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ON THE LACUNARY–TYPE UNIVARIATE COMPLEX POLYNOMIALS

SHABIR AHMAD MALIK

Abstract. In this paper, we study the zeros of lacunary-type polynomials with complex coeffi-
cients. Here we present some results to locate the zeros of lacunary-type polynomials and discuss
their importance with respect to existing results comparatively.

1. Introduction

The following result due to Cauchy [3] is classical in the theory of distribution of
zeros of a polynomial

THEOREM A. All the zeros of a polynomial

P(z) = a0 +a1z+a2z
2 + . . .+anz

n, an �= 0

lie in

|z| � 1+M,

where M = max
1� j�n−1

∣∣∣ a j
an

∣∣∣ .
Look at Theorem A, only leading coefficient an is restricted and rest are arbitrary

from C . This means that Theorem A guarantees us that whenever an �= 0 and ak ∈ C ,
1 � k � n−1 are chosen arbitrary, all the zeros of P(z) lie in |z| � 1+M . As a result,
in this theorem the underlying polynomial is liberated with respect to its coefficients
except leading coefficient.

The following result which improves upon Theorem A and provide an annulus
containing all the zeros of a polynomial by using special type of numbers and binomial
coefficients is due to Diaz-Barrero [5].

THEOREM B. Let P(z) =
n
∑

t=0
atzt (at �= 0, 0 � t � n) be a non-constant complex

polynomial. Then all its zeros lie in the annulus C = {z : r1 � |z| � r2} , where

r1 =
3
2

min
1�t�n

{
2nFtC(n, t)

F4n

∣∣∣∣a0

at

∣∣∣∣
} 1

t

(1)
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and

r2 =
2
3

max
1�t�n

{
F4n

2nFtC(n, t)

∣∣∣∣an−t

an

∣∣∣∣
} 1

t

. (2)

Here Ft is the tth Fibonacci number, defined by, F0 = 0, F1 = 1 and for t � 2,
Ft = Ft−1 +Ft−2 . Furthermore, C(n,t) = n!

t!(n−t)! are the binomial coefficients. Another
result in this connection providing annulus containing all the zeros of a polynomial
P(z) is the following, and is ascribed to Kim [10].

THEOREM C. Let P(z) =
n
∑

t=0
atzt (at �= 0, 0 � t � n) be a non-constant polyno-

mial with complex coefficients. Then all its zeros lie in the annulus A = {z : r1 � |z| �
r2} , where

r1 = min
1�t�n

{
C(n,t)
2n−1

∣∣∣∣a0

at

∣∣∣∣
} 1

t

(3)

and

r2 = max
1�t�n

{
2n−1
C(n,t)

∣∣∣∣an−t

an

∣∣∣∣
} 1

t

. (4)

Here C(n, t) is the binomial coefficient.

We have following two more results due to Diaz-Barrero and Egozcue [7] regard-
ing the zeros of P(z) .

THEOREM D. Let P(z) =
n
∑

t=0
atzt (at �= 0) be a non-constant complex polynomial.

Then for j � 2 all its zeros lie in the annulus C = {z : r1 � |z| � r2} , where

r1 = min
1�t�n

{
C(n,t)AtBt

j(bBj−1)n−t

A jn

∣∣∣∣a0

at

∣∣∣∣
}1/t

(5)

and

r2 = max
1�t�n

{
Ajn

C(n,t)AtBt
j(bBj−1)n−t

∣∣∣∣an−t

an

∣∣∣∣
}1/t

. (6)

Here Bn =
n−1
∑

t=0
rt sn−1−k and An = crn + dsn , where c,d are real constants and r,s

are the roots of the equation x2 − ax− b = 0 in which a,b are strictly positive real

numbers. For j � 2 ,
n
∑

t=0
C(n,t)(bBj−1)n−tBt

jAt = Ajn . Furthermore, C(n,t) is the

binomial coefficient.
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THEOREM E. Let P(z) =
n
∑

t=0
atzt (at �= 0) be a non-constant polynomial with

complex coefficients. Then all its zeros lie in the ring shaped region C = {z : r1 � |z| �
r2} , where

r1 = min
1�t�n

{
2tPtC(n, t)

P2n

∣∣∣∣a0

at

∣∣∣∣
} 1

t

(7)

and

r2 = max
1�t�n

{
P2n

2tPtC(n, t)

∣∣∣∣an−t

an

∣∣∣∣
} 1

t

. (8)

Here Pt is the tth Pell number, defined by, P0 = 0, P1 = 1 and for t � 2 , Pt = 2Pt−1 +
Pt−2 .

