+1)t+1 . (57)
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Also

∑
n�0

(−1)n nm

(2n+1)t+1 =
1
2m ∑

n�0

(−1)n (2n)m

(2n+1)t+1

and

(2n)m = {(2n+1)−1}m =
m

∑
j=0

(−1)m− j
(

m
j

)
(2n+1) j.

We thus have

∑
n�0

(−1)n nm

(2n+1)t+1 =
1
2m

m

∑
j=0

(−1)m− j
(

m
j

)
β (t +1− j). (58)

Substituting (58) into (57) affords

L = ∑
n�0

(−1)n nm
(
2H(p+1)

an
2

−2p+1H(p+1)
an

)
(2n+1)t+1

+2p+1−mη(p+1)
m

∑
j=0

(−1)m− j
(

m
j

)
β (t +1− j).

(59)

Finally, the new expression of L in (59) is incorporated in the results in Theorem 3 to
provide the results here. �

THEOREM 4. Let a ∈ R>0 , (p,t) ∈ N2 and m ∈ Z�0 with t > m−1 . Then

υ (a,m, p, t) := ∑
n�0

(−1)n nm H(p+1)
an

(2n+1)t+1

=
(−1)p+t+1

p!t!

m

∑
k=0

(−1)k Am,k

1∫
0

1∫
0

lnp (x) lnt (y)
(
x

a
2 y
)2k

(1− x)(1+ xay2)m+1 dxdy

+
(−1)t

t!
ζ (p+1)

m

∑
k=0

(−1)k Am,k

1∫
0

y2k lnt(y)

(1+ y2)m+1 dy

+ ζ (p+1)
m−1

∑
n=0

(−1)n

(2n+1)t+1

m

∑
k=n+1

Am,k

(
n+m− k

m

)

+
(−1)p

p!

m−1

∑
n=0

(−1)nψ(p)(an+1)
(2n+1)t+1

m

∑
k=n+1

Am,k

(
n+m− k

m

)
.

(60)
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Particulary,

υ (a,0, p,t) = ∑
n�0

(−1)n H(p+1)
an

(2n+1)t+1

=
(−1)p+t+1

p!t!

1∫
0

1∫
0

lnp (x) lnt (y)
(1− x)(1+ xay2)

dxdy

+
(−1)t

t!
ζ (p+1)

1∫
0

lnt(y)
1+ y2 dy.

(61)

Proof. From (17), we get

(−1)p p!H(p+1)
an = ψ(p)(an+1)+ (−1)p p!ζ (p+1). (62)

Recall the following integral formulas (cf. [8, p. 546, Entry 4.272-4])

1∫
0

lnp(x)
1− x

dx = (−1)p p!ζ (p+1) (p ∈ N) (63)

and (see, e.g., [23, p. 25, Eq. (13)])

ψ(z) = −γ +
1∫

0

1− xz−1

1− x
dx (ℜ(z) > 0). (64)

Differentiating both sides of (64) with respect to z , p times, and putting z = an+1 in
the resultant identity, we derive

ψ(p)(an+1) = −
1∫

0

xan lnp(x)
1− x

dx (p ∈ N). (65)

Using (63) and (65) in the right side of (62), we obtain

(−1)p p!H(p+1)
an =

1∫
0

(1− xan) lnp (x)
1− x

dx. (66)

Using (49) and (66), we find

υ (a,m, p, t) := ∑
n�0

(−1)n nm H(p+1)
an

(2n+1)t+1

=
(−1)p+t

p! t!

1∫
0

1∫
0

lnp (x) lnt (y)
1− x ∑

n�0
(−1)n nm

{
y2n−

(
x

a
2 y
)2n
}

dxdy.

