ON THE LACUNARY-TYPE UNIVARIATE COMPLEX POLYNOMIALS

SHABIR AHMAD MALIK

Abstract. In this paper, we study the zeros of lacunary-type polynomials with complex coefficients. Here we present some results to locate the zeros of lacunary-type polynomials and discuss their importance with respect to existing results comparatively.

1. Introduction

The following result due to Cauchy [3] is classical in the theory of distribution of zeros of a polynomial

THEOREM A. All the zeros of a polynomial

$$P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n, \quad a_n \neq 0$$

lie in

$$|z| \leq 1 + M$$

where $M = \max_{1 \leq j \leq n-1} \left| \frac{a_j}{a_n} \right|$.

Look at Theorem A, only leading coefficient a_n is restricted and rest are arbitrary from \mathbb{C} . This means that Theorem A guarantees us that whenever $a_n \neq 0$ and $a_k \in \mathbb{C}$, $1 \leq k \leq n-1$ are chosen arbitrary, all the zeros of P(z) lie in $|z| \leq 1+M$. As a result, in this theorem the underlying polynomial is liberated with respect to its coefficients except leading coefficient.

The following result which improves upon Theorem A and provide an annulus containing all the zeros of a polynomial by using special type of numbers and binomial coefficients is due to Diaz-Barrero [5].

THEOREM B. Let $P(z) = \sum_{t=0}^{n} a_t z^t$ $(a_t \neq 0, 0 \leq t \leq n)$ be a non-constant complex polynomial. Then all its zeros lie in the annulus $\mathscr{C} = \{z : r_1 \leq |z| \leq r_2\}$, where

$$r_{1} = \frac{3}{2} \min_{1 \le t \le n} \left\{ \frac{2^{n} F_{t} C(n, t)}{F_{4n}} \left| \frac{a_{0}}{a_{t}} \right| \right\}^{\frac{1}{t}}$$
(1)

© CENN, Zagreb Paper JCA-23-04

Mathematics subject classification (2020): 30A10, 30C10, 30C15, 30C99. *Keywords and phrases*: Polynomial, zeros, annulus, Lucas numbers.

and

$$r_{2} = \frac{2}{3} \max_{1 \le t \le n} \left\{ \frac{F_{4n}}{2^{n} F_{t} C(n, t)} \left| \frac{a_{n-t}}{a_{n}} \right| \right\}^{\frac{1}{t}}.$$
 (2)

Here F_t is the t^{th} Fibonacci number, defined by, $F_0 = 0$, $F_1 = 1$ and for $t \ge 2$, $F_t = F_{t-1} + F_{t-2}$. Furthermore, $C(n,t) = \frac{n!}{t!(n-t)!}$ are the binomial coefficients. Another result in this connection providing annulus containing all the zeros of a polynomial P(z) is the following, and is ascribed to Kim [10].

THEOREM C. Let $P(z) = \sum_{t=0}^{n} a_t z^t$ $(a_t \neq 0, 0 \leq t \leq n)$ be a non-constant polynomial with complex coefficients. Then all its zeros lie in the annulus $A = \{z : r_1 \leq |z| \leq r_2\}$, where

$$r_{1} = \min_{1 \le t \le n} \left\{ \frac{C(n,t)}{2^{n} - 1} \left| \frac{a_{0}}{a_{t}} \right| \right\}^{\frac{1}{t}}$$
(3)

and

$$r_{2} = \max_{1 \leq t \leq n} \left\{ \frac{2^{n} - 1}{C(n, t)} \left| \frac{a_{n-t}}{a_{n}} \right| \right\}^{\frac{1}{t}}.$$
(4)

Here C(n,t) *is the binomial coefficient.*

We have following two more results due to Diaz-Barrero and Egozcue [7] regarding the zeros of P(z).