Again we state the following result which is due to Diaz-Barrero [6] providing
regions containing all the zeros of a polynomial P(z) .

THEOREM F. Let P(z) =
n
∑

t=0
atzt be a complex monic polynomial. Then all its

zeros lie in the disks C1 = {z : |z| � r1} or C2 = {z : |z| � r2} , where

r1 = max
1�t�n

{
2n−1C(n+1, 2)

t2C(n, t)
|an−t |

}1/t

(9)

and

r2 = max
1�t�n

{
F3n

C(n, t)2tFt
|an−t|

}1/t

. (10)

Here C(n, t) is the binomial coefficient.

Next, we state the following unified result due to Dalal and Govil [4] (see also [1]),
which includes all the above results, Theorems B-F as special cases.

THEOREM G. Let At > 0 for 1 � t � n, and be such that
n
∑

t=1
At = 1 . If P(z) =

n
∑

t=0
atzt (at �= 0, 0 � t � n) is a non-constant polynomial with complex coefficients, then

all the zeros of P(z) lie in the annulus C = {z : r1 � |z| � r2} , where

r1 = min
1�t�n

{
At

∣∣∣∣a0

at

∣∣∣∣
} 1

t

(11)

and

r2 = max
1�t�n

{
1
At

∣∣∣∣an−t

an

∣∣∣∣
} 1

t

. (12)

As an application of Theorem G, Govil and Kumar [9] proved the following two
results that gives annuli in terms of Narayana numbers [11] and Motzkin numbers [8].
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THEOREM H. Let P(z) =
n
∑

t=0
atzt be a non-constant polynomial with complex

coefficients, with at �= 0, 0 � t � n. Then all the zeros of P(z) lie in the annulus
C = {z : r1 � |z| � r2} , where

r1 = min
1�t�n

{
N(n, t)

Cn

∣∣∣∣a0

at

∣∣∣∣
} 1

t

(13)

and

r2 = max
1�t�n

{
Cn

N(n, t)

∣∣∣∣an−t

an

∣∣∣∣
} 1

t

, (14)

where Cn = C(2n, n)
n+1 is the nth Catalan number, N(n, t), (1 � t � n) are Narayana

numbers defined for any natural number n by N(n, t) = 1
nC(n, t) C(n, t − 1), and

C(n, t) is the binomial coefficient.

THEOREM I. Let P(z) =
n
∑

t=0
atzt be a non-constant polynomial with complex

coefficients, with at �= 0, 0 � t � n. Then all the zeros of P(z) lie in the annulus
C = {z : r1 � |z| � r2} , where

r1 = min
1�t�n

{
Mt−1Mn−1−t

Mn

∣∣∣∣a0

at

∣∣∣∣
} 1

t

(15)

and

r2 = max
1�t�n

{
Mn

Mt−1Mn−1−t

∣∣∣∣an−t

an

∣∣∣∣
} 1

t

, (16)

where Mn is the nth Motzkin number defined by M0 = M1 = M−1 = 1, and

Mn+1 =
2n+3
n+3

Mn +
3n

n+3
Mn−1, n � 1.

Now, let us look at Theorem G, which is due to Dalal and Govil [4], includes
all the Theorems B–F and many other results as special cases by choosing At > 0

appropriately with
n
∑

t=1
At = 1. But in Theorem G, the polynomial is not liberated with

respect to its coefficients, that is, if at least one ak = 0, 1 � k � n−1, Theorem G does
not hold good. In view of that, we consider the class of lacunary type polynomials

Pn, μ =
{

P : P(z) = a0 +
n

∑
t=μ

atz
t , (at �= 0 ∀ t), 1 � μ � n

}

and make an endeavor to resolve this case while proving several results which provide
annuli containing all the zeros of the polynomial P ∈ Pn, μ . Note that for μ = 1, the
lacunary polynomial reduces to a simple polynomial

P(z) = a0 +a1z+ . . .+an−1z
n−1 +anz

n.
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2. Main results

We first prove the following result which provide an annulus to locate the zeros of
a polynomial P ∈ Pn, μ .

