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SHARING THE ZEROS OF POLYNOMIALS WITH

REVERSE INDEX FOUR IN WEIGHTED WIDER SENSE

ABHIJIT BANERJEE ∗ AND JHILIK BANERJEE

Abstract. In this paper, on the basis of zero set of reverse indexed polynomial, first introduced
by us, we have investigated the uniqueness of meromorphic functions under weighted sharing
in wider sense criteria [4], which in turn extend some earlier results in different directions. We
have succeeded to identify a subclass of meromorphic functions for which uniqueness property
exists for higher reverse indexed polynomial in literature. In the last section, we have presented
the application of our results in case of derivatives of the concerned functions accompanied by
series of examples.

1. Introduction

At the outset, we assume that the readers are acquainted with the conventional
notations of value distribution theory such as N(r, f ) , T (r, f ) , S(r, f ) , etc, as outlined
in [11]. So we refrain from providing detail explanations.

In value distribution theory we generally concern about the distribution of the zeros
of the function f (z)−a , where a ∈ C and form which the idea of sharing of values or
sets comes under consideration. For the standard notations of set sharing, we refer the
readers to make a glance over the relevant information provided in the second paragraph
of [2], which automatically includes the definition of value sharing. Below we invoke
it.

Let S be a set of distinct elements of C∪{∞} . Let us denote by Ef (S) =
⋃

a∈S{z :
f (z)− a = 0} , where each zero is counted according to its multiplicity. If we do not
count the multiplicities then the set

⋃
a∈S{z : f (z)− a = 0} is denoted by E f (S) . If

Ef (S) = Eg(S) (E f (S) = Eg(S)) we say that f and g share the set S CM (IM).
If the readers need further information or a detailed explanation about these con-

cepts, we recommend referring to the original sources cited in the text: [2] and [11].
In 1976, in connection to the famous question of Gross [10], Lin-Yi posed the

question (see Question B, p. 74, [15]) pertains to meromorphic functions and their
relationships when sharing two sets.

QUESTION 1.1. [15] Can one find two finite sets S j ( j = 1,2) such that any two
non constant meromorphic functions f and g satisfying Ef (S j) = Eg(S j) for j = 1,2
must be identical?
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In 2001, the notion of weighted sharing of sets was appeared in the literature, which
explores the interconnections of sharing of sets by two meromorphic functions based
on specific weighted criteria. This concept immensely contributed to various domains
of uniqueness theory vis-a-vis value distribution theory. The specific details and im-
plications of this notion can be found in the paper by Lahiri [12]. The definition is as
follows:

DEFINITION 1. [12] Let l be a non negative integer or infinity. For a ∈ C∪{∞}
we denote by El(a; f ) the set of all a -points of f , where an a -point of multiplicity t is
counted t times if t � l and l +1 times if t > l . Let S be a set of distinct elements of
C∪{∞} . We denote by Ef (S, l) the set

⋃
a∈S El(a; f ) . If Ef (S, l) = Eg(S, l) , we say f

and g share the set S with weight l and denote it by (S, l) . We say, Ef (S) = Ef (S,∞)
and E f (S) = Ef (S,0) .

2. Definitions and background

Recently we have introduced a more comprehensive framework than Definition 1
termed as ‘weighted sharing of sets in wider sense’ for meromorphic functions.

DEFINITION 2. [4] Let f and g be two non-constant meromorphic functions and
P(z) and Q(z) be two polynomials of degree n without any multiple zero. Let

SP = {z : P(z) = 0} and SQ = {z : Q(z) = 0}.

We say that f and g share the sets SP and SQ with weight l in the wider sense if
Ef (SP, l) = Eg(SQ, l) and we denote it by f , g share (SP,SQ; l) . If P = Q , we get the
traditional Definition 1 of weighted sharing of sets.

Next we slightly modify the definition of [5] in the following manner as the same
is necessary in the subsequent stages.

