ON THE LACUNARY-TYPE UNIVARIATE COMPLEX POLYNOMIALS

Shabir Ahmad Malik

Abstract

In this paper, we study the zeros of lacunary-type polynomials with complex coefficients. Here we present some results to locate the zeros of lacunary-type polynomials and discuss their importance with respect to existing results comparatively.

1. Introduction

The following result due to Cauchy [3] is classical in the theory of distribution of zeros of a polynomial

THEOREM A. All the zeros of a polynomial

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}, \quad a_{n} \neq 0
$$

lie in

$$
|z| \leqslant 1+M
$$

where $M=\max _{1 \leqslant j \leqslant n-1}\left|\frac{a_{j}}{a_{n}}\right|$.
Look at Theorem A, only leading coefficient a_{n} is restricted and rest are arbitrary from \mathbb{C}. This means that Theorem A guarantees us that whenever $a_{n} \neq 0$ and $a_{k} \in \mathbb{C}$, $1 \leqslant k \leqslant n-1$ are chosen arbitrary, all the zeros of $P(z)$ lie in $|z| \leqslant 1+M$. As a result, in this theorem the underlying polynomial is liberated with respect to its coefficients except leading coefficient.

The following result which improves upon Theorem A and provide an annulus containing all the zeros of a polynomial by using special type of numbers and binomial coefficients is due to Diaz-Barrero [5].

THEOREM B. Let $P(z)=\sum_{t=0}^{n} a_{t} z^{t}\left(a_{t} \neq 0,0 \leqslant t \leqslant n\right)$ be a non-constant complex polynomial. Then all its zeros lie in the annulus $\mathscr{C}=\left\{z: r_{1} \leqslant|z| \leqslant r_{2}\right\}$, where

$$
\begin{equation*}
r_{1}=\frac{3}{2} \min _{1 \leqslant t \leqslant n}\left\{\frac{2^{n} F_{t} C(n, t)}{F_{4 n}}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{\frac{1}{t}} \tag{1}
\end{equation*}
$$

[^0]Keywords and phrases: Polynomial, zeros, annulus, Lucas numbers.
and

$$
\begin{equation*}
r_{2}=\frac{2}{3} \max _{1 \leqslant t \leqslant n}\left\{\frac{F_{4 n}}{2^{n} F_{t} C(n, t)}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}} \tag{2}
\end{equation*}
$$

Here F_{t} is the $t^{t h}$ Fibonacci number, defined by, $F_{0}=0, F_{1}=1$ and for $t \geqslant 2$, $F_{t}=F_{t-1}+F_{t-2}$. Furthermore, $C(n, t)=\frac{n!}{t!(n-t)!}$ are the binomial coefficients. Another result in this connection providing annulus containing all the zeros of a polynomial $P(z)$ is the following, and is ascribed to Kim [10].

THEOREM C. Let $P(z)=\sum_{t=0}^{n} a_{t} z^{t}\left(a_{t} \neq 0,0 \leqslant t \leqslant n\right)$ be a non-constant polynomial with complex coefficients. Then all its zeros lie in the annulus $A=\left\{z: r_{1} \leqslant|z| \leqslant\right.$ $\left.r_{2}\right\}$, where

$$
\begin{equation*}
r_{1}=\min _{1 \leqslant t \leqslant n}\left\{\frac{C(n, t)}{2^{n}-1}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{\frac{1}{t}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\max _{1 \leqslant t \leqslant n}\left\{\frac{2^{n}-1}{C(n, t)}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}} \tag{4}
\end{equation*}
$$

Here $C(n, t)$ is the binomial coefficient.
We have following two more results due to Diaz-Barrero and Egozcue [7] regarding the zeros of $P(z)$.

THEOREM D. Let $P(z)=\sum_{t=0}^{n} a_{t} z^{t}\left(a_{t} \neq 0\right)$ be a non-constant complex polynomial. Then for $j \geqslant 2$ all its zeros lie in the annulus $C=\left\{z: r_{1} \leqslant|z| \leqslant r_{2}\right\}$, where

$$
\begin{equation*}
r_{1}=\min _{1 \leqslant t \leqslant n}\left\{\frac{C(n, t) A_{t} B_{j}^{t}\left(b B_{j-1}\right)^{n-t}}{A_{j n}}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{1 / t} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\max _{1 \leqslant t \leqslant n}\left\{\frac{A_{j n}}{C(n, t) A_{t} B_{j}^{t}\left(b B_{j-1}\right)^{n-t}}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{1 / t} \tag{6}
\end{equation*}
$$

Here $B_{n}=\sum_{t=0}^{n-1} r^{t} s^{n-1-k}$ and $A_{n}=c r^{n}+d s^{n}$, where c, d are real constants and r, s are the roots of the equation $x^{2}-a x-b=0$ in which a, b are strictly positive real numbers. For $j \geqslant 2, \sum_{t=0}^{n} C(n, t)\left(b B_{j-1}\right)^{n-t} B_{j}^{t} A_{t}=A_{j n}$. Furthermore, $C(n, t)$ is the binomial coefficient.