THEOREM 1. Let At > 0 be such that
n
∑

t=1
At = 1 , and let P ∈ Pn, μ . Then all the

zeros of P lie in the annulus K = {z : R1 � |z| � R2} , where

R1 = min
μ�t�n

{
At

∣∣∣∣a0

at

∣∣∣∣
} 1

t

(17)

and

R2 = max
μ�t�n

{
1
At

∣∣∣∣an−t

an

∣∣∣∣
} 1

t

. (18)

Since Theorem G does not hold if at least one ak = 0, 1 � k � n−1, we make use
of Theorem 1 by adapting the parameter μ . Have a look at the following.

REMARK 1. If P(z) = a0 +a2z2 +a3z3 . . .+anzn, (ak �= 0, 2 � k � n−1) , then
Theorem G does not give any information about the location of its zeros. In this case,
take μ = 2 in Theorem 1, we get all the zeros of P(z) lie in K = {z : R1 � |z| � R2} .
Again if P(z) = a0 +a3z3 . . .+anzn, (ak �= 0, 3 � k � n−1) , then Theorem G does not
hold and in this case we take μ = 3 in Theorem 1 and so on similarly, we get finally all
the zeros of polynomial a0 +anzn lie in K = {z : R1 � |z| � R2} , where

R1 =
{

An

∣∣∣∣a0

an

∣∣∣∣
} 1

n

and

R2 =
{

1
An

∣∣∣∣a0

an

∣∣∣∣
} 1

n

.

REMARK 2. Theorem 1 is also true if A1,A2, . . . ,An are any real or complex num-

bers such that
n
∑

t=1
|At | � 1. If we take μ = 1, in Theorem 1, we obtain Theorem G as a

special case.

REMARK 3. Note that in Theorem 1 the selection of coefficients and μ is like
that: when a1 is absent, we take μ = 2, when a1, a2 are absent, we take μ = 3 and so
on.

REMARK 4. In case, an−1 is absent, then an−1, an−2 are absent and so on, the
lacunary polynomial takes the form

P(z) = anz
n +

n

∑
v=μ

an−vz
n−v.
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It is well established that for every choice of At in Table 1, At satisfy the two

needed conditions At > 0 for 1 � t � n , and
n
∑

t=1
At = 1.

By making the right choice of At and μ , such that At > 0 and
n
∑

t=1
At = 1, Theorem

1 include all the results listed in Table 1 as special cases and resolves them for μ � 2.

REMARK 5. It is easy to verify that Theorem 1 is also an extension of Theorem F
to the lacunary-type of polynomials, i.e., if P ∈ Pn, μ be a complex monic polynomial

of degree n and we take At = t2C(n, t)
2n−1C(n+1, 2) and μ = 1 in the bound (18) of Theorem 1

and note that At > 0, for all values of t and
n
∑

t=1

t2C(n, t)
C(n+1, 2) = 2n−1 , we obtain the bound

(9) of Theorem F. Similarly, if we take At = C(n, t)2tFt
F3n

and μ = 1 in the bound (18) of

Theorem 1, and note the identity
n
∑

t=1
C(n, t)2tFt = F3n , then we will obtain the bound

(10) of Theorem F.

COROLLARY 1. If P ∈ Pn, μ , then all the zeros of P lie in annulus r1 � |z| � r2 ,
where

r1 = min
μ�t�n

{
Lt

Ln+2−3

∣∣∣∣a0

at

∣∣∣∣
} 1

t

(19)

and

r2 = max
μ�t�n

{
Ln+2−3

Lt

∣∣∣∣an−t

an

∣∣∣∣
} 1

t

. (20)

Here Lt is the tth Lucas number defined by L0 = 2, L1 = 1 and for t � 0 , Lt+2 =
Lt +Lt+1 .