THEOREM D. Let $P(z) = \sum_{t=0}^{n} a_t z^t$ $(a_t \neq 0)$ be a non-constant complex polynomial. Then for $j \ge 2$ all its zeros lie in the annulus $C = \{z : r_1 \le |z| \le r_2\}$, where

$$r_{1} = \min_{1 \leq t \leq n} \left\{ \frac{C(n,t)A_{t}B_{j}^{t}(bB_{j-1})^{n-t}}{A_{jn}} \left| \frac{a_{0}}{a_{t}} \right| \right\}^{1/t}$$
(5)

and

$$r_{2} = \max_{1 \leq t \leq n} \left\{ \frac{A_{jn}}{C(n,t)A_{t}B_{j}^{t}(bB_{j-1})^{n-t}} \left| \frac{a_{n-t}}{a_{n}} \right| \right\}^{1/t}.$$
(6)

Here $B_n = \sum_{t=0}^{n-1} r^t s^{n-1-k}$ and $A_n = cr^n + ds^n$, where c,d are real constants and r,s are the roots of the equation $x^2 - ax - b = 0$ in which a,b are strictly positive real numbers. For $j \ge 2$, $\sum_{t=0}^{n} C(n,t)(bB_{j-1})^{n-t}B_j^t A_t = A_{jn}$. Furthermore, C(n,t) is the binomial coefficient.

THEOREM E. Let $P(z) = \sum_{t=0}^{n} a_t z^t$ $(a_t \neq 0)$ be a non-constant polynomial with complex coefficients. Then all its zeros lie in the ring shaped region $C = \{z : r_1 \leq |z| \leq r_2\}$, where

$$r_{1} = \min_{1 \le t \le n} \left\{ \frac{2^{t} P_{t} C(n, t)}{P_{2n}} \left| \frac{a_{0}}{a_{t}} \right| \right\}^{\frac{1}{t}}$$
(7)

and

$$r_{2} = \max_{1 \leq t \leq n} \left\{ \frac{P_{2n}}{2^{t} P_{t} C(n, t)} \left| \frac{a_{n-t}}{a_{n}} \right| \right\}^{\frac{1}{t}}.$$
(8)

Here P_t is the t^{th} Pell number, defined by, $P_0 = 0$, $P_1 = 1$ and for $t \ge 2$, $P_t = 2P_{t-1} + P_{t-2}$.

Again we state the following result which is due to Diaz-Barrero [6] providing regions containing all the zeros of a polynomial P(z).

THEOREM F. Let $P(z) = \sum_{t=0}^{n} a_t z^t$ be a complex monic polynomial. Then all its zeros lie in the disks $C_1 = \{z : |z| \leq r_1\}$ or $C_2 = \{z : |z| \leq r_2\}$, where

$$r_{1} = \max_{1 \leq t \leq n} \left\{ \frac{2^{n-1}C(n+1,2)}{t^{2}C(n,t)} |a_{n-t}| \right\}^{1/t}$$
(9)

and

$$r_{2} = \max_{1 \le t \le n} \left\{ \frac{F_{3n}}{C(n, t)2^{t}F_{t}} |a_{n-t}| \right\}^{1/t}.$$
(10)

Here C(n, t) *is the binomial coefficient.*

Next, we state the following unified result due to Dalal and Govil [4] (see also [1]), which includes all the above results, Theorems B-F as special cases.

THEOREM G. Let $A_t > 0$ for $1 \le t \le n$, and be such that $\sum_{t=1}^n A_t = 1$. If P(z) =

 $\sum_{t=0}^{n} a_t z^t \ (a_t \neq 0, \ 0 \leq t \leq n) \text{ is a non-constant polynomial with complex coefficients, then}$ all the zeros of P(z) lie in the annulus $C = \{z : r_1 \leq |z| \leq r_2\}$, where

$$r_1 = \min_{1 \le t \le n} \left\{ A_t \left| \frac{a_0}{a_t} \right| \right\}^{\frac{1}{t}}$$
(11)

and

$$r_2 = \max_{1 \leqslant t \leqslant n} \left\{ \frac{1}{A_t} \left| \frac{a_{n-t}}{a_n} \right| \right\}^{\frac{1}{t}}.$$
(12)

As an application of Theorem G, Govil and Kumar [9] proved the following two results that gives annuli in terms of Narayana numbers [11] and Motzkin numbers [8].

THEOREM H. Let $P(z) = \sum_{t=0}^{n} a_t z^t$ be a non-constant polynomial with complex coefficients, with $a_t \neq 0$, $0 \leq t \leq n$. Then all the zeros of P(z) lie in the annulus $C = \{z : r_1 \leq |z| \leq r_2\}$, where

$$r_1 = \min_{1 \le t \le n} \left\{ \frac{N(n, t)}{C_n} \left| \frac{a_0}{a_t} \right| \right\}^{\frac{1}{t}}$$
(13)

and

$$r_2 = \max_{1 \leq t \leq n} \left\{ \frac{C_n}{N(n, t)} \left| \frac{a_{n-t}}{a_n} \right| \right\}^{\frac{1}{t}},\tag{14}$$

where $C_n = \frac{C(2n, n)}{n+1}$ is the nth Catalan number, N(n, t), $(1 \le t \le n)$ are Narayana numbers defined for any natural number n by $N(n, t) = \frac{1}{n}C(n, t) C(n, t-1)$, and C(n, t) is the binomial coefficient.