(67)

Now, as in the proof of Theorem 2, we can obtain the identity here. �
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5. Particular cases

This section provides ceratin particular instances of the variant Euler harmonic
sums in Section 4. To do this, we begin by recalling an intriguing and useful mathe-
matical constant G defined by

G := ℑ
(

Li3

(
1+ i

2

))
≈ .570077, (68)

which was confirmed among useful mathematical constants and investigated in [5] (see
also [19]). This constant G is a natural companion to the Catalan’s constant G in (15)
in many ways and has appeared in various literature (for example, see the references in
[5]). One can find from (68) that (see, e.g., [19]; see also [5])

G = ∑
n�1

sin
(πn

4

)
2

n
2 n3

= ∑
n�1

(−1)n+1

22n

(
2

(4n−3)3
+

2

(4n−2)3
+

1

(4n−1)3

)
. (69)

We also recall the real part expression of Li3
(

1+i
2

)

ℜ
(

Li3

(
1+ i

2

))
=

35ζ (3)
64

− 5π2 ln2
192

+
ln3 2
48

, (70)

which can be derived by setting θ = π
2 in the formula [10, Eq. (6.54)] and using [10,

Eq. (6.6)] (or [10, p. 296, Entry A.2.6-(5)]). A simple and elegant integral expression
for G is recalled (see, e.g., [5], [19])

G =
1
2

1∫
0

ln2 (1− x)
1+ x2 dx. (71)

The following lemma gives a new association of the mathematical constant G to
the average value of two variant Euler sums, one containing the square of the harmonic
numbers and the other containing harmonic numbers of order two.

LEMMA 1. The following formulas hold true.

G =
1
2 ∑

n�0

(−1)n
(
H2

2n+1 +H(2)
2n+1

)
2n+1

; (72)

n

∑
r=0

(−1)r
(n

r

)
(r+1)3 =

H2
n+1 +H(2)

n+1

2(n+1)
(n ∈ N). (73)
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Proof. Applying the Maclaurin-Taylor series expansion of 1
1+x2 in (71), we have

G =
1
2 ∑

n�0
(−1)n

1∫
0

x2n ln2 (1− x) dx

=
1
2 ∑

n�0

(−1)n
1∫

0

(1− x)2n ln2 (x) dx.

(74)

For the second integral in (74), setting μ = 1 and ν = 2n+1 in (9) and using (4), we
can obtain (72). Also

1∫
0

(1− x)2n ln2 (x) dx =
2n

∑
r=0

(−1)r
(

2n
r

) 1∫
0

xr ln2 (x) dx

=
2n

∑
r=0

(−1)r
(

2n
r

)
2

(r+1)3 ,

which, upon matching the corresponding part in (72), can provide (73). �
Setting t = 0, p = 1, and a = 2 in (56), we obtain

∑
n�0

(−1)n
(
2H(2)

n −4H(2)
2n

)
2n+1

= −4η(2)β (1)−4

1∫
0

1∫
0

lnx
(1+ x)(1+ x2y2)

dxdy

= −4η(2)β (1)−4

1∫
0

(lnx) arctanx
x(1+ x)

dxdy,

the last integral of which can be evaluated by the methods developed in [19] and one
can get

∑
n�0

(−1)n
(
2H(2)

n −4H(2)
2n

)
2n+1

= 4η(2)β (1)+2G ln2+
π3

16
. (75)

Recall the following formula (see [18, Lemma 2]):

∑
n�0

(−1)n H(2)
n

2n+1
= 4G +2G ln2− π

8
ln2 2− 11π3

96
, (76)

which is used in (75) to yield

∑
n�0

(−1)n H(2)
2n

2n+1
= 2G +

G ln2
2

− π
16

ln2 2− 3π3

32
. (77)

Consider

H(2)
2n+1 = H(2)

2n +
1

(2n+1)2 ,
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which is employed in (77) to provide

∑
n�0

(−1)n H(2)
2n+1

2n+1
= 2G +

G ln2
2

+ β (3)− π
16

ln2 2− 3π3

32
. (78)

Applying (78) to (72), one can obtain

∑
n�0

(−1)n H2
2n+1

2n+1
=

3π3

32
+

π
16

ln2 2− G ln2
2

−β (3). (79)