DEFINITION 3. A polynomial

P(z) = anz
n +an−1z

z−1 + . . .+a1z+a0

of degree n is called an initial term non-gap polynomial (ITNGP) if there exist at least
one consecutive non-zero term after the first term, i.e., if an−i �= 0 for some 1 � i < n ,
then an−1 �= 0, an−2 �= 0, . . . an−i+1 �= 0. Otherwise P(z) is called an initial term gap
polynomial (ITGP).

We are now introducing analogues definition of Definition 3, in vis-a-vis of termi-
nal term gap and non-gap polynomials.

DEFINITION 4. A polynomial

P(z) = anz
n +an−1z

z−1 + . . .+a1z+a0
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with a0 �= 0 is called a terminal term non-gap polynomial (TTNGP) if before a0 , there
exist at least one non-zero consecutive term, i.e., if at �= 0, then at−1 �= 0, at−2 �= 0,. . . ,
a1 �= 0 for t = 1,2, . . . ,(n−1) . Otherwise the polynomial is said to be a terminal terms
gap polynomials (TTGP).

Next, in view of Definitions 3 and 4, we want to propose the definitions of Index
and Reserve index of a polynomial.

DEFINITION 5. Let us consider the polynomial: P[s](z) = anzn +an−1zn−1 + . . .+
a1z+a0 .

A. If P[s](z) is an ITNGP, then it is said to be initial term non-gap polynomial of
index s (ITNGP s in short) if one of the followings is satisfied:

i) an−s+1 �= 0 but a0 = 0 (1 � s � n )
ii) ai �= 0, for i = 0,1,2, . . . ,n ; then s = n+1.
B. If P[s](z) is an ITGP, then it is of index 1.

Note that any polynomial of degree n is of index s � 1.

DEFINITION 6. Suppose P[ŝ](z) = bnzn +bn−1zn−1 + . . .+b1z+b0 , b0 �= 0.
A. If P[ŝ](z) is an TTNGP, then it is said to be terminal term non-gap polynomial

of reverse index ŝ (TTNGP ŝ in short) if one of the followings is satisfied:
i) bŝ−1 �= 0; (1 < ŝ < n)
ii) bi �= 0 for i = 1, . . . ,n−1; then ŝ = n+1
B. If P[ŝ](z) is an TTGP, then reverse index is 1.

NOTE 2.1. For a polynomial of degree n, n cannot be reverse index of the poly-
nomial.

For the standard definitions and notations of the value distribution theory we refer
to [11] and for the definitions of N(r,a; f |� s) , N(r,a; f |= s) for s � 1, NL(r,1; f ) ,
NL(r,1;g) , N(k

E (r,1; f ) and N∗(r,a; f ,g) we refer to [1], [13], [14], [19].
The following polynomial

P[3] (z) = azn −n(n−1)z2−2n(n−2)bz+(n−1)(n−2)b2,

where abn−2

2 �= 1, which is of reverse index 3 have some contribution in uniqueness
theory.

In 2002, considering P[3] (z) , Yi [20] proved the following results that improve
Question 1.1 affirmatively.

THEOREM A. [20] Let us take the polynomial with only simple zeros such that

Let S =
{

z : P[3] (z) = 0
}

, where n � 8. Suppose that f and g be two non constant

meromorphic functions satisfying Ef (S,∞) = Eg(S,∞) and Ef ({∞},∞) = Eg({∞},∞) ,
then f ≡ g.
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THEOREM B. [20] Let S be defined as in Theorem A with n � 8 and f and
g be two non constant meromorphic functions satisfying Ef (S,∞) = Eg(S,∞) and
Ef ({∞},0) = Eg({∞},0) , then f ≡ g.

Next, in view of Question 1.1, Yi and Lü [21] investigated the problem of the
uniqueness of two meromorphic functions f and g when they share the set S as men-
tioned in Theorem A, IM and proved the following theorem.

THEOREM C. [21] Let S be defined as in Theorem A and n � 12. Suppose that
f and g be two non constant meromorphic functions satisfying Ef (S,0) = Eg(S,0) and
Ef ({∞},∞) = Eg({∞},∞) , then f ≡ g.