REMARK 6. Corollary 1 can be obtained from Theorem 1 by simply taking At =
Lt

Ln+2−3 , and from the definition of Lucas numbers, we have

n

∑
t=1

Lt =
n

∑
t=1

{Lt+2 −Lt+1} = Ln+2−L2 = Ln+2−3,

since L2 = L0 +L1 = 3.
If we take μ = 1 in Corollary 1, it immediately gives us the result due to Dalal

and Govil [4, Corollary 2.1].

For example, if we consider the polynomial P(z) = z4 + 0.01z3 + 0.1z2 + 0.2z+
0.4, then by taking At = Lt

Ln+2−3 in Theorem G, we get all the zeros of polynomial
P(z) lie in the annulus r1 � |z| � r2 , where r1 ≈ 0.1333 and r2 ≈ 0.9621, and area of
annulus comes out to be 2.8512 approximately. Now, if we consider the polynomial
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Table 1.

Value of μ Xt Theorem

1 2n−t3tFtC(n, t)
F4n

B

1 C(n, t)
2n−1 C

1
C(n,t)AtBt

j(bB j−1)n−t

A jn
D

1 2nPtC(n, t)
P3n

E

P(z) = z4 +0.01z3 +0.1z2 +0.4, then Theorem G does not give any annulus to locate
the zeros of the polynomial P(z) because the coefficient a1 is absent. In this case, take
μ = 2 in Corollary 1, we get all the zeros of the polynomial P(z) lie in the annulus
r1 � |z|� r2 , where r1 ≈ 0.6573 and r2 ≈ 0.9621, and area of annulus comes out to be
1.5498 approximately, which is also a significant improvement over the area obtained
by Theorem G.

Catalan numbers, which are defined as Ck = C(2k, k)
k+1 , where C(2k, k) being the

binomial coefficients, are well known in the field of combinatorics. We state the fol-
lowing result in terms of Catalan numbers as a corollary of Theorem 1, which resolves
the result of Dalal and Govil [4, Corollary 2.2].

COROLLARY 2. If P ∈ Pn, μ , then all the zeros of P lie in the annulus r1 � |z| �
r2 , where

r1 = min
μ�k�n

{
Ck−1 Cn−k

Cn

∣∣∣∣a0

ak

∣∣∣∣
} 1

k

(21)

and

r2 = max
μ�k�n

{
Cn

Ck−1 Cn−k

∣∣∣∣an−k

an

∣∣∣∣
} 1

k

. (22)

Here, as defined above, Ck is the kth Catalan number.

REMARK 7. Corollary 2 is also an immediate consequence of Theorem 1 by tak-
ing Ak = Ck−1 Cn−k

Cn
, for k = 1,2, . . . ,n , and noting that Ck−1 Cn−k

Cn
> 0 and

n

∑
k=1

Ck−1 Cn−k = Cn.

Next we present some of the applications of Theorem 1 and obtain annuli con-
taining all the zeros of a polynomial P ∈ Pn, μ . The first result in this connection,
stated below gives an annular region for the zeros of a polynomial P ∈ Pn, μ in terms
of Narayana numbers.
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THEOREM 2. All the zeros of the polynomial P ∈ Pn, μ lie in C = {z : K1 � |z| �
K2} , where

K1 = min
μ�k�n

{
N(n, k)

Cn

∣∣∣∣a0

ak

∣∣∣∣
} 1

k

(23)

and

K2 = max
μ�k�n

{
Cn

N(n, k)

∣∣∣∣an−k

an

∣∣∣∣
} 1

k

. (24)

Here Cn = C(2n, n)
n+1 is the nth Catalan number, N(n, k) = 1

nC(n, k) C(n, k− 1) are
Narayana numbers for any natural number n and C(n, k) is the binomial coefficient.

REMARK 8. For μ = 1, the polynomial P∈ Pn, μ reduces to a simple polynomial
of degree n . In this case, Theorem 2 reduces to Theorem H. For μ � 2, it resolves
Theorem H if at least one ak = 0, 1 � k � n−1 sequentially.

The Motzkin numbers Mn are defined by M0 = M1 = M−1 = 1 and

Mn+1 =
2n+3
n+3

Mn +
3n

n+3
Mn−1, n � 1.

The next result is based on the application of Motzkin numbers to get an annular region
containing all the zeros of a polynomial P ∈ Pn, μ .