THEOREM E. Let $P(z)=\sum_{t=0}^{n} a_{t} z^{t}\left(a_{t} \neq 0\right)$ be a non-constant polynomial with complex coefficients. Then all its zeros lie in the ring shaped region $C=\left\{z: r_{1} \leqslant|z| \leqslant\right.$ $\left.r_{2}\right\}$, where

$$
\begin{equation*}
r_{1}=\min _{1 \leqslant t \leqslant n}\left\{\frac{2^{t} P_{t} C(n, t)}{P_{2 n}}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{\frac{1}{t}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\max _{1 \leqslant t \leqslant n}\left\{\frac{P_{2 n}}{2^{t} P_{t} C(n, t)}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}} \tag{8}
\end{equation*}
$$

Here P_{t} is the $t^{\text {th }}$ Pell number, defined by, $P_{0}=0, P_{1}=1$ and for $t \geqslant 2, P_{t}=2 P_{t-1}+$ P_{t-2}.

Again we state the following result which is due to Diaz-Barrero [6] providing regions containing all the zeros of a polynomial $P(z)$.

THEOREM F. Let $P(z)=\sum_{t=0}^{n} a_{t} z^{t}$ be a complex monic polynomial. Then all its zeros lie in the disks $C_{1}=\left\{z:|z| \leqslant r_{1}\right\}$ or $C_{2}=\left\{z:|z| \leqslant r_{2}\right\}$, where

$$
\begin{equation*}
r_{1}=\max _{1 \leqslant t \leqslant n}\left\{\frac{2^{n-1} C(n+1,2)}{t^{2} C(n, t)}\left|a_{n-t}\right|\right\}^{1 / t} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\max _{1 \leqslant t \leqslant n}\left\{\frac{F_{3 n}}{C(n, t) 2^{t} F_{t}}\left|a_{n-t}\right|\right\}^{1 / t} \tag{10}
\end{equation*}
$$

Here $C(n, t)$ is the binomial coefficient.
Next, we state the following unified result due to Dalal and Govil [4] (see also [1]), which includes all the above results, Theorems B-F as special cases.

THEOREM G. Let $A_{t}>0$ for $1 \leqslant t \leqslant n$, and be such that $\sum_{t=1}^{n} A_{t}=1$. If $P(z)=$ $\sum_{t=0}^{n} a_{t} z^{t}\left(a_{t} \neq 0,0 \leqslant t \leqslant n\right)$ is a non-constant polynomial with complex coefficients, then all the zeros of $P(z)$ lie in the annulus $C=\left\{z: r_{1} \leqslant|z| \leqslant r_{2}\right\}$, where

$$
\begin{equation*}
r_{1}=\min _{1 \leqslant t \leqslant n}\left\{A_{t}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{\frac{1}{t}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\max _{1 \leqslant t \leqslant n}\left\{\frac{1}{A_{t}}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}} \tag{12}
\end{equation*}
$$

As an application of Theorem G, Govil and Kumar [9] proved the following two results that gives annuli in terms of Narayana numbers [11] and Motzkin numbers [8].

ThEOREM H. Let $P(z)=\sum_{t=0}^{n} a_{t} z^{t}$ be a non-constant polynomial with complex coefficients, with $a_{t} \neq 0,0 \leqslant t \leqslant n$. Then all the zeros of $P(z)$ lie in the annulus $C=\left\{z: r_{1} \leqslant|z| \leqslant r_{2}\right\}$, where

$$
\begin{equation*}
r_{1}=\min _{1 \leqslant t \leqslant n}\left\{\frac{N(n, t)}{C_{n}}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{\frac{1}{t}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\max _{1 \leqslant t \leqslant n}\left\{\frac{C_{n}}{N(n, t)}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}} \tag{14}
\end{equation*}
$$

where $C_{n}=\frac{C(2 n, n)}{n+1}$ is the $n^{\text {th }}$ Catalan number, $N(n, t),(1 \leqslant t \leqslant n)$ are Narayana numbers defined for any natural number n by $N(n, t)=\frac{1}{n} C(n, t) C(n, t-1)$, and $C(n, t)$ is the binomial coefficient.