3. Motivation and main results

In view of definition 6, we see that zeros of polynomial of reverse index higher
that 3 did not get any priority for investigation as far as literature of uniqueness theory
is concerned. Naturally, it is high time to ponder over the contributions of polynomials
of higher reverse index. This is the main motivation in writing this paper. In fact, we
are going to tackle this situation more rigorously under the aegis of weighted sharing
in wider sense. To this end, let us consider two polynomials of reverse index 4 with
simple zeros as

P1
4
(z) = azn −Q(z) (3.1)

and

P2
4
(z) = azn−dQ(z),

where

Q(z) = n(n−1)(n−2)z3−3bn(n−1)(n−3)z2+3b2n(n−2)(n−3)z
−b3(n−1)(n−2)(n−3),

d is non zero complex number. Let us denote the simple zeros of Q(z) by αi for
i = 1,2,3. Set

R1(z) =
azn

Q(z)
, R2(z) =

1
d

R1(z). (3.2)

We have from (3.2),

R′
1(z) = − a(n−3)zn−1(z−b)3

n(n−1)(n−2)(z−α1)2(z−α2)2(z−α3)2 ,

satisfying R1(b) �= 1, so that b is not a zero of P1
4
(z) . Similarly we can show that b is

not a zero of P2
4
(z) . Hence it is clear that 0 is a zero of R1(z) of multiplicity n and b

is a zero of (R1(z)−R1(b)) of multiplicity 4.
With respect to the above defined polynomial, in view of the definition of weighted

sharing in wider sense, we would like to state our main results of this paper.
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THEOREM 1. Let Si = {z | Pi
4
(z) = 0} for i = 1,2 , where Pi

4
(z) is given by (3.1).

Suppose f and g are two non-constant non entire meromorphic functions satisfying
one of the following conditions:

i) f and g share (S1,S2;2) , (∞,0) and n � 8
ii) f and g share (S1,S2;0) , (∞,∞) and n � 9 ,

then f ≡ g.

THEOREM 2. Under the same situation as in Theorem 1, if f , g be two non-
constant entire functions sharing (S1,S2;2) and n � 7 , then

n(n−1)(n−2){d f ng3−gn f 3}−3bn(n−1)(n−3){d f ng2−gn f 2}
+3b2n(n−2)(n−3){d f ng−gn f}−b3(n−1)(n−2)(n−3){d f n−gn} ≡ 0.

The following example shows that for any non constant entire function the set S1

in Theorem 2 can not be replaced by any arbitrary set consisting 7 elements.

EXAMPLE 1. Take a set consisting 7 elements as follows:

S =
{

i, i
√

i,−1,−i,−i
√

i,1,0
}

.

For some non zero complex number α , choose two functions f (z) = eαz and g(z) =
e−αz. It is easy to see that f and g share (S,∞) , but for n = 7, d = 1, f , g do not
satisfy the relation between f and g as demonstrated in Theorem 2 i.e.,

35(e4αz −e−4αz)−84b(e5αz −e−5αz)+70b2(e6αz −e−6αz)−20b3(e7αz −e−7αz) �≡ 0.

THEOREM 3. Let Si i = 1,2 be defined as in Theorem 1. If f and g are two
non-constant non-entire meromorphic functions that share (S1,S2;3) , ({b,∞},0) and
n � 7 with R2(b) �= 1

d+1 , then f ≡ g.

4. Lemmas

Let us define two meromorphic functions Fi and Gi as follows:

F ≡ R1( f ), G ≡ R2(g). (4.1)

On the basis of the two functions in (4.1), we now define the following two auxil-
iary functions H and V as follows:

H ≡
[

F
′′

F ′ − 2F
′

F −1

]
−

[
G

′′

G′ − 2G
′

G−1

]
(4.2)

and

V ≡ F
′

F(F −1)
− G

′

G(G−1)
. (4.3)

The following lemmas will play key roles in proving our results.
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LEMMA 1. [19] If F , G be two non constant meromorphic functions sharing
(1,1) and H �≡ 0 , then

N(r,1;F |= 1) = N(r,1;G |= 1) � N(r,H)+S(r,F)+S(r,G).