THEOREM 3. Let P ∈ Pn, μ be a complex polynomial of degree n. Then all the
zeros of P lie in the annulus C = {z : K1 � |z| � K2} , where

K1 = min
μ�k�n

{
Mk−1Mn−1−k

Mn

∣∣∣∣a0

ak

∣∣∣∣
} 1

k

(25)

and

K2 = max
μ�k�n

{
Mn

Mk−1Mn−1−k

∣∣∣∣an−k

an

∣∣∣∣
} 1

k

. (26)

REMARK 9. For μ = 1, Theorem 3 reduces to Theorem I.

Now, we present the following result which is based on generalized Fibonacci
numbers. More precisely we prove.

THEOREM 4. If P ∈ Pn, μ , then for j � 1 , all the zeros of P lie in the annulus
R = {z : R1 � |z| � R2} with

R1 = min
μ�k�n

{
C(n, k)Fp,s,k(Fp,s,2 j)k (sFp,s,2 j−1)

n−k

Fp,s,2 jn

∣∣∣∣a0

ak

∣∣∣∣
} 1

k

(27)
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and

R2 = max
μ�k�n

{
Fp,s,2 jn

C(n, k)Fp,s,k(Fp,s,2 j)k (sFp,s,2 j−1)n−k

∣∣∣∣an−k

an

∣∣∣∣
} 1

k

, (28)

where (p,s)-Fibonacci sequence {Fp,s,n}n∈N , for any positive real numbers p, s, is
defined by

Fp,s,n+1 = pFp,s,n + sFp,s,n−1, n � 1

with initial conditions
Fp,s,0 = 0, Fp,s,1 = 1.

REMARK 10. Since for μ = 1, the lacunary polynomial P ∈ Pn, μ reduces to a
simple polynomial of degree n , Theorem 4 reduces to a result due to Bidkham et al. [2,
Theorem 1]. For μ = 1, p = s = 1 and j = 2, Theorem 4 reduces to Theorem B. If we
take p = 2, s = 1 in Theorem 4, we get the following more general version of Theorem
E.

COROLLARY 3. If P ∈ Pn, μ , then for j � 1 , all the zeros of P lie in the annulus
R = {z : r1 � |z| � r2} with

r1 = min
μ�k�n

{
C(n, k)Pk(P2 j )k(P2 j−1)

n−k

P2 jn

∣∣∣∣a0

ak

∣∣∣∣
} 1

k

and

r2 = max
μ�k�n

{
P2 jn

C(n, k)Pk(P2 j)k(P2 j−1)n−k

∣∣∣∣an−k

an

∣∣∣∣
} 1

k

.

REMARK 11. If μ = 1 and j = 1, then Corollary 3 reduces to Theorem E which
is based on Pell numbers.

3. Lemmas

To prove Theorem 4, we need the following lemma.

LEMMA 1. For j � 1 ,

n

∑
k=1

C(n, k)(sFp,s,2 j−1)
n−k(Fp,s,2 j)kFp,s,k = Fp,s,2 jn

holds. This Lemma is a special case of a result due to Diaz-Barrero and Egozcue [7,
Theorem 1].
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4. Proofs of the Theorems

Proof of Theorem 1. If a0 = 0, then R1 = 0 and P(z) has a zero at origin. Fol-
lowing Cauchy’s method, if we assume that a0 �= 0 and |z| < R1 . We shall prove (17)
by principle of mathematical induction. Result is true for μ = 1 by Theorem G. Now
for μ = 2. Let

P(z) = a0 +
n

∑
t=2

at zt .

Now, by the application of triangle inequality, we have

|P(z)| � |a0|−
∣∣∣∣∣

n

∑
t=2

atz
t

∣∣∣∣∣
� |a0|−

n

∑
t=2

|at | |z|t

> |a0|−
n

∑
t=2

|at | Rt
1

= |a0|
(

1−
n

∑
t=2

∣∣∣∣ at

a0

∣∣∣∣Rt
1

)
,

i.e.,

|P(z)| > |a0|
(

1−
n

∑
t=2

∣∣∣∣ at

a0

∣∣∣∣Rt
1

)
. (29)