THEOREM I. Let $P(z)=\sum_{t=0}^{n} a_{t} z^{t}$ be a non-constant polynomial with complex coefficients, with $a_{t} \neq 0,0 \leqslant t \leqslant n$. Then all the zeros of $P(z)$ lie in the annulus $C=\left\{z: r_{1} \leqslant|z| \leqslant r_{2}\right\}$, where

$$
\begin{equation*}
r_{1}=\min _{1 \leqslant t \leqslant n}\left\{\frac{M_{t-1} M_{n-1-t}}{M_{n}}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{\frac{1}{t}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\max _{1 \leqslant t \leqslant n}\left\{\frac{M_{n}}{M_{t-1} M_{n-1-t}}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}} \tag{16}
\end{equation*}
$$

where M_{n} is the $n^{\text {th }}$ Motzkin number defined by $M_{0}=M_{1}=M_{-1}=1$, and

$$
M_{n+1}=\frac{2 n+3}{n+3} M_{n}+\frac{3 n}{n+3} M_{n-1}, \quad n \geqslant 1
$$

Now, let us look at Theorem G, which is due to Dalal and Govil [4], includes all the Theorems B-F and many other results as special cases by choosing $A_{t}>0$ appropriately with $\sum_{t=1}^{n} A_{t}=1$. But in Theorem G, the polynomial is not liberated with respect to its coefficients, that is, if at least one $a_{k}=0,1 \leqslant k \leqslant n-1$, Theorem G does not hold good. In view of that, we consider the class of lacunary type polynomials

$$
\mathbb{P}_{n, \mu}=\left\{P: P(z)=a_{0}+\sum_{t=\mu}^{n} a_{t} z^{t},\left(a_{t} \neq 0 \forall t\right), 1 \leqslant \mu \leqslant n\right\}
$$

and make an endeavor to resolve this case while proving several results which provide annuli containing all the zeros of the polynomial $P \in \mathbb{P}_{n, \mu}$. Note that for $\mu=1$, the lacunary polynomial reduces to a simple polynomial

$$
P(z)=a_{0}+a_{1} z+\ldots+a_{n-1} z^{n-1}+a_{n} z^{n}
$$

2. Main results

We first prove the following result which provide an annulus to locate the zeros of a polynomial $P \in \mathbb{P}_{n, \mu}$.

THEOREM 1. Let $A_{t}>0$ be such that $\sum_{t=1}^{n} A_{t}=1$, and let $P \in \mathbb{P}_{n, \mu}$. Then all the zeros of P lie in the annulus $\mathscr{K}=\left\{z: R_{1} \leqslant|z| \leqslant R_{2}\right\}$, where

$$
\begin{equation*}
R_{1}=\min _{\mu \leqslant t \leqslant n}\left\{A_{t}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{\frac{1}{t}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}=\max _{\mu \leqslant t \leqslant n}\left\{\frac{1}{A_{t}}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}} \tag{18}
\end{equation*}
$$

Since Theorem G does not hold if at least one $a_{k}=0,1 \leqslant k \leqslant n-1$, we make use of Theorem 1 by adapting the parameter μ. Have a look at the following.

REMARK 1. If $P(z)=a_{0}+a_{2} z^{2}+a_{3} z^{3} \ldots+a_{n} z^{n},\left(a_{k} \neq 0,2 \leqslant k \leqslant n-1\right)$, then Theorem G does not give any information about the location of its zeros. In this case, take $\mu=2$ in Theorem 1, we get all the zeros of $P(z)$ lie in $\mathscr{K}=\left\{z: R_{1} \leqslant|z| \leqslant R_{2}\right\}$. Again if $P(z)=a_{0}+a_{3} z^{3} \ldots+a_{n} z^{n},\left(a_{k} \neq 0,3 \leqslant k \leqslant n-1\right)$, then Theorem G does not hold and in this case we take $\mu=3$ in Theorem 1 and so on similarly, we get finally all the zeros of polynomial $a_{0}+a_{n} z^{n}$ lie in $\mathscr{K}=\left\{z: R_{1} \leqslant|z| \leqslant R_{2}\right\}$, where

$$
R_{1}=\left\{A_{n}\left|\frac{a_{0}}{a_{n}}\right|\right\}^{\frac{1}{n}}
$$

and

$$
R_{2}=\left\{\frac{1}{A_{n}}\left|\frac{a_{0}}{a_{n}}\right|\right\}^{\frac{1}{n}}
$$

REMARK 2. Theorem 1 is also true if $A_{1}, A_{2}, \ldots, A_{n}$ are any real or complex numbers such that $\sum_{t=1}^{n}\left|A_{t}\right| \leqslant 1$. If we take $\mu=1$, in Theorem 1, we obtain Theorem G as a special case.