LEMMA 2. [3] Let f and g be two non constant meromorphic functions sharing
(1,m) , where 0 � l < ∞ . Then

N(r,1; f )+N(r,1;g)−N(r,1; f |= 1)+
(

m− 1
2

)
N∗(r,1; f ,g)

� 1
2
[N(r,1; f )+N(r,1;g)].

LEMMA 3. [17] Let f be a non-constant meromorphic function and let

R1( f ) =
∑n

k=0 ak f k

∑m
j=0 b j f j

be an irreducible function in f with constant coefficients {ak} and {b j} , where an �= 0
and bm �= 0 . Then T (R1( f )) = dT (r, f )+S(r, f ) , where d = max{n,m} .

LEMMA 4. Let f and g be two non constant meromorphic functions and F and
G be defined by (4.1) such that f and g share (S1,S2;0) and (∞, p) 0 � p < ∞ ,
H �≡ 0 . Then

N(r,∞;H) � N(r,0; f )+N(r,0;g)+N(r,b; f )+N(r,b;g)+N∗(r,1;F,G)
+N∗(r,∞; f ,g)+N0(r,0; f ′)+N0(r,0;g′),

where N0(r,0; f ′) is the reduced counting function of those zeros of f which are not
zeros of f ( f −b)(F −1) and N0(r,0;g′) is similarly defined.

Proof. Since f and g share (S1,S2;0) , it follows that F and G share (1,0) . We
can easily verify that possible poles of H occur at (i) zeros of f , (ii) b - points of f ,
(iii) those poles of f and g whose multiplicities are distinct from the multiplicities of
the corresponding poles of g and f respectively, (iv) those 1-points of F and G with
different multiplicities, (v) zeros of f ′ which are not the zeros of f ( f −b)(F −1) , (v)
zeros of g′ which are not zeros of g(g−b)(G−1) . Since H has only simple poles, the
lemma follows from above. �

LEMMA 5. Let f and g be two non constant meromorphic functions and F and
G be defined by (4.1) such that f and g share (S1,S2;0) and ({b,∞}, p) 0 � p < ∞ ,
H �≡ 0 . Then

N(r,∞;H) � N(r,0; f )+N(r,0;g)+N(r,b; f )+N(r,∞; f )+N∗(r,1;F,G)
+N0(r,0; f ′)+N0(r,0;g′),

where N0(r,0; f ′) is the reduced counting function of those zeros of f which are not
zeros of f ( f − δ )(F −1) and N0(r,0;g′) is similarly defined.
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Proof. Proof of the lemma can be carried out in the line of the proof of Lemma
4. �

LEMMA 6. Let F and G be given by (4.1) and H �≡ 0 . Consider F and G share
(1,m) and f and g share (∞, p) , where 0 � m, p < ∞ .

[(n−3)p+n−4]N(r,∞; f |� p+1)
= [(n−3)p+n−4]N(r,∞;g |� p+1)]
� N(r,0; f )+N(r,0;g)+N∗(r,1;F,G)+S(r, f )+S(r,g).

Proof. Proof of the theorem can be carried out in the line of the proof of the
Lemma 2.16 of [2]. �

LEMMA 7. Let F , G be given by (4.1) and F , G share (1,m) . If f and g share
({b,∞}, p) , where 0 � m, p < ∞ then

(4p+3)
[
N(r,b; f |� p+1)+N(r,∞; f |� p+1)

]
� N(r,0; f )+N(r,0;g)+N∗(r,1;F,G)+S(r, f )+S(r,g).

Proof. Proof of the lemma can be carried out in the line of the proof of Lemma 2.5
in [6]. �

5. Proofs of the theorems

Proof of Theorem 1. (i): Let F and G be given by (4.1). Since f and g share
(S1,S2;2) , from (4.1) it follows that F and G share (1,2) . Suppose H �≡ 0.