Now, from equation (17), we have for 2 � t � n∣∣∣∣ at

a0

∣∣∣∣Rt
1 � At , (30)

hence using (30) in (29), we get

|P(z)| > |a0|
(

1−
n

∑
t=2

∣∣∣∣ at

a0

∣∣∣∣Rt
1

)

> |a0|
(

1−
n

∑
t=2

At

)

= |a0|(1−1+A1) > 0,

as by hypothesis
n
∑

t=1
At = 1. Thus P(z) does not have any zero in |z| < R1 . Therefore,

we conclude that all the zeros of P(z) lie in |z|� R1 , and (17) is thus proved for μ = 2.
We assume that (17) is true for μ = s , i.e., all the zeros of P(z) lie in |z| � R1 , where

R1 = min
s�t�n

{
At

∣∣∣∣a0

at

∣∣∣∣
} 1

t
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and
s
∑

t=1
At = 1−

n
∑

t=s+1
At .

We will prove that (17) is true for μ = s+1. Let

P(z) = a0 +
n

∑
t=s+1

at zt .

Then it is easy to verify that

|P(z)| � |a0|−
∣∣∣∣∣

n

∑
t=s+1

atz
t

∣∣∣∣∣> |a0|−
n

∑
t=s+1

|at | Rt
1 = |a0|

(
1−

n

∑
t=s+1

∣∣∣∣ at

a0

∣∣∣∣Rt
1

)
. (31)

Since, by (17) we have for s+1 � t � n , the inequality∣∣∣∣ at

a0

∣∣∣∣Rt
1 � At , (32)

hence using (32) in (31), we get

|P(z)| > |a0|
(

1−
n

∑
t=s+1

At

)

= |a0|
(

1−1+
s

∑
t=1

At

)

> 0

Thus P(z) does not have any zero in |z| < R1 . Hence (17) is true for μ = s+1.
To prove the bound (18), we consider the polynomial

S(z) = znP(1/z) = an +an−μ zμ +an−μ−1 zμ+1 + . . .+aμzn−μ +a0z
n.

By the first part of the theorem, all the zeros of the polynomial S(z) lie in

|z| � min
μ�t�n

{
At

∣∣∣∣ an

an−t

∣∣∣∣
} 1

t

= min
μ�t�n

⎧⎨
⎩ 1

1
At

∣∣∣ an−t
an

∣∣∣
⎫⎬
⎭

1
t

=
1

max
μ�t�n

{
1
At

∣∣∣ an−t
an

∣∣∣} 1
t

=
1
R2

.



48 S. A. MALIK

Replacing z by 1
z and noting that P(z) = znS(1/z) , we conclude that all the zeros of

P(z) lie in

|z| � R2 = max
μ�t�n

{
1
At

∣∣∣∣an−t

an

∣∣∣∣
} 1

t

,

which is (18). This proves Theorem 1 completely. �

Proof of Theorem 2. Let C(n, k) denote the binomial coefficients, then Narayana
numbers are given by the identity

N(n, k) =
1
n
C(n, k) C(n, k−1),

and Catalan numbers by the identity Cn = C(2n, n)
n+1 . Therefore,

n

∑
k=1

N(n, k) =
1
n

n

∑
k=1

C(n, k) C(n, k−1)

=
1
n
C(2n, n−1)

=
1
n

(2n)!
(n−1)! (2n− (n−1))!

=
C(2n, n)

n+1
= Cn.

Thus, if we take Ak = N(n, k)
Cn

, then Ak > 0 for each k and
n
∑

k=1
Ak = 1. Hence, applying

Theorem 1 for this set of Ak , (1 � k � n) , we get the desired result. This completes
the proof of Theorem 2. �

Proof of Theorem 3. Let Mn be the nth Motzkin number, then we have

n

∑
k=1

Mk−1 Mn−1−k = Mn,

with M0 = M1 = M−1 = 1. Now, if we take Ak = Mk−1 Mn−1−k
Mn

, then Ak > 0 for each k

and
n
∑

k=1
Ak = 1, and hence applying Theorem 1 for this set of Ak , (1 � k � n) , we get

the desired result and the proof of Theorem 3 is thus complete. �

Proof of Theorem 4. The proof of this theorem follows by applying Lemma 1 and
then Theorem 1. �
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