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ON THE LACUNARY-TYPE UNIVARIATE COMPLEX POLYNOMIALS

SHABIR AHMAD MALIK

Abstract. In this paper, we study the zeros of lacunary-type polynomials with complex coeffi-
cients. Here we present some results to locate the zeros of lacunary-type polynomials and discuss
their importance with respect to existing results comparatively.

1. Introduction

The following result due to Cauchy [3] is classical in the theory of distribution of
zeros of a polynomial

THEOREM A. All the zeros of a polynomial
P(z) =ag+aiz+amz +...+a,d", a, #0
lie in
2| <1+M,

@
where M = max |-L
1<j<n—119n

Look at Theorem A, only leading coefficient a,, is restricted and rest are arbitrary
from C. This means that Theorem A guarantees us that whenever a, # 0 and a; € C,
1 <k < n—1 are chosen arbitrary, all the zeros of P(z) liein |z| < 14+ M. As a result,
in this theorem the underlying polynomial is liberated with respect to its coefficients
except leading coefficient.

The following result which improves upon Theorem A and provide an annulus
containing all the zeros of a polynomial by using special type of numbers and binomial
coefficients is due to Diaz-Barrero [5].

n
THEOREM B. Let P(z) = Y a7 (a; #0, 0 <1 < n) be a non-constant complex
=0

polynomial. Then all its zeros lie in the annulus € = {z:r <|z| < ra}, where

0
} ey
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and

F4n

2 ma an—¢
= — X P —
27 3i<i<n \ 2"F,C(n, 1)

}' . 2)

Here F, is the #" Fibonacci number, deﬁned by, Fp =0, Fy =1 and for t > 2,
F; = F;_1 + F,_». Furthermore, C(n,t) = (n t), are the binomial coefficients. Another
result in this connection providing annulus containing all the zeros of a polynomial
P(z) is the following, and is ascribed to Kim [10].

An

n
THEOREM C. Let P(z) = 3 a;7 (a; #0, 0 <t < n) be a non-constant polyno-
=0
mial with complex coefficients. Then all its zeros lie in the annulus A = {z:r; < |z] <

r}, where
%
o } 3)
a;

%
} . “)

We have following two more results due to Diaz-Barrero and Egozcue [7] regard-
ing the zeros of P(z).

71 = min

&

and

an—t

2" —1
r) = max
27 I<i<n C(n,t)

dn

Here C(n,t) is the binomial coefficient.

THEOREM D. Let P(z) = Z a7 (a; #0) be a non-constant complex polynomial.
=0

Then for j > 2 all its zeros lie in the annulus C = {z: r; < |z| < ro}, where

C(n,t)AtBt-(bB,',l)”_t a0 1/t
ri = min S “o )
1<t<n Ajn a
and
1/t
rp = max Ajn Qan—¢ . ©)
1<i<n | C(n,1)AB'(bBj—1)"" | an

n—1
Here B, = Y Fs" 1% and A, = cr”" + ds", where c,d are real constants and r,s

are the roots of the equation x?

numbers. For j > 2, 2 C(n,t)(bBj—1)""'B'A; = Ajy. Furthermore, C(n,t) is the

—ax—b =0 in which a,b are strictly positive real

binomial coefficient.
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n
THEOREM E. Let P(z) = Y, a;Z (a; # 0) be a non-constant polynomial with
t=0

complex coefficients. Then all its zeros lie in the ring shaped region C = {z:r; < |z] <

r}, where
1
2'PC(n, t T
ri = min {7t (n, 1) |do } (7
1<1<n P, a;
and
1
P, Ap—t ’
- R 8
"2 gzaé‘n{sztC(n, 0 | an } ®)

Here P, is the "' Pell number, defined by, By=0, P, =1 and fort >2, P, =2P,_; +
B .

Again we state the following result which is due to Diaz-Barrero [6] providing
regions containing all the zeros of a polynomial P(z).