THEOREM I. Let $P(z) = \sum_{t=0}^{n} a_t z^t$ be a non-constant polynomial with complex coefficients, with $a_t \neq 0$, $0 \leq t \leq n$. Then all the zeros of P(z) lie in the annulus $C = \{z : r_1 \leq |z| \leq r_2\}$, where

$$r_1 = \min_{1 \le t \le n} \left\{ \frac{M_{t-1}M_{n-1-t}}{M_n} \left| \frac{a_0}{a_t} \right| \right\}^{\frac{1}{t}}$$
(15)

and

$$r_{2} = \max_{1 \leq t \leq n} \left\{ \frac{M_{n}}{M_{t-1}M_{n-1-t}} \left| \frac{a_{n-t}}{a_{n}} \right| \right\}^{\frac{1}{t}},$$
(16)

where M_n is the n^{th} Motzkin number defined by $M_0 = M_1 = M_{-1} = 1$, and

$$M_{n+1} = \frac{2n+3}{n+3}M_n + \frac{3n}{n+3}M_{n-1}, \ n \ge 1.$$

Now, let us look at Theorem G, which is due to Dalal and Govil [4], includes all the Theorems B–F and many other results as special cases by choosing $A_t > 0$ appropriately with $\sum_{t=1}^{n} A_t = 1$. But in Theorem G, the polynomial is not liberated with respect to its coefficients, that is, if at least one $a_k = 0$, $1 \le k \le n-1$, Theorem G does not hold good. In view of that, we consider the class of lacunary type polynomials

$$\mathbb{P}_{n,\ \mu} = \left\{ P : P(z) = a_0 + \sum_{t=\mu}^n a_t z^t, \ (a_t \neq 0 \ \forall \ t), \ 1 \leqslant \mu \leqslant n \right\}$$

and make an endeavor to resolve this case while proving several results which provide annuli containing all the zeros of the polynomial $P \in \mathbb{P}_{n, \mu}$. Note that for $\mu = 1$, the lacunary polynomial reduces to a simple polynomial

$$P(z) = a_0 + a_1 z + \ldots + a_{n-1} z^{n-1} + a_n z^n.$$

2. Main results

We first prove the following result which provide an annulus to locate the zeros of a polynomial $P \in \mathbb{P}_{n, \mu}$.

THEOREM 1. Let $A_t > 0$ be such that $\sum_{t=1}^{n} A_t = 1$, and let $P \in \mathbb{P}_{n, \mu}$. Then all the zeros of P lie in the annulus $\mathscr{K} = \{z : R_1 \leq |z| \leq R_2\}$, where

$$R_1 = \min_{\mu \leqslant t \leqslant n} \left\{ A_t \left| \frac{a_0}{a_t} \right| \right\}^{\frac{1}{t}}$$
(17)

and

$$R_2 = \max_{\mu \le t \le n} \left\{ \frac{1}{A_t} \left| \frac{a_{n-t}}{a_n} \right| \right\}^{\frac{1}{t}}.$$
(18)

Since Theorem G does not hold if at least one $a_k = 0$, $1 \le k \le n-1$, we make use of Theorem 1 by adapting the parameter μ . Have a look at the following.

REMARK 1. If $P(z) = a_0 + a_2 z^2 + a_3 z^3 \dots + a_n z^n$, $(a_k \neq 0, 2 \leq k \leq n-1)$, then Theorem G does not give any information about the location of its zeros. In this case, take $\mu = 2$ in Theorem 1, we get all the zeros of P(z) lie in $\mathcal{H} = \{z : R_1 \leq |z| \leq R_2\}$. Again if $P(z) = a_0 + a_3 z^3 \dots + a_n z^n$, $(a_k \neq 0, 3 \leq k \leq n-1)$, then Theorem G does not hold and in this case we take $\mu = 3$ in Theorem 1 and so on similarly, we get finally all the zeros of polynomial $a_0 + a_n z^n$ lie in $\mathcal{H} = \{z : R_1 \leq |z| \leq R_2\}$, where

$$R_1 = \left\{ A_n \left| \frac{a_0}{a_n} \right| \right\}^{\frac{1}{r}}$$

and

$$R_2 = \left\{ \frac{1}{A_n} \left| \frac{a_0}{a_n} \right| \right\}^{\frac{1}{n}}.$$