REMARK 3. Note that in Theorem 1 the selection of coefficients and μ is like that: when a_{1} is absent, we take $\mu=2$, when a_{1}, a_{2} are absent, we take $\mu=3$ and so on.

REMARK 4. In case, a_{n-1} is absent, then a_{n-1}, a_{n-2} are absent and so on, the lacunary polynomial takes the form

$$
P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}
$$

It is well established that for every choice of A_{t} in Table $1, A_{t}$ satisfy the two needed conditions $A_{t}>0$ for $1 \leqslant t \leqslant n$, and $\sum_{t=1}^{n} A_{t}=1$.

By making the right choice of A_{t} and μ, such that $A_{t}>0$ and $\sum_{t=1}^{n} A_{t}=1$, Theorem 1 include all the results listed in Table 1 as special cases and resolves them for $\mu \geqslant 2$.

REMARK 5. It is easy to verify that Theorem 1 is also an extension of Theorem F to the lacunary-type of polynomials, i.e., if $P \in \mathbb{P}_{n, \mu}$ be a complex monic polynomial of degree n and we take $A_{t}=\frac{t^{2} C(n, t)}{2^{n-1} C(n+1,2)}$ and $\mu=1$ in the bound (18) of Theorem 1 and note that $A_{t}>0$, for all values of t and $\sum_{t=1}^{n} \frac{t^{2} C(n, t)}{C(n+1,2)}=2^{n-1}$, we obtain the bound (9) of Theorem F. Similarly, if we take $A_{t}=\frac{C(n, t) 2^{t} F_{t}}{F_{3 n}}$ and $\mu=1$ in the bound (18) of Theorem 1, and note the identity $\sum_{t=1}^{n} C(n, t) 2^{t} F_{t}=F_{3 n}$, then we will obtain the bound (10) of Theorem F.

Corollary 1. If $P \in \mathbb{P}_{n, \mu}$, then all the zeros of P lie in annulus $r_{1} \leqslant|z| \leqslant r_{2}$, where

$$
\begin{equation*}
r_{1}=\min _{\mu \leqslant t \leqslant n}\left\{\frac{L_{t}}{L_{n+2}-3}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{\frac{1}{t}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\max _{\mu \leqslant t \leqslant n}\left\{\frac{L_{n+2}-3}{L_{t}}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}} \tag{20}
\end{equation*}
$$

Here L_{t} is the $t^{\text {th }}$ Lucas number defined by $L_{0}=2, L_{1}=1$ and for $t \geqslant 0, L_{t+2}=$ $L_{t}+L_{t+1}$.

REMARK 6. Corollary 1 can be obtained from Theorem 1 by simply taking $A_{t}=$ $\frac{L_{t}}{L_{n+2}-3}$, and from the definition of Lucas numbers, we have

$$
\sum_{t=1}^{n} L_{t}=\sum_{t=1}^{n}\left\{L_{t+2}-L_{t+1}\right\}=L_{n+2}-L_{2}=L_{n+2}-3
$$

since $L_{2}=L_{0}+L_{1}=3$.
If we take $\mu=1$ in Corollary 1, it immediately gives us the result due to Dalal and Govil [4, Corollary 2.1].

For example, if we consider the polynomial $P(z)=z^{4}+0.01 z^{3}+0.1 z^{2}+0.2 z+$ 0.4 , then by taking $A_{t}=\frac{L_{t}}{L_{n+2}-3}$ in Theorem G, we get all the zeros of polynomial $P(z)$ lie in the annulus $r_{1} \leqslant|z| \leqslant r_{2}$, where $r_{1} \approx 0.1333$ and $r_{2} \approx 0.9621$, and area of annulus comes out to be 2.8512 approximately. Now, if we consider the polynomial

Table 1.

Value of μ	\mathscr{X}_{t}	Theorem
1	$\frac{2^{n-t} 3^{t} F_{t} C(n, t)}{F_{4 n}}$	B
1	$\frac{C(n, t)}{2^{n}-1}$	C
1	$\frac{C(n, t) A_{t} B_{j}^{t}\left(b B_{j-1}\right)^{n-t}}{A_{j n}}$	D
1	$\frac{2^{n} P_{t} C(n, t)}{P_{3 n}}$	E

$P(z)=z^{4}+0.01 z^{3}+0.1 z^{2}+0.4$, then Theorem G does not give any annulus to locate the zeros of the polynomial $P(z)$ because the coefficient a_{1} is absent. In this case, take $\mu=2$ in Corollary 1, we get all the zeros of the polynomial $P(z)$ lie in the annulus $r_{1} \leqslant|z| \leqslant r_{2}$, where $r_{1} \approx 0.6573$ and $r_{2} \approx 0.9621$, and area of annulus comes out to be 1.5498 approximately, which is also a significant improvement over the area obtained by Theorem G.