THEOREM F. Let P(z) = Y a7 be a complex monic polynomial. Then all its
=0
zeros lie in the disks Cy = {z: |z| <1} or Co ={z:|z| < r2}, where

2 1C(n+1,2 v
{#an[@

p— 9
1= X T e, ®
and
an 1/t
= —a,_ . 10
r lnglflél{c(n, N2'F, |an t|} (10)

Here C(n, t) is the binomial coefficient.
Next, we state the following unified result due to Dalal and Govil [4] (see also [1]),
which includes all the above results, Theorems B-F as special cases.

THEOREM G. Let A; > 0 for 1 <t < n, and be such that ¥ A; = 1. If P(z) =
=1

n

Y a7 (@ #0, 0< 1< n) is anon-constant polynomial with complex coefficients, then
=0
all the zeros of P(z) lie in the annulus C ={z:r| < |z| <}, where

1

r| = min {A, % } (11)
1<t<n ay
and

1 1

Ap—t !
_ - , 12
2 11232}1{14[ ay } ( )

As an application of Theorem G, Govil and Kumar [9] proved the following two
results that gives annuli in terms of Narayana numbers [1 1] and Motzkin numbers [8].
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n
THEOREM H. Let P(z) = ¥ a;7 be a non-constant polynomial with complex
t=0

coefficients, with a; # 0, 0 <t % n. Then all the zeros of P(z) lie in the annulus
C={z:r < |zl <ra}, where

1
. [N, t)|ao| "
= AR b 13
= { N @3
and
1
Cn n— r
r = max Gl b (14)
1<t<n | N(n, 1) | an
where C, = C(ji’ln) is the n'" Catalan number, N(n, t), (1 <t < n) are Narayana

C(n, t)C(n, t—1), and

numbers defined for any natural number n by N(n, t) = %

C(n, t) is the binomial coefficient.

n
THEOREM 1. Let P(z) = ¥ 7' be a non-constant polynomial with complex
t=0
coefficients, with a; # 0, 0 <t < n. Then all the zeros of P(z) lie in the annulus

C={z:r < |zl <ra}, where

1
M, M, __ i
i = min {M al } (15)
1<t<n M, a;
and
1
M Nt
= max 4 — |G LT (16)
1<t<n | My M1+ | ay

where My, is the n'* Motzkin number defined by Mo =M; =M_, = 1, and

2n+3 3n

n+3 " n+3
Now, let us look at Theorem G, which is due to Dalal and Govil [4], includes

all the Theorems B-F and many other results as special cases by choosing A; > 0

My = M-y, n> 1

n

appropriately with Y, A; = 1. But in Theorem G, the polynomial is not liberated with
=1

respect to its coefficients, that is, if at least one a; =0, 1 <k <n—1, Theorem G does

not hold good. In view of that, we consider the class of lacunary type polynomials
Py, = {P:P(z) zao—l-Ea,z’, (¢, £0V1), 1< gn}
1=q

and make an endeavor to resolve this case while proving several results which provide
annuli containing all the zeros of the polynomial P € P, . Note that for g = 1, the
lacunary polynomial reduces to a simple polynomial

P(z)=ap+ajz+... +ay 177V +a.
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2. Main results

We first prove the following result which provide an annulus to locate the zeros of
apolynomial P€ P, 4.

n
THEOREM 1. Let A; > 0 be suchthat ¥, A, =1, and let P € P, . Then all the

=1
zeros of P lie in the annulus % = {z: R) < |z] < Ry}, where

1

_ . ap T
r= g {2} "
and
1 1
t
R, = max {— dn—t } . (18)
ue<n | Ay | ay

Since Theorem G does not hold if at least one a; =0, 1 <k <n—1, we make use
of Theorem 1 by adapting the parameter tt. Have a look at the following.