REMARK 2. Theorem 1 is also true if $A_1, A_2, ..., A_n$ are any real or complex numbers such that $\sum_{t=1}^{n} |A_t| \leq 1$. If we take $\mu = 1$, in Theorem 1, we obtain Theorem G as a special case.

REMARK 3. Note that in Theorem 1 the selection of coefficients and μ is like that: when a_1 is absent, we take $\mu = 2$, when a_1 , a_2 are absent, we take $\mu = 3$ and so on.

REMARK 4. In case, a_{n-1} is absent, then a_{n-1} , a_{n-2} are absent and so on, the lacunary polynomial takes the form

$$P(z) = a_n z^n + \sum_{\nu=\mu}^n a_{n-\nu} z^{n-\nu}.$$

It is well established that for every choice of A_t in Table 1, A_t satisfy the two needed conditions $A_t > 0$ for $1 \le t \le n$, and $\sum_{t=1}^n A_t = 1$.

By making the right choice of A_t and μ , such that $A_t > 0$ and $\sum_{t=1}^{n} A_t = 1$, Theorem 1 include all the results listed in Table 1 as special cases and resolves them for $\mu \ge 2$.

REMARK 5. It is easy to verify that Theorem 1 is also an extension of Theorem F to the lacunary-type of polynomials, i.e., if $P \in \mathbb{P}_{n, \mu}$ be a complex monic polynomial of degree *n* and we take $A_t = \frac{t^2C(n, t)}{2^{n-1}C(n+1, 2)}$ and $\mu = 1$ in the bound (18) of Theorem 1 and note that $A_t > 0$, for all values of *t* and $\sum_{t=1}^{n} \frac{t^2C(n, t)}{C(n+1, 2)} = 2^{n-1}$, we obtain the bound (9) of Theorem F. Similarly, if we take $A_t = \frac{C(n, t)2^tF_t}{F_{3n}}$ and $\mu = 1$ in the bound (18) of Theorem 1, and note the identity $\sum_{t=1}^{n} C(n, t)2^tF_t = F_{3n}$, then we will obtain the bound (10) of Theorem F.

COROLLARY 1. If $P \in \mathbb{P}_{n, \mu}$, then all the zeros of P lie in annulus $r_1 \leq |z| \leq r_2$, where

$$r_1 = \min_{\mu \leqslant t \leqslant n} \left\{ \frac{L_t}{L_{n+2} - 3} \left| \frac{a_0}{a_t} \right| \right\}^{\frac{1}{t}}$$
(19)

and

$$r_{2} = \max_{\mu \leqslant t \leqslant n} \left\{ \frac{L_{n+2} - 3}{L_{t}} \left| \frac{a_{n-t}}{a_{n}} \right| \right\}^{\frac{1}{t}}.$$
 (20)

Here L_t is the t^{th} Lucas number defined by $L_0 = 2$, $L_1 = 1$ and for $t \ge 0$, $L_{t+2} = L_t + L_{t+1}$.

REMARK 6. Corollary 1 can be obtained from Theorem 1 by simply taking $A_t = \frac{L_t}{L_{n+2}-3}$, and from the definition of Lucas numbers, we have

$$\sum_{t=1}^{n} L_t = \sum_{t=1}^{n} \{L_{t+2} - L_{t+1}\} = L_{n+2} - L_2 = L_{n+2} - 3,$$

since $L_2 = L_0 + L_1 = 3$.

If we take $\mu = 1$ in Corollary 1, it immediately gives us the result due to Dalal and Govil [4, Corollary 2.1].