Catalan numbers, which are defined as $C_{k}=\frac{C(2 k, k)}{k+1}$, where $C(2 k, k)$ being the binomial coefficients, are well known in the field of combinatorics. We state the following result in terms of Catalan numbers as a corollary of Theorem 1, which resolves the result of Dalal and Govil [4, Corollary 2.2].

Corollary 2. If $P \in \mathbb{P}_{n, \mu}$, then all the zeros of P lie in the annulus $r_{1} \leqslant|z| \leqslant$ r_{2}, where

$$
\begin{equation*}
r_{1}=\min _{\mu \leqslant k \leqslant n}\left\{\frac{C_{k-1} C_{n-k}}{C_{n}}\left|\frac{a_{0}}{a_{k}}\right|\right\}^{\frac{1}{k}} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\max _{\mu \leqslant k \leqslant n}\left\{\frac{C_{n}}{C_{k-1} C_{n-k}}\left|\frac{a_{n-k}}{a_{n}}\right|\right\}^{\frac{1}{k}} \tag{22}
\end{equation*}
$$

Here, as defined above, C_{k} is the $k^{\text {th }}$ Catalan number.
REMARK 7. Corollary 2 is also an immediate consequence of Theorem 1 by tak$\operatorname{ing} A_{k}=\frac{C_{k-1} C_{n-k}}{C_{n}}$, for $k=1,2, \ldots, n$, and noting that $\frac{C_{k-1} C_{n-k}}{C_{n}}>0$ and

$$
\sum_{k=1}^{n} C_{k-1} C_{n-k}=C_{n}
$$

Next we present some of the applications of Theorem 1 and obtain annuli containing all the zeros of a polynomial $P \in \mathbb{P}_{n, \mu}$. The first result in this connection, stated below gives an annular region for the zeros of a polynomial $P \in \mathbb{P}_{n, \mu}$ in terms of Narayana numbers.

THEOREM 2. All the zeros of the polynomial $P \in \mathbb{P}_{n, \mu}$ lie in $C=\left\{z: K_{1} \leqslant|z| \leqslant\right.$ K_{2} \}, where

$$
\begin{equation*}
K_{1}=\min _{\mu \leqslant k \leqslant n}\left\{\frac{N(n, k)}{C_{n}}\left|\frac{a_{0}}{a_{k}}\right|\right\}^{\frac{1}{k}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{2}=\max _{\mu \leqslant k \leqslant n}\left\{\frac{C_{n}}{N(n, k)}\left|\frac{a_{n-k}}{a_{n}}\right|\right\}^{\frac{1}{k}} \tag{24}
\end{equation*}
$$

Here $C_{n}=\frac{C(2 n, n)}{n+1}$ is the $n^{\text {th }}$ Catalan number, $N(n, k)=\frac{1}{n} C(n, k) C(n, k-1)$ are Narayana numbers for any natural number n and $C(n, k)$ is the binomial coefficient.

REMARK 8. For $\mu=1$, the polynomial $P \in \mathbb{P}_{n, \mu}$ reduces to a simple polynomial of degree n. In this case, Theorem 2 reduces to Theorem H. For $\mu \geqslant 2$, it resolves Theorem H if at least one $a_{k}=0,1 \leqslant k \leqslant n-1$ sequentially.

The Motzkin numbers M_{n} are defined by $M_{0}=M_{1}=M_{-1}=1$ and

$$
M_{n+1}=\frac{2 n+3}{n+3} M_{n}+\frac{3 n}{n+3} M_{n-1}, \quad n \geqslant 1
$$

The next result is based on the application of Motzkin numbers to get an annular region containing all the zeros of a polynomial $P \in \mathbb{P}_{n, \mu}$.