REMARK 1. If P(z) = ag+arz> + a32> ... + a7, (a;p #0, 2 <k <n—1), then
Theorem G does not give any information about the location of its zeros. In this case,
take 1 =2 in Theorem I, we get all the zeros of P(z) liein % = {z: R; < |z] < R»}.
Againif P(z) = ag+asz’ ... +an?", (ax #0, 3 <k <n—1), then Theorem G does not
hold and in this case we take yt =3 in Theorem 1 and so on similarly, we get finally all
the zeros of polynomial ag+ a,z" liein & = {z: R; < |z] < R2}, where

1

Rlz{An a—o}
an

. L

Rzz{— a—o} .
A, lay

REMARK 2. Theorem 1 is also trueif Aj,A»,...,A, are any real or complex num-

and

bers such that Y, |A;| < 1. If we take g = 1, in Theorem 1, we obtain Theorem G as a
=1
special case.
REMARK 3. Note that in Theorem 1 the selection of coefficients and p is like

that: when a; is absent, we take u =2, when aj, a, are absent, we take t =3 and so
on.

REMARK 4. In case, a,_; is absent, then a, i, a,_» are absent and so on, the
lacunary polynomial takes the form

P(Z) = a7+ 2 an—72"".
V=it
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It is well established that for every choice of A; in Table 1, A, satisfy the two

needed conditions A; > 0 for 1 <t < n, and 2 A =1.
=1

By making the right choice of A, and u, such that A, >0 and Y, A; =1, Theorem
=1
1 include all the results listed in Table 1 as special cases and resolves them for y > 2

REMARK 5. Itis easy to verify that Theorem 1 is also an extension of Theorem F
to the lacunary-type of polynomials, i.e., if P € P, ; be a complex monic polynomial

2,,’12&% and t =1 in the bound (18) of Theorem 1
12C(n, 1)

C(n+1, 2)

(9) of Theorem F. Similarly, if we take A; = % and u =1 in the bound (18) of

of degree n and we take A, =

and note that A, > 0, for all values of ¢ and 2 =2"-1 we obtain the bound

Theorem 1, and note the identity Y, C(n, t)2'F, = F3,, then we will obtain the bound
=1
(10) of Theorem F.

COROLLARY 1. If P € P, , then all the zeros of P lie in annulus ri < |z| < rp,

where
I 1
= min { —— |2 (19)
psrsn ( Lyyo —3 |
and
Lyis—3 :
rp = max {7“2_ Gnt } ) (20)
u<i<n L an

Here L; is the t"" Lucas number defined by Ly =2, Ly = 1 and for t >0, L4 =
L+ L.

REMARK 6. Corollary 1 can be obtained from Theorem 1 by simply taking A; =
I +th -, and from the definition of Lucas numbers, we have

M=
S

Lt:
1 t

{Liyo— L1} =Lyyo—Ly=Lyr—3,
1

-
I

since Lo = Lo+ L =3.
If we take u =1 in Corollary 1, it immediately gives us the result due to Dalal
and Govil [4, Corollary 2.1].

For example, if we consider the polynomial P(z) = z*+0.01z> + 0.1z + 0.2z +

0.4, then by taking A, = L 7= in Theorem G, we get all the zeros of polynomial
P(z) lie in the annulus ry g |z\ < ry, where r| 2 0.1333 and r, ~ 0.9621, and area of
annulus comes out to be 2.8512 approximately. Now, if we consider the polynomial
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Table 1.
Value of Z Theorem
1 2*’3’5# B
! St C
1 %@—1)” b

P(z) = z* +0.01z° +0.1z> + 0.4, then Theorem G does not give any annulus to locate
the zeros of the polynomial P(z) because the coefficient a; is absent. In this case, take
u =2 in Corollary 1, we get all the zeros of the polynomial P(z) lie in the annulus
r1 < |z < rp, where r; &2 0.6573 and r, = 0.9621, and area of annulus comes out to be
1.5498 approximately, which is also a significant improvement over the area obtained
by Theorem G.

Catalan numbers, which are defined as C; = C(szlk) where C(2k, k) being the
binomial coefficients, are well known in the field of combinatorics. We state the fol-
lowing result in terms of Catalan numbers as a corollary of Theorem 1, which resolves
the result of Dalal and Govil [4, Corollary 2.2].