For example, if we consider the polynomial $P(z) = z^4 + 0.01z^3 + 0.1z^2 + 0.2z + 0.4$, then by taking $A_t = \frac{L_t}{L_{n+2}-3}$ in Theorem G, we get all the zeros of polynomial P(z) lie in the annulus $r_1 \le |z| \le r_2$, where $r_1 \approx 0.1333$ and $r_2 \approx 0.9621$, and area of annulus comes out to be 2.8512 approximately. Now, if we consider the polynomial

Table 1.			
	Value of μ	\mathscr{X}_t	Theorem
	1	$\frac{2^{n-t}3^t F_t C(n,t)}{F_{4n}}$	В
	1	$\frac{C(n,t)}{2^n-1}$	С
	1	$\frac{C(n,t)A_tB_j^t(bB_{j-1})^{n-t}}{A_{jn}}$	D
	1	$\frac{2^n P_t C(n, t)}{P_{3n}}$	Е

 $P(z) = z^4 + 0.01z^3 + 0.1z^2 + 0.4$, then Theorem G does not give any annulus to locate the zeros of the polynomial P(z) because the coefficient a_1 is absent. In this case, take $\mu = 2$ in Corollary 1, we get all the zeros of the polynomial P(z) lie in the annulus $r_1 \le |z| \le r_2$, where $r_1 \approx 0.6573$ and $r_2 \approx 0.9621$, and area of annulus comes out to be 1.5498 approximately, which is also a significant improvement over the area obtained by Theorem G.

Catalan numbers, which are defined as $C_k = \frac{C(2k, k)}{k+1}$, where C(2k, k) being the binomial coefficients, are well known in the field of combinatorics. We state the following result in terms of Catalan numbers as a corollary of Theorem 1, which resolves the result of Dalal and Govil [4, Corollary 2.2].

COROLLARY 2. If $P \in \mathbb{P}_{n, \mu}$, then all the zeros of P lie in the annulus $r_1 \leq |z| \leq r_2$, where

$$r_{1} = \min_{\mu \le k \le n} \left\{ \frac{C_{k-1} C_{n-k}}{C_{n}} \left| \frac{a_{0}}{a_{k}} \right| \right\}^{\frac{1}{k}}$$
(21)

and

$$r_{2} = \max_{\mu \le k \le n} \left\{ \frac{C_{n}}{C_{k-1} C_{n-k}} \left| \frac{a_{n-k}}{a_{n}} \right| \right\}^{\frac{1}{k}}.$$
 (22)

Here, as defined above, C_k is the k^{th} Catalan number.

REMARK 7. Corollary 2 is also an immediate consequence of Theorem 1 by taking $A_k = \frac{C_{k-1} C_{n-k}}{C_n}$, for k = 1, 2, ..., n, and noting that $\frac{C_{k-1} C_{n-k}}{C_n} > 0$ and

$$\sum_{k=1}^{n} C_{k-1} C_{n-k} = C_n$$

Next we present some of the applications of Theorem 1 and obtain annuli containing all the zeros of a polynomial $P \in \mathbb{P}_{n, \mu}$. The first result in this connection, stated below gives an annular region for the zeros of a polynomial $P \in \mathbb{P}_{n, \mu}$ in terms of Narayana numbers. THEOREM 2. All the zeros of the polynomial $P \in \mathbb{P}_{n, \mu}$ lie in $C = \{z : K_1 \leq |z| \leq K_2\}$, where

$$K_1 = \min_{\mu \leqslant k \leqslant n} \left\{ \frac{N(n, k)}{C_n} \left| \frac{a_0}{a_k} \right| \right\}^{\frac{1}{k}}$$
(23)

and

$$K_{2} = \max_{\mu \le k \le n} \left\{ \frac{C_{n}}{N(n, k)} \left| \frac{a_{n-k}}{a_{n}} \right| \right\}^{\frac{1}{k}}.$$
 (24)

Here $C_n = \frac{C(2n, n)}{n+1}$ is the nth Catalan number, $N(n, k) = \frac{1}{n}C(n, k) C(n, k-1)$ are Narayana numbers for any natural number n and C(n, k) is the binomial coefficient.

REMARK 8. For $\mu = 1$, the polynomial $P \in \mathbb{P}_{n, \mu}$ reduces to a simple polynomial of degree n. In this case, Theorem 2 reduces to Theorem H. For $\mu \ge 2$, it resolves Theorem H if at least one $a_k = 0$, $1 \le k \le n-1$ sequentially.

The Motzkin numbers M_n are defined by $M_0 = M_1 = M_{-1} = 1$ and

$$M_{n+1} = \frac{2n+3}{n+3}M_n + \frac{3n}{n+3}M_{n-1}, \ n \ge 1.$$

The next result is based on the application of Motzkin numbers to get an annular region containing all the zeros of a polynomial $P \in \mathbb{P}_{n, \mu}$.