ThEOREM 3. Let $P \in \mathbb{P}_{n, \mu}$ be a complex polynomial of degree n. Then all the zeros of P lie in the annulus $C=\left\{z: K_{1} \leqslant|z| \leqslant K_{2}\right\}$, where

$$
\begin{equation*}
K_{1}=\min _{\mu \leqslant k \leqslant n}\left\{\frac{M_{k-1} M_{n-1-k}}{M_{n}}\left|\frac{a_{0}}{a_{k}}\right|\right\}^{\frac{1}{k}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{2}=\max _{\mu \leqslant k \leqslant n}\left\{\frac{M_{n}}{M_{k-1} M_{n-1-k}}\left|\frac{a_{n-k}}{a_{n}}\right|\right\}^{\frac{1}{k}} \tag{26}
\end{equation*}
$$

REMARK 9. For $\mu=1$, Theorem 3 reduces to Theorem I.
Now, we present the following result which is based on generalized Fibonacci numbers. More precisely we prove.

THEOREM 4. If $P \in \mathbb{P}_{n, \mu}$, then for $j \geqslant 1$, all the zeros of P lie in the annulus $\mathscr{R}=\left\{z: R_{1} \leqslant|z| \leqslant R_{2}\right\}$ with

$$
\begin{equation*}
R_{1}=\min _{\mu \leqslant k \leqslant n}\left\{\frac{C(n, k) F_{p, s, k}\left(F_{p, s, 2 j}\right)^{k}\left(s F_{p, s, 2^{j}-1}\right)^{n-k}}{F_{p, s, 2^{j} n}}\left|\frac{a_{0}}{a_{k}}\right|\right\}^{\frac{1}{k}} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}=\max _{\mu \leqslant k \leqslant n}\left\{\frac{F_{p, s, 2^{j} n}}{C(n, k) F_{p, s, k}\left(F_{p, s, 2^{j}}\right)^{k}\left(s F_{p, s, 2^{j}-1}\right)^{n-k}}\left|\frac{a_{n-k}}{a_{n}}\right|\right\}^{\frac{1}{k}} \tag{28}
\end{equation*}
$$

where (p, s)-Fibonacci sequence $\left\{F_{p, s, n}\right\}_{n \in \mathbb{N}}$, for any positive real numbers p, s, is defined by

$$
F_{p, s, n+1}=p F_{p, s, n}+s F_{p, s, n-1}, \quad n \geqslant 1
$$

with initial conditions

$$
F_{p, s, 0}=0, \quad F_{p, s, 1}=1
$$

REMARK 10. Since for $\mu=1$, the lacunary polynomial $P \in \mathbb{P}_{n, \mu}$ reduces to a simple polynomial of degree n, Theorem 4 reduces to a result due to Bidkham et al. [2, Theorem 1]. For $\mu=1, p=s=1$ and $j=2$, Theorem 4 reduces to Theorem B. If we take $p=2, s=1$ in Theorem 4, we get the following more general version of Theorem E.

Corollary 3. If $P \in \mathbb{P}_{n, \mu}$, then for $j \geqslant 1$, all the zeros of P lie in the annulus $\mathscr{R}=\left\{z: r_{1} \leqslant|z| \leqslant r_{2}\right\}$ with

$$
r_{1}=\min _{\mu \leqslant k \leqslant n}\left\{\frac{C(n, k) P_{k}\left(P_{2 j}\right)^{k}\left(P_{2 j-1}\right)^{n-k}}{P_{2 j_{n}}}\left|\frac{a_{0}}{a_{k}}\right|\right\}^{\frac{1}{k}}
$$

and

$$
r_{2}=\max _{\mu \leqslant k \leqslant n}\left\{\frac{P_{2^{j}}}{C(n, k) P_{k}\left(P_{2^{j}}\right)^{k}\left(P_{2^{j}-1}\right)^{n-k}}\left|\frac{a_{n-k}}{a_{n}}\right|\right\}^{\frac{1}{k}} .
$$

REMARK 11. If $\mu=1$ and $j=1$, then Corollary 3 reduces to Theorem E which is based on Pell numbers.

3. Lemmas

To prove Theorem 4, we need the following lemma.
Lemma 1. For $j \geqslant 1$,

$$
\sum_{k=1}^{n} C(n, k)\left(s F_{p, s, 2^{j}-1}\right)^{n-k}\left(F_{p, s, 2^{j}}\right)^{k} F_{p, s, k}=F_{p, s, 2^{j} n}
$$

holds. This Lemma is a special case of a result due to Diaz-Barrero and Egozcue [7, Theorem 1].