Using Lemma 2 for m = 2, Lemma 4 for p = 0, Lemma 6 for p = 0, Lemma 3 we
get from the Second Fundamental Theorem,

(n+1){T(r, f )+T (r,g)}
� N(r,0; f )+N(r,b; f )+N(r,∞; f )+N(r,1;F)+N(r,0;g)

+N(r,b;g)+N(r,∞;g)+N(r,1;G)−N0(r,0; f ′)−N0(r,0;g′)
+S(r, f )+S(r,g)

� N(r,1;F |= 1)+
(n

2
+2

)
{T (r, f )+T (r,g)}+2N(r,∞; f )−

(
2− 1

2

)
N∗(r,1;F,G)−N0(r,0; f ′)−N0(r,0;g′)+S(r, f )+S(r,g)

�
(

n
2

+4+
3

n−4

)
{T (r, f )+T (r,g)}−

(
2− 3

2
− 3

n−4

)
N∗(r,1;F,G)

+S(r, f )+S(r,g),

which is a contradiction n � 8.
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Hence H ≡ 0. So for two constants A(�= 0) , B we get

1
F −1

≡ A
G−1

+B (5.1)

and

T (r, f ) = T (r,g)+S(r,g). (5.2)

Case 1: ∞ is an e.v.P of both f and g .

Subcase 1.1: Let us assume that B �= 0. Then by (5.1) we can have

F ≡ (B+1)G+(A−B−1)
A+B(G−1)

. (5.3)

Subcase 1.1.1: Let (B+1) �= 0.
First we assume that (A−B−1) �= 0, then we say from (5.3),

N(r,0; f ) = N

(
r,

B+1−A
B+1

;G

)
.

Using the Second Fundamental theorem and by the above fact we can write,

nT (r,g) = T (r,G)+S(r,G) � N(r,0;G)+N

(
r,

B+1−A
B+1

;G

)
+N(r,∞;G)+S(r,G)

� N(r,0; f )+N(r,0;g)+
3

∑
i=1

N(r,αi;g)+S(r,g) � 5T (r,g)+S(r,g),

which is a contradiction for n � 8.
Next we assume that (A−B−1) = 0. Then (5.3) yields

F ≡ AG
BG+1

and this implies that

N

(
r,0;G+

1
B

)
= N(r,∞;F).

By the Second Fundamental Theorem and the above stated fact using the previous
arguments we can write

nT (r,g) �
3

∑
i=1

N(r,αi; f )+N(r,0;g)+
3

∑
i=1

N(r,αi;g)+S(r,g) � 7T (r,g)+S(r,g),

a contradiction for n � 8.
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Subcase 1.1.2: Let (B+1) = 0. Then again from (5.3) we obtain

F ≡ A
(A+1)−G

.

First let us suppose that (A+1) �= 0. Then

N(r,∞;F) = N(r,(A+1);G).

By using the similar arguments as made in the above subcase we again obtain a contra-
diction of n � 8. Next suppose that A = −1. Then we have

FG ≡ 1,

which implies

a2( f g)n ≡ {n(n−1)(n−2)}2
3

∏
i=1

( f −αi)
3

∏
i=1

(g−αi).

By the Second Fundamental theorem and the above equation we can write

T (r, f )+T (r,g) �
3

∑
i=1

N(r,αi; f )+
3

∑
i=1

N(r,αi;g)+S(r, f )+S(r,g)

� 3
n
{T (r, f )+T (r,g)}+S(r, f )+S(r,g),

a contradiction for n � 8.

Case 2: ∞ is not an e.v.P. of both f and g , i.e. there exists a complex number z0

such that f (z0) = g(z0) = ∞. From (5.1) we can say B = 0. Hence we have

(G−1) = A(F −1)

i.e.,

G = A

[
F − A−1

A

]
.

Let us assume that A �= 1. From the above equation it is clear that

N

(
r,

A−1
A

;F

)
= N(r,0;g).