THEOREM 3. Let $P \in \mathbb{P}_{n, \mu}$ be a complex polynomial of degree n. Then all the zeros of P lie in the annulus $C = \{z : K_1 \leq |z| \leq K_2\}$, where

$$K_1 = \min_{\mu \leqslant k \leqslant n} \left\{ \frac{M_{k-1}M_{n-1-k}}{M_n} \left| \frac{a_0}{a_k} \right| \right\}^{\frac{1}{k}}$$
(25)

and

$$K_{2} = \max_{\mu \leqslant k \leqslant n} \left\{ \frac{M_{n}}{M_{k-1}M_{n-1-k}} \left| \frac{a_{n-k}}{a_{n}} \right| \right\}^{\frac{1}{k}}.$$
 (26)

REMARK 9. For $\mu = 1$, Theorem 3 reduces to Theorem I.

Now, we present the following result which is based on generalized Fibonacci numbers. More precisely we prove.

THEOREM 4. If $P \in \mathbb{P}_{n, \mu}$, then for $j \ge 1$, all the zeros of P lie in the annulus $\mathscr{R} = \{z : R_1 \le |z| \le R_2\}$ with

$$R_{1} = \min_{\mu \leqslant k \leqslant n} \left\{ \frac{C(n, k) F_{p,s,k}(F_{p,s,2^{j}})^{k} \left(sF_{p,s,2^{j}-1}\right)^{n-k}}{F_{p,s,2^{j}n}} \left| \frac{a_{0}}{a_{k}} \right| \right\}^{\frac{1}{k}}$$
(27)

and

$$R_{2} = \max_{\mu \leqslant k \leqslant n} \left\{ \frac{F_{p,s,2^{j}n}}{C(n,\,k)F_{p,s,k}(F_{p,s,2^{j}})^{k} \, (sF_{p,s,2^{j}-1})^{n-k}} \left| \frac{a_{n-k}}{a_{n}} \right| \right\}^{\frac{1}{k}}, \tag{28}$$

where (p,s)-Fibonacci sequence $\{F_{p,s,n}\}_{n\in\mathbb{N}}$, for any positive real numbers p, s, is defined by

$$F_{p,s,n+1} = pF_{p,s,n} + sF_{p,s,n-1}, \ n \ge 1$$

with initial conditions

$$F_{p,s,0} = 0, \quad F_{p,s,1} = 1.$$

REMARK 10. Since for $\mu = 1$, the lacunary polynomial $P \in \mathbb{P}_{n, \mu}$ reduces to a simple polynomial of degree *n*, Theorem 4 reduces to a result due to Bidkham et al. [2, Theorem 1]. For $\mu = 1$, p = s = 1 and j = 2, Theorem 4 reduces to Theorem B. If we take p = 2, s = 1 in Theorem 4, we get the following more general version of Theorem E.

COROLLARY 3. If $P \in \mathbb{P}_{n, \mu}$, then for $j \ge 1$, all the zeros of P lie in the annulus $\mathscr{R} = \{z : r_1 \le |z| \le r_2\}$ with

$$r_{1} = \min_{\mu \leqslant k \leqslant n} \left\{ \frac{C(n, k) P_{k}(P_{2^{j}})^{k} (P_{2^{j}-1})^{n-k}}{P_{2^{j}n}} \left| \frac{a_{0}}{a_{k}} \right| \right\}^{\frac{1}{k}}$$

and

$$r_{2} = \max_{\mu \leqslant k \leqslant n} \left\{ \frac{P_{2j_{n}}}{C(n, k)P_{k}(P_{2j})^{k}(P_{2j-1})^{n-k}} \left| \frac{a_{n-k}}{a_{n}} \right| \right\}^{\frac{1}{k}}.$$

REMARK 11. If $\mu = 1$ and j = 1, then Corollary 3 reduces to Theorem E which is based on Pell numbers.

3. Lemmas

To prove Theorem 4, we need the following lemma.

LEMMA 1. For $j \ge 1$,

$$\sum_{k=1}^{n} C(n, k) (sF_{p,s,2^{j}-1})^{n-k} (F_{p,s,2^{j}})^{k} F_{p,s,k} = F_{p,s,2^{j}n}$$

holds. This Lemma is a special case of a result due to Diaz-Barrero and Egozcue [7, Theorem 1].