COROLLARY 2. If P € P, y, then all the zeros of P lie in the annulus ry < |z] <

r2, where
1
Ci1C,_ 3
= min {M ao } @
u<k<n Cy ay
and
. %
n An—k
= ma _— . 22
"2 uékén{ckl Cok | an } 2

Here, as defined above, Cy. is the k" Catalan number.

REMARK 7. Corollary 2 is also an immediate consequence of Theorem 1 by tak-
ing Ay = Gt Gk e C" k for k=1,2,...,n, and noting that M >0 and

2 Ci1 G =Gy,
k=1

Next we present some of the applications of Theorem 1 and obtain annuli con-
taining all the zeros of a polynomial P € P, ;. The first result in this connection,
stated below gives an annular region for the zeros of a polynomial P € P, ,, in terms
of Narayana numbers.
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THEOREM 2. All the zeros of the polynomial P € P, lie in C={z: K, < |z] <

K>}, where
1
N(n, k k
K; = min {M 40 } (23)
u<k<n Cn ay
and
. :
n An—k ‘
K, = . 24
: Jg?i(n{N(m k)| an } @4
Here C, = C(nzz’ln) is the n'" Catalan number, N(n, k) = 1C(n, k) C(n, k—1) are
Narayana numbers for any natural number n and C(n, k) is the binomial coefficient.

REMARK 8. For u =1, the polynomial P € P, reduces to a simple polynomial
of degree n. In this case, Theorem 2 reduces to Theorem H. For u > 2, it resolves
Theorem H if at least one a; =0, 1 <k < n— 1 sequentially.

The Motzkin numbers M, are defined by My =M; =M_; =1 and

_2n—|—3 3n

=——My+—=M,; 1, n2>1.
n+3 n+3 el

n+1

The next result is based on the application of Motzkin numbers to get an annular region
containing all the zeros of a polynomial P € PP, ;.

THEOREM 3. Let P € Py, be a complex polynomial of degree n. Then all the
zeros of P lie in the annulus C = {z: K| < |z| < Kz}, where

1
My My, x
Klzmin{ikl ””ﬂ} (25)
u<k<n M, ay
and
M t
K, = max " Ank| L7 (26)
psks<n My My | an

REMARK 9. For u =1, Theorem 3 reduces to Theorem I.

Now, we present the following result which is based on generalized Fibonacci
numbers. More precisely we prove.

THEOREM 4. If P € P, y, then for j > 1, all the zeros of P lie in the annulus
X ={z:R; < |z <Ry} with
1
k
— } (27)

u<k<n

\k . —k
Rl — min {C(}L k)FP7S~,k(Fp7s,2/) (SFp,S72J—1)n

Fp s2in
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and

1

k
} ; (28)

where (p,s)-Fibonacci sequence {Fp s ,}nen, for any positive real numbers p, s, is
defined by

an—k
dn

R, = max Fp 5,20n
usksn C(n7 k)FP7S~,k(Fp,s,2/)k (SFp,.\',2-/?l)n_k

Fp,.\',nJrl = pr,s,n + SFp,s,nfh nzl

with initial conditions
Fp,.\',O =0, Fp,.\',l =1

REMARK 10. Since for g =1, the lacunary polynomial P € P, , reduces to a
simple polynomial of degree n, Theorem 4 reduces to a result due to Bidkham et al. [2,
Theorem 1]. For t =1, p=s=1 and j =2, Theorem 4 reduces to Theorem B. If we
take p =2, s =1 in Theorem 4, we get the following more general version of Theorem
E.

COROLLARY 3. If PPy y, then for j > 1, all the zeros of P lie in the annulus
A ={z:r <z <} with

1
C(n, K)P.(P)k(P,; )"k T
ri = min (n, K)Pe(Py)" (o)™ " | ao
psksn P2-fn 477
and

1

ry = max { Pyin an—k }k

usksn | C(n, k)P(Py)K(Pyi_y )" * | ay '

REMARK 11. If u =1 and j =1, then Corollary 3 reduces to Theorem E which
is based on Pell numbers.

3. Lemmas

To prove Theorem 4, we need the following lemma.