Using the Second Fundamental Theorem we obtain

nT (r, f ) � N(r,0;F)+N

(
r,

A−1
A

;F

)
+N(r,∞;F)+S(r,g)

� N(r,0; f )+N(r,∞; f )+
3

∑
i=1

N(r,αi; f )+N(r,0;g)+S(r, f )+S(r,g)

� 6T (r, f )+S(r, f ),
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which is a contradiction. Therefore A = 1, which shows that

F ≡ G.

By a simple computation we can write

n(n−1)(n−2){d f ng3−gn f 3}−3bn(n−1)(n−3){d f ng2−gn f 2} (5.4)

+3b2n(n−2)(n−3){d f ng−gn f}−b3(n−1)(n−2)(n−3){d f n−gn} ≡ 0.

Let us take f = hg . Then a simple calculation yields from the above equation that

n(n−1)(n−2)(gh)3
[
hn−3− 1

d

]
−3bn(n−1)(n−3)(gh)2

[
hn−2− 1

d

]
(5.5)

+3b2n(n−2)(n−3)(gh)
[
hn−1− 1

d

]
−b3(n−1)(n−2)(n−3)

[
hn− 1

d

]
≡ 0.

First suppose h is non constant. It is clear from the above facts that h doesn’t
possess any zeros or poles. Note that none of the zeros of (hi −α) , i = n,(n− 1),
(n−2),(n−3) is e.v.P. If one of the functions f or g has at least one pole then zeros
of (hn−3 −α) are of multiplicities at least 3 namely δi for i = 1,2, . . . ,(n−3) . Now
using the Second Fundamental Theorem we get

(n−3)T(r,h) �
n−3

∑
i=1

N(r,δi;h)+N(r,0;h)+N(r,∞;h)+S(r,h) � n−3
3

T (r,h)+S(r,h),

which is a contradiction.
Hence, h is constant then we have hn ≡ hn−1 ≡ hn−2 ≡ hn−3 ≡ 1

d which implies
h = 1, i.e., f ≡ g. Proof of the Theorem 1 (ii) can be carried out in the line of the proof
of Theorem 1 (i). �

Proof of Theorem 2. Proof of the theorem can be carried out in the line of the
proof of the Theorem 1. �

Proof of Theorem 3. Let F and G be given by (4.1). Since f and g share
(S1,S2;3) , from (4.1) it follows that F and G share (1,3) . Suppose H �≡ 0.

Using Lemma 2 for m = 3, Lemma 5 for p = 0, Lemma 7 for p = 0, Lemma 3 we
get from the Second Fundamental Theorem,

(n+1){T(r, f )+T (r,g)}
� N(r,0; f )+N(r,b; f )+N(r,∞; f )+N(r,1;F)+N(r,0;g)+N(r,b;g)+N(r,∞;g)

+N(r,1;G)−N0(r,0; f ′)−N0(r,0;g′)+S(r, f )+S(r,g)

�
(n

2
+2

)
{T (r, f )+T (r,g)}+3{N(r,∞; f )+N(r,δ ; f )}−

(
3− 3

2

)
N∗(r,1;F,G)

−N0(r,0; f ′)−N0(r,0;g′)+S(r, f )+S(r,g)

�
(n

2
+3

)
{T (r, f )+T (r,g)}+S(r, f )+S(r,g),
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a contradiction to the fact n � 7. Hence H ≡ 0. Thus, we get (5.1), (5.2) and (5.3).
Then using the same arguments that are used in Theorem 1 we can reach before Subcase
1.1.1. Under the case B+1 �= 0, suppose that A−B−1 �= 0. Here

N(r,∞;G) = N(r,∞;g)+
3

∑
i=1

N(r,αi;g).