4. Proofs of the Theorems

Proof of Theorem 1. If $a_0 = 0$, then $R_1 = 0$ and P(z) has a zero at origin. Following Cauchy's method, if we assume that $a_0 \neq 0$ and $|z| < R_1$. We shall prove (17) by principle of mathematical induction. Result is true for $\mu = 1$ by Theorem G. Now for $\mu = 2$. Let

$$P(z) = a_0 + \sum_{t=2}^n a_t z^t.$$

Now, by the application of triangle inequality, we have

$$\begin{aligned} |P(z)| \geqslant |a_0| - \left| \sum_{t=2}^n a_t z^t \right| \\ \geqslant |a_0| - \sum_{t=2}^n |a_t| \ |z|^t \\ > |a_0| - \sum_{t=2}^n |a_t| \ R_1^t \\ = |a_0| \left(1 - \sum_{t=2}^n \left| \frac{a_t}{a_0} \right| R_1^t \right), \end{aligned}$$

i.e.,

$$|P(z)| > |a_0| \left(1 - \sum_{t=2}^n \left| \frac{a_t}{a_0} \right| R_1^t \right).$$
(29)

Now, from equation (17), we have for $2 \le t \le n$

$$\left. \frac{a_t}{a_0} \right| R_1^t \leqslant A_t, \tag{30}$$

hence using (30) in (29), we get

$$|P(z)| > |a_0| \left(1 - \sum_{t=2}^n \left| \frac{a_t}{a_0} \right| R_1^t \right)$$

> $|a_0| \left(1 - \sum_{t=2}^n A_t \right)$
= $|a_0| (1 - 1 + A_1) > 0,$

as by hypothesis $\sum_{t=1}^{n} A_t = 1$. Thus P(z) does not have any zero in $|z| < R_1$. Therefore, we conclude that all the zeros of P(z) lie in $|z| \ge R_1$, and (17) is thus proved for $\mu = 2$. We assume that (17) is true for $\mu = s$, i.e., all the zeros of P(z) lie in $|z| \ge R_1$, where

$$R_1 = \min_{s \leq t \leq n} \left\{ A_t \left| \frac{a_0}{a_t} \right| \right\}^{\frac{1}{t}}$$

and $\sum_{t=1}^{s} A_t = 1 - \sum_{t=s+1}^{n} A_t$. We will prove that (17) is true for $\mu = s + 1$. Let

$$P(z) = a_0 + \sum_{t=s+1}^n a_t z^t.$$

Then it is easy to verify that

$$|P(z)| \ge |a_0| - \left|\sum_{t=s+1}^n a_t z^t\right| > |a_0| - \sum_{t=s+1}^n |a_t| \ R_1^t = |a_0| \left(1 - \sum_{t=s+1}^n \left|\frac{a_t}{a_0}\right| R_1^t\right).$$
(31)

Since, by (17) we have for $s + 1 \le t \le n$, the inequality

$$\left|\frac{a_t}{a_0}\right| R_1^t \leqslant A_t,\tag{32}$$

hence using (32) in (31), we get

$$|P(z)| > |a_0| \left(1 - \sum_{t=s+1}^n A_t\right)$$
$$= |a_0| \left(1 - 1 + \sum_{t=1}^s A_t\right)$$
$$> 0$$

Thus P(z) does not have any zero in $|z| < R_1$. Hence (17) is true for $\mu = s + 1$. To prove the bound (18), we consider the polynomial

$$S(z) = z^{n} P(1/z) = a_{n} + a_{n-\mu} z^{\mu} + a_{n-\mu-1} z^{\mu+1} + \dots + a_{\mu} z^{n-\mu} + a_{0} z^{n}.$$

By the first part of the theorem, all the zeros of the polynomial S(z) lie in

$$z| \ge \min_{\mu \leqslant t \leqslant n} \left\{ A_t \left| \frac{a_n}{a_{n-t}} \right| \right\}^{\frac{1}{t}}$$
$$= \min_{\mu \leqslant t \leqslant n} \left\{ \frac{1}{\frac{1}{A_t} \left| \frac{a_{n-t}}{a_n} \right|} \right\}^{\frac{1}{t}}$$
$$= \frac{1}{\frac{1}{\max_{\mu \leqslant t \leqslant n} \left\{ \frac{1}{A_t} \left| \frac{a_{n-t}}{a_n} \right| \right\}^{\frac{1}{t}}}$$
$$= \frac{1}{R_2}.$$