LEMMA 1. For j > 1,

M=

n—k k
C(n7 k) (SFp,s,2jfl) (Fp,s,2j) FP7SJ< = Fp,s,2jn

k=1

holds. This Lemma is a special case of a result due to Diaz-Barrero and Egozcue [7,
Theorem 1].
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4. Proofs of the Theorems
Proof of Theorem 1. If ay =0, then R; =0 and P(z) has a zero at origin. Fol-
lowing Cauchy’s method, if we assume that ag # 0 and |z| < R;. We shall prove (17)

by principle of mathematical induction. Result is true for 4 = 1 by Theorem G. Now
for u =2. Let

2)=ap+ Y a 7
t=2

Now, by the application of triangle inequality, we have

ZM’
> |aol —E Jar] [zl
=2

n
> laol = X las| Ry

"
=lap| | 1— —|R} ],
[aol IZEMO 1

<

|P(z)| = |ao| —

i.e.,

(2)] > laol [ 1 - Za ) (29)

=2
IR <A, (30)

“)

Now, from equation (17), we have for 2 <7 < n

hence using (30) in (29), we get

e |>|ao<1 I
=2

> |ao| (1—214,)

= |ao| (1 —14+A1) >

as by hypothesis 2 A; = 1. Thus P(z) does not have any zero in |z| < R; . Therefore,

we conclude that all the zeros of P(z) liein |z| > Ry, and (17) is thus proved for p =2.
We assume that (17) is true for yt =y, i.e., all the zeros of P(z) lie in |z| > Ry, where

a;

1
0 [
s<r<n

R; = min {A, %
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and 2 Ar=1— 3 A
t=s+1
We will prove that (17) is true for 4 = s+ 1. Let

n
P(z) =aop+ 2 a
t=s+1

Then it is easy to verify that

P(2)] > lao| —

S a?

t=s+1

n n
> laol— Y, atR'i=|00<1— Y

t=s+1 t=s+1

Since, by (17) we have for s+ 1 <t < n, the inequality

a; :
- R1 <At7
ao

hence using (32) in (31), we get

IPG)| > lao| (1— 3 A,>

t=s+1

= |ay (1 —1+2A,>
=1

>0

47

& Rﬁ). G1)
0

(32)

Thus P(z) does not have any zero in |z| < R;. Hence (17) is true for pt = s+ 1.

To prove the bound (18), we consider the polynomial

S(z) =7"P(1/2) =an+an—py 2" +ap_py_1 7+ ...+ audH +ap".

By the first part of the theorem, all the zeros of the polynomial S(z) lie in

~l—

. an
|zl > min < A,
u<si<n an—¢
1
t
. 1
= min
u<t<n L an—t
A | ap
1
- 1
max {i dnt }t
p<e<n LAr | an
1
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Replacing z by % and noting that P(z) = 7"S(1/z), we conclude that all the zeros of

P(z) lie in
1
} T

an—t

1
<Ry = —
2 < Ry unéf‘é‘n{A,

An

which is (18). This proves Theorem 1 completely. [

Proof of Theorem 2. Let C(n, k) denote the binomial coefficients, then Narayana
numbers are given by the identity

N@,@::%C@,@(ka—1x

(2n n)

and Catalan numbers by the identity C, = . Therefore,

M=
=

B=L3 cn rcm k-1

k=1
= lC(2n, n—1)
_I (2n)!
nn—=1!2n—(n—1))!

Thus, if we take Ay = ( k) , then A; > 0 for each k and Z A = 1. Hence, applying
k=1

Theorem 1 for this set of Ag, (1 < k< n), we get the desired result. This completes
the proof of Theorem 2. [

Proof of Theorem 3. Let M,, be the n'" Motzkin number, then we have

n
N My My_y—x =My,
k=1

with M0:M1 =M_; =1. Now, if we take A; = AHL

L& then A; > 0 for each k
and 2 Ay =1, and hence applying Theorem 1 for this set of Ay, (1 <k <n), we get

the desued result and the proof of Theorem 3 is thus complete. [

Proof of Theorem 4. The proof of this theorem follows by applying Lemma 1 and
then Theorem 1. [J
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