By the Second Fundamental Theorem we have

nT (r,g) � N(r,0; f )+N(r,0;g)+N(r,∞;g)+
3

∑
i=1

N(r,αi;g)+S(r, f )+S(r,g)

� 6T (r,g)+S(r,g),

which is a contradiction. Hence we have A−B−1 = 0 and we have

F ≡ AG
BG+1

. (5.6)

Let − 1
B = R2(b) . (5.6) gives

G ≡ F
(B+1)−BF

.

Now we claim that B+1
B �= R1(b) . Because if B+1

B = R1(b) , then we get B+1
B =− d

B i.e.,
B = −d−1 i.e., R2(b) = 1

d+1 , which is a contradiction. Therefore

BF − (B+1)≡ B
a∏n

i=1( f − ζi)
n(n−1)(n−2)( f −α1)( f −α2)( f −α3)

,

where ζ ,
i s are distinct zeros of BR1(z)− (B+ 1) for i = 1,2, . . .n . Since f , g share

({b,∞},0) , we get from the above equation ∞ is an e.v.P. of g and

N(r,α1;g)+N(r,α2;g)+N(r,α3;g) =
n

∑
i=1

N(r,ζi; f ).

Using the Second Fundamental Theorem we get

nT (r, f ) �
n

∑
i=1

N(r,ζi; f )+N(r,b; f )+N(r,∞; f )+S(r, f )

� N(r,α1;g)+N(r,α2;g)+N(r,α3;g)+N(r,b;g)+N(r,∞;g)+S(r, f )
� 4T (r, f )+S(r, f ),

which is a contradiction.
If - 1

B �= R2(b) , the using similar arguments as done above we again obtain a con-
tradiction. Hence we have from (5.3)

F ≡ A
−G+A+1

.
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Let us suppose that A �= −1. Then we have from the above equation

N(r,∞;F) = N(r,A+1;G).

By the Second Fundamental Theorem using the above stated fact we will get a contra-
diction. Hence A = −1 i.e., F ≡ 1

G . Clearly, ∞ is an e.v.P. of both f and g . Next
by the similar arguments that has done in Theorem 1 we will arrive at a contradiction.
Hence B = 0 and we obtain

AF ≡ G+A−1.

next by the similar arguments as made in Case 2 under Theorem 1 we will get the result
f ≡ g . �

6. Application

In this section, we will discuss about the relation between a meromorphic function
and its derivatives sharing sets of different cardinalities. In this regard, initially Mues
and Steinmetz [18] stared their investigations corresponding to value sharing to obtain
the uniqueness of a non-constant entire function and its derivative sharing two distinct
values IM.

Following series of example show that for f and f ′ two distinct values IM sharing
cannot be replaced by a set of two elements CM sharing.

EXAMPLE 2. Let S = {a,b} , where a and b are any two distinct complex num-
bers. Let f (z) = eλ z +a+b , when λ is a complex number such that λ k = 1 for a non
negative integer k , then f and f (k) share (S,∞) but f �≡ f (k) .

EXAMPLE 3. Let us take f (z) = sinz . Clearly, f and f ′ share
(
{ 1√

2
,− 1√

2
},∞

)
,

but f �≡ f ′ .

Using Normal families, in 2003, Fang and Zalcman [9] contributed remarkably
about the forms of the function, where the function and its derivative share a set {0,a,b} ,
with some constraints on a and b , then they are identical. Next, in 2007 Chang, Fang
and Zalcman [7] further extended the result of [9] when f and f ′ share {a,b,c} by
finding out 3 forms of functions.

In the next year 2008, Chang and Zalcman [8] replaced the entire function by
meromorphic function with some constraints to get the following result.

THEOREM D. [8] Let f be a non-constant meromorphic function with at most
finitely many simple poles such that f and f ′ share ({0,a,b},∞) , then either

1. f (z) = Cez ; or

2. f (z) = Ce−z + 2
3(a+b) and either (a+b) = 0 or (2a2−5ab+2b2) = 0 ; or
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3. f (z) = Ce
−1±i

√
3

2 z + 3±i
√

3
6 (a+b) and a2−ab+b2 = 0 ,

where C is a non-zero constant.