Replacing z by $\frac{1}{z}$ and noting that $P(z) = z^n S(1/z)$, we conclude that all the zeros of P(z) lie in

$$|z| \leqslant R_2 = \max_{\mu \leqslant t \leqslant n} \left\{ \frac{1}{A_t} \left| \frac{a_{n-t}}{a_n} \right| \right\}^{\frac{1}{t}},$$

which is (18). This proves Theorem 1 completely. \Box

Proof of Theorem 2. Let C(n, k) denote the binomial coefficients, then Narayana numbers are given by the identity

$$N(n, k) = \frac{1}{n}C(n, k) C(n, k-1),$$

and Catalan numbers by the identity $C_n = \frac{C(2n, n)}{n+1}$. Therefore,

$$\sum_{k=1}^{n} N(n, k) = \frac{1}{n} \sum_{k=1}^{n} C(n, k) C(n, k-1)$$
$$= \frac{1}{n} C(2n, n-1)$$
$$= \frac{1}{n} \frac{(2n)!}{(n-1)! (2n-(n-1))!}$$
$$= \frac{C(2n, n)}{n+1} = C_n.$$

Thus, if we take $A_k = \frac{N(n, k)}{C_n}$, then $A_k > 0$ for each k and $\sum_{k=1}^n A_k = 1$. Hence, applying Theorem 1 for this set of A_k , $(1 \le k \le n)$, we get the desired result. This completes the proof of Theorem 2. \Box

Proof of Theorem 3. Let M_n be the n^{th} Motzkin number, then we have

$$\sum_{k=1}^{n} M_{k-1} M_{n-1-k} = M_n,$$

with $M_0 = M_1 = M_{-1} = 1$. Now, if we take $A_k = \frac{M_{k-1} M_{n-1-k}}{M_n}$, then $A_k > 0$ for each k and $\sum_{k=1}^n A_k = 1$, and hence applying Theorem 1 for this set of A_k , $(1 \le k \le n)$, we get the desired result and the proof of Theorem 3 is thus complete. \Box

Proof of Theorem 4. The proof of this theorem follows by applying Lemma 1 and then Theorem 1. \Box

REFERENCES

- A. AZIZ, Q. ALIYA, Estimates for the moduli of the zeros of a polynomial, Math. Inequal. Appl., 9 (2006), 107–116.
- [2] M. BIDKHAM, A. ZIREH, H. A. SOLEIMAN MEZERJI, Bound for the zeros of polynomials, J. Class. Anal., 3 (2) (2013), 149–155.
- [3] A. L. CAUCHY, Excercises de Mathematiques, IV Annee de Bure Freres, Paris (1829).
- [4] A. DALAL, N. K. GOVIL, On region containing all the zeros of a polynomial, Applied Mathematics and Computation 219 (2013), 9609–9614.
- [5] J. L. DIAZ-BARRERO, An annulus for the zeros of polynomials, J. Math. Anal. Appl. 273 (2002), 349–352.
- [6] J. L. DIAZ-BARRERO, Note on bounds of the zeros, Missouri J. Math. Sci., 14 (2002), 88-91.
- [7] J. L. DIAZ-BARRERO, J. J. EGOZCUE, Bounds for the moduli of zeros, Appl. Math. Lett., 17 (2004), 993–996.
- [8] R. DONAGHEY, L. W. SHAPIRO, Motzkin numbers, J. Comb. Theory, 23 (1977), 291-301.
- [9] N. K. GOVIL, P. KUMAR, On the annular regions containing all the zeros of a polynomial, Applied Mathematics E-Notes, 15 (2015), 317–326.
- [10] S. H. KIM, On the moduli of the zeros of a polynomial, Am. Math. Mon., 112 (2005), 924–925.
- [11] T. V. NARAYANA, Sur les treillis formés par les partitions d'une unties et leurs applications à la théorie des probabilités, Comp. Rend. Acad. Sci. Paris., 240 (1955), 1188–1189.

(Received December 16, 2023)

Shabir Ahmad Malik Department of Mathematics University of Kashmir Srinagar-190006, India e-mail: shabirams2@gmail.com

Journal of Classical Analysis www.ele-math.com jca@ele-math.com