4. Proofs of the Theorems

Proof of Theorem 1. If $a_{0}=0$, then $R_{1}=0$ and $P(z)$ has a zero at origin. Following Cauchy's method, if we assume that $a_{0} \neq 0$ and $|z|<R_{1}$. We shall prove (17) by principle of mathematical induction. Result is true for $\mu=1$ by Theorem G. Now for $\mu=2$. Let

$$
P(z)=a_{0}+\sum_{t=2}^{n} a_{t} z^{t}
$$

Now, by the application of triangle inequality, we have

$$
\begin{aligned}
|P(z)| & \geqslant\left|a_{0}\right|-\left|\sum_{t=2}^{n} a_{t} z^{t}\right| \\
& \geqslant\left|a_{0}\right|-\sum_{t=2}^{n}\left|a_{t}\right||z|^{t} \\
& >\left|a_{0}\right|-\sum_{t=2}^{n}\left|a_{t}\right| R_{1}^{t} \\
& =\left|a_{0}\right|\left(1-\sum_{t=2}^{n}\left|\frac{a_{t}}{a_{0}}\right| R_{1}^{t}\right)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
|P(z)|>\left|a_{0}\right|\left(1-\sum_{t=2}^{n}\left|\frac{a_{t}}{a_{0}}\right| R_{1}^{t}\right) \tag{29}
\end{equation*}
$$

Now, from equation (17), we have for $2 \leqslant t \leqslant n$

$$
\begin{equation*}
\left|\frac{a_{t}}{a_{0}}\right| R_{1}^{t} \leqslant A_{t} \tag{30}
\end{equation*}
$$

hence using (30) in (29), we get

$$
\begin{aligned}
|P(z)| & >\left|a_{0}\right|\left(1-\sum_{t=2}^{n}\left|\frac{a_{t}}{a_{0}}\right| R_{1}^{t}\right) \\
& >\left|a_{0}\right|\left(1-\sum_{t=2}^{n} A_{t}\right) \\
& =\left|a_{0}\right|\left(1-1+A_{1}\right)>0
\end{aligned}
$$

as by hypothesis $\sum_{t=1}^{n} A_{t}=1$. Thus $P(z)$ does not have any zero in $|z|<R_{1}$. Therefore, we conclude that all the zeros of $P(z)$ lie in $|z| \geqslant R_{1}$, and (17) is thus proved for $\mu=2$. We assume that (17) is true for $\mu=s$, i.e., all the zeros of $P(z)$ lie in $|z| \geqslant R_{1}$, where

$$
R_{1}=\min _{s \leqslant t \leqslant n}\left\{A_{t}\left|\frac{a_{0}}{a_{t}}\right|\right\}^{\frac{1}{t}}
$$

and $\sum_{t=1}^{s} A_{t}=1-\sum_{t=s+1}^{n} A_{t}$.
We will prove that (17) is true for $\mu=s+1$. Let

$$
P(z)=a_{0}+\sum_{t=s+1}^{n} a_{t} z^{t}
$$

Then it is easy to verify that

$$
\begin{equation*}
|P(z)| \geqslant\left|a_{0}\right|-\left|\sum_{t=s+1}^{n} a_{t} z^{t}\right|>\left|a_{0}\right|-\sum_{t=s+1}^{n}\left|a_{t}\right| R_{1}^{t}=\left|a_{0}\right|\left(1-\sum_{t=s+1}^{n}\left|\frac{a_{t}}{a_{0}}\right| R_{1}^{t}\right) . \tag{31}
\end{equation*}
$$

Since, by (17) we have for $s+1 \leqslant t \leqslant n$, the inequality

$$
\begin{equation*}
\left|\frac{a_{t}}{a_{0}}\right| R_{1}^{t} \leqslant A_{t} \tag{32}
\end{equation*}
$$

hence using (32) in (31), we get

$$
\begin{aligned}
|P(z)| & >\left|a_{0}\right|\left(1-\sum_{t=s+1}^{n} A_{t}\right) \\
& =\left|a_{0}\right|\left(1-1+\sum_{t=1}^{s} A_{t}\right) \\
& >0
\end{aligned}
$$

Thus $P(z)$ does not have any zero in $|z|<R_{1}$. Hence (17) is true for $\mu=s+1$.
To prove the bound (18), we consider the polynomial

$$
S(z)=z^{n} P(1 / z)=a_{n}+a_{n-\mu} z^{\mu}+a_{n-\mu-1} z^{\mu+1}+\ldots+a_{\mu} z^{n-\mu}+a_{0} z^{n}
$$

By the first part of the theorem, all the zeros of the polynomial $S(z)$ lie in

$$
\begin{aligned}
|z| & \geqslant \min _{\mu \leqslant t \leqslant n}\left\{A_{t}\left|\frac{a_{n}}{a_{n-t}}\right|\right\}^{\frac{1}{t}} \\
& =\min _{\mu \leqslant t \leqslant n}\left\{\frac{1}{\frac{1}{A_{t}}\left|\frac{a_{n-t}}{a_{n}}\right|}\right\}^{\frac{1}{t}} \\
& =\frac{1}{\max _{\mu \leqslant t \leqslant n}\left\{\frac{1}{A_{t}}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}}} \\
& =\frac{1}{R_{2}}
\end{aligned}
$$