NOTE 6.1. We see that though the initial consideration in Theorem D about the
function f was meromorphic, but the function ultimately becomes an entire one.

However, for k � 2, the following example shows that there may be other forms
of functions satisfying the hypothesis of Theorem D.

EXAMPLE 4. Suppose f (z) = eαz , where αk + 1 = 0. Evidently, f and f (k)

share ({0,a,−a},∞) , but f �≡ f (k) .

Finally, in 2011, Lü [16] extended Theorem D in case of an arbitrary set with three
elements to obtain the same result with some additional suppositions. Lü obtained the
following result.

THEOREM E. [16] Let f be a non-constant meromorphic function with at most
finitely many simple poles such that f and f ′ share ({a,b,c},∞) , then either

1. f (z) = Cez ; or

2. f (z) = Ce−z + 2
3(a+b+ c) and (2a−b− c)(2b− c−a)(2c−a−b)= 0 ; or

3. f (z) = Ce
−1±i

√
3

2 z + 3±i
√

3
6 (a+b+ c) and a2 +b2 + c2−ab−bc− ca= 0 ,

where C is a non-zero constant.

In the following we have examples of different cardinalities of sets to show that in
general, sharing of any arbitrary set, by a function and its derivative does not imply that
they will be identical.

EXAMPLE 5. Let r , n be two natural numbers and αs = e
2sπi

r , for s = 0,1,2, . . . ,
(r−1) . Choose the set Sn as follows

Sn =

{
e

2πi(s+s1 r)
nr : s1 = 0,1,2, . . . ,(n−1)

}

and take a function f (z) = ee
2πi
kn z . Then f and f (k) share (Sn,∞) , but f �≡ f (k) .

From the theorems and followed by pertinentExample 6.4, we see that it is not easy
to determine all the forms of the functions when the same share a set with its derivative
counter part. In view of the content of the paper, it will be natural to determine the
relation between f and f (k) on the basis of sharing of zeros of the polynomial (3.1).
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THEOREM 4. Under the same situation as in the Theorem 1 or Theorem 3, if f
is a non constant meromorphic function and g = f (k) , then f becomes entire. Also the
relation between f and f (k) is given by the following equation

n(n−1)(n−2){d f n( f (k))3 − f 3( f (k))n}−3bn(n−1)(n−3) (6.1)

{d f n( f (k))2 − f 2( f (k))n}+3b2n(n−2)(n−3){d f n( f (k))− f ( f (k))n}
−b3(n−1)(n−2)(n−3){d f n− ( f (k))n} ≡ 0.

Proof. Let g = f (k) . Proceeding in the similar manner as done in the proof of
Theorem 1 and Theorem 3, we can reach up to F ≡ G , which implies that f and f (k)

share (∞,∞) and that implies f is an entire function. Hence we obtain (5.4) and (5.5).
If h = f

f (k) is non constant, using the Second Fundamental Theorem and (5.5) we cannot

get any contradiction. Hence, (5.4) demonstrate the relation between f and f (k) . �

EXAMPLE 6. Let us take a set

S =
{

i,
√

i,1,−i
√

i,−i,−
√

i,−1, i
√

i
}

and f (z) = e
( 1+i√

2
)

1
k z

, k is non negative integer. It is easy to say f and f (k) share
(S,∞) , but f �≡ f (k). Now, if we put the expressions of the function f and f (k) in (6.1)
for n = 8, d = 1, by a simple calculation we get

336{ f 8( f (k))3− f 3( f (k))8}−840b{ f 8( f (k))2 − f 2( f (k))8}
+720b2{ f 8( f (k))− f ( f (k))8}−210b3{ f 8 − ( f (k))8} = 0

i.e., 14i(1+
√

i)e2zi
1
2k −35b

√
i(1+ i)ezi

1
2k +30b2(1+ i

√
i) = 0,

which is not possible. Hence, if we consider any arbitrary set consisting of 8 elements
other than S1 defined Theorem 1, (6.1) will not be satisfied by above defined function
f .
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