Likewise one can obtain closed form expressions of numerous variant Euler har-
monic sums. Here, the following examples are offered:

∑
n�0

(−1)n n
(
Hn

2
−Hn

2− 1
2

)
(2n+1)2

=
π
2

G+
π2

16
− 7

4
ζ (3) ; (80)

∑
n�0

(−1)n n
(
Hn− 1

2
−Hn

)
(2n+1)2

= 3G − 5π3

128
−G+

π
8

ln2+
1
2
G ln2− 3π

32
ln2 2; (81)

∑
n�0

(−1)n n(H2n−Hn)

(2n+1)2
=

3
2
G−1

4
G ln2− 5π3

256
− 1

2
G+

3π
16

ln2− 3π
64

ln2 2; (82)

∑
n�0

(−1)n n
(
Hn−Hn

2

)
(2n+1)2

=
π
8

ln2−1
2
G ln2+

7
8

ζ (3)− π2

32
− π

4
G; (83)

∑
n�0

(−1)n n
(
H2n−Hn

2

)
(2n+1)2

=
3
2
G − 5π3

256
− 1

2
G− 3

4
G ln2− 3π

64
ln2 2

+
5π
16

ln2+
7
8

ζ (3)− π2

32
− π

4
G;

(84)

∑
n�0

(−1)n n
(
Hn− 1

2
+Hn

)
(2n+1)2

= G +
3
2
G ln2− 3π3

128
− 3π

8
ln2− π

32
ln2 2; (85)

∑
n�0

(−1)n n Hn

(2n+1)2
=

π3

128
+

1
2
G ln2+

1
2
G− π

4
ln2+

π
32

ln2 2−G ; (86)

∑
n�0

(−1)n n Hn− 1
2

(2n+1)2
= 2G−1

2
G+G ln2− π3

32
− π

8
ln2− π

16
ln2 2; (87)

∑
n�0

(−1)n n Hn
2

(2n+1)2
=G − π3

128
− 1

2
G−G ln2− π

32
ln2 2

+
3π
8

ln2+
7
8

ζ (3)− π2

32
− π

4
G;

(88)
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∑
n�0

(−1)n n H2n

(2n+1)2
=

1
2
G − 3π3

256
+

1
4
G ln2− π

16
ln2− π

64
ln2 2; (89)

∑
n�0

(−1)n n H(2)
n

(2n+1)2
= 2G +G ln2− 11π3

192
− π

16
ln2 2+3β (4)− 7π

8
ζ (3)+

π2G
24

. (90)

Remarks

We offered integral formulae connected with the function b(z) in (10), which is
also signified by G(z) = 2b(z) (cf. [7, p. 20]) and, mostly, by β (z) (see, e.g., [8,
Section 8.37]). Yet, in order to avoid notation-overlap of the Dirichlet beta function
β (z) in (11), we chose to use b(z) . We investigated a series involving polygamma
functions that is represented as double integrals, by incorporating the Eulerian numbers
An,k (n, k ∈ Z�0) in (21). We employed the double integral formula of series involving
polygamma functions to explore certain variant Euler harmonic sums. Finally, we pro-
vided closed-form evaluations for a number of specific examples of the variant Euler
harmonic sums, by using mathematical constants, in particular, the constant G in (68).
The interested researcher is encouraged to prove the identities (80)–(90). For example,
using n = 1

2(2n+1)− 1
2 , one gets

∑
n�0

(−1)n n H(2)
n

(2n+1)2
=

1
2 ∑

n�0

(−1)n H(2)
n

2n+1
− 1

2 ∑
n�0

(−1)n H(2)
n

(2n+1)2

=
(

2G +G ln2− 11π3

192
− π

16
ln2 2

)
+
(

3β (4)− 7π
8

ζ (3)+
π2G
24

)
,

which can be rearranged to yield the last identity (90).
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