Replacing z by $\frac{1}{z}$ and noting that $P(z)=z^{n} S(1 / z)$, we conclude that all the zeros of $P(z)$ lie in

$$
|z| \leqslant R_{2}=\max _{\mu \leqslant t \leqslant n}\left\{\frac{1}{A_{t}}\left|\frac{a_{n-t}}{a_{n}}\right|\right\}^{\frac{1}{t}}
$$

which is (18). This proves Theorem 1 completely.

Proof of Theorem 2. Let $C(n, k)$ denote the binomial coefficients, then Narayana numbers are given by the identity

$$
N(n, k)=\frac{1}{n} C(n, k) C(n, k-1),
$$

and Catalan numbers by the identity $C_{n}=\frac{C(2 n, n)}{n+1}$. Therefore,

$$
\begin{aligned}
\sum_{k=1}^{n} N(n, k) & =\frac{1}{n} \sum_{k=1}^{n} C(n, k) C(n, k-1) \\
& =\frac{1}{n} C(2 n, n-1) \\
& =\frac{1}{n} \frac{(2 n)!}{(n-1)!(2 n-(n-1))!} \\
& =\frac{C(2 n, n)}{n+1}=C_{n}
\end{aligned}
$$

Thus, if we take $A_{k}=\frac{N(n, k)}{C_{n}}$, then $A_{k}>0$ for each k and $\sum_{k=1}^{n} A_{k}=1$. Hence, applying Theorem 1 for this set of $A_{k},(1 \leqslant k \leqslant n)$, we get the desired result. This completes the proof of Theorem 2.

Proof of Theorem 3. Let M_{n} be the $n^{\text {th }}$ Motzkin number, then we have

$$
\sum_{k=1}^{n} M_{k-1} M_{n-1-k}=M_{n}
$$

with $M_{0}=M_{1}=M_{-1}=1$. Now, if we take $A_{k}=\frac{M_{k-1} M_{n-1-k}}{M_{n}}$, then $A_{k}>0$ for each k and $\sum_{k=1}^{n} A_{k}=1$, and hence applying Theorem 1 for this set of $A_{k},(1 \leqslant k \leqslant n)$, we get the desired result and the proof of Theorem 3 is thus complete.

Proof of Theorem 4. The proof of this theorem follows by applying Lemma 1 and then Theorem 1.

REFERENCES

[1] A. Aziz, Q. Aliya, Estimates for the moduli of the zeros of a polynomial, Math. Inequal. Appl., 9 (2006), 107-116.
[2] M. Bidkham, A. Zireh, H. A. Soleiman Mezerji, Bound for the zeros of polynomials, J. Class. Anal., 3 (2) (2013), 149-155.
[3] A. L. Cauchy, Excercises de Mathematiques, IV Annee de Bure Freres, Paris (1829).
[4] A. Dalal, N. K. Govil, On region containing all the zeros of a polynomial, Applied Mathematics and Computation 219 (2013), 9609-9614.
[5] J. L. Diaz-Barrero, An annulus for the zeros of polynomials, J. Math. Anal. Appl. 273 (2002), 349-352.
[6] J. L. Diaz-Barrero, Note on bounds of the zeros, Missouri J. Math. Sci., 14 (2002), 88-91.
[7] J. L. Diaz-Barrero, J. J. Egozcue, Bounds for the moduli of zeros, Appl. Math. Lett., 17 (2004), 993-996.
[8] R. Donaghey, L. W. Shapiro, Motzkin numbers, J. Comb. Theory, 23 (1977), 291-301.
[9] N. K. Govil, P. Kumar, On the annular regions containing all the zeros of a polynomial, Applied Mathematics E-Notes, 15 (2015), 317-326.
[10] S. H. Kim, On the moduli of the zeros of a polynomial, Am. Math. Mon., 112 (2005), 924-925.
[11] T. V. Narayana, Sur les treillis formés par les partitions d'une unties et leurs applications á la théorie des probabilités, Comp. Rend. Acad. Sci. Paris., 240 (1955), 1188-1189.
(Received December 16, 2023)

Shabir Ahmad Malik
Department of Mathematics
University of Kashmir
Srinagar-190006, India
e-mail: shabirams2@gmail.com

[^0]: Mathematics subject classification (2020): 30A10, 30C10, 30C15, 30C99.

