UNICITY RELATION TO ENTIRE FUNCTIONS AND THEIR DIFFERENTIAL DIFFERENCE POLYNOMIALS

HARINA P. WAGHAMORE^{*} AND B. E. MANJUNATH

Abstract. In this article, we investigate the problem of sharing values between entire functions *f*(*z*) and $f_1(z) = b_{-1} + \sum_{i=0}^{n} b_i f^{(k_i)}(z+i\eta)$ share two distinct values *a* with counted and *b* with ignoring multiplicities, where b_{-1} and b_i ($i = 0, 1 \cdots, n$) are small meromorphic functions of $f(z)$, $k_i \ge 0$ ($i = 0, 1, \dots, n$) are integers. In relation to previous research, we obtain results that improve and generalise the findings conducted by Yang and Qi [CMFT, 20.1 (2020): 159–178].

1. Background information & main result

In this paper, we assume that the reader is familiar with the basic terminology and notations of the Nevanlinna Theory [10]. Meromorphic functions are analytic in the complex plane except at isolated poles; if there are no poles, $f(z)$ reduces to an entire function. We denote any quantity satisfying $S(r, f) = o(T(r, f))$ as $r \to \infty$, outside of an exceptional set of finite linear or logarithmic measure.

The order of *f* is indicated by

$$
\sigma(f) = \lim_{r \to \infty} \sup \frac{\log^+ T(r, f)}{\log r}.
$$

Let *a* be a complex number, we say that two meromorphic functions $f_1(z)$ and $f_2(z)$ share the value *a* CM(IM) if $f_1(z) - a$ and $f_2(z) - a$ have same zeros with counting multiplicities (ignoring multiplicities).

In 1929, Nevanlinna [19] proved the following celebrated five-value theorem, which stated that two nonconstant meromorphic functions must be identically equal if they share five distinct values in the extended complex plane.

Throught this paper we use $N_{f(z)}(r, \infty)$ to represent counting function of poles of $f(z)$ and $N_{f(z)}(r,0)$ to denote the counting function of zeros of $f(z)$.

We begin our discussion recalling the following famous result of Rubel and Yang [18].

THEOREM 1. Let $f(z)$ *be a nonconstant entire function of finite order, let a, b be two finite distinct complex values. If* $f(z)$ *and* $f'(z)$ *share a, b CM, then* $f(z) \equiv f'(z)$ *.*

[∗] Corresponding author.

Mathematics subject classification (2020): 30D35, 39A32.

Keywords and phrases: Difference operator, uniqueness, entire function, weighted sharing.

Li and Yang [15] considered 1 CM and 1 IM instead of 2 CM in Theorem 1 and proved the following

THEOREM 2. Let $f(z)$ be a nonconstant entire function of finite order, let a, b be *two finite distinct complex values. If* $f(z)$ *and* $f^{(k)}(z)$ *share a CM and b IM. Then* $f(z) \equiv f^{(k)}(z)$.

Let η be a non-zero complex constant. For a meromorphic function f , we denote its shift and difference operators by $f(z + \eta)$ and $\Delta_n = f(z + \eta) - f(z)$ respectively. Next we define

$$
\Delta_{\eta}^{n} f = \Delta_{\eta}^{n-1}(\Delta_{\eta} f), \forall n \in \mathbb{N} - \{1\} \text{ and } \Delta_{\eta}^{n} f = \Delta_{\eta} f \text{ for } n = 1.
$$

The difference analouge of the lemma on the logarithmic derivative and Nevanlinna theory for the difference operator have been founded. In this regard there has been many papers (see [7, 8, 11, 16, 20]).

Heittokangas et al. [11] proved a similar result analogue of Theorem 1 concerning shift.

THEOREM 3. Let $f(z)$ *be a non constant entire function of finite order, let* η *be any nonzero finite complex value, let a,b be two finite distinct complex values. If f*(*z*) *and* $f(z+\eta)$ *share a,b CM then* $f(z) \equiv f(z+\eta)$ *.*

Concerning the uniqueness of $f(z)$ and $\Delta_n f$ while sharing *a* and *b* Counting multiplicities in 2013, Chen and Yi [6] proved

THEOREM 4. *Let f*(*z*) *be a transcendental entire function of finite non integer order, let be a nonzero complex number and let a and b be two distinct complex values. If* $f(z)$ *and* $\Delta_{\eta} f(z)$ *share a,b CM then* $f(z) \equiv \Delta_{\eta} f(z)$ *.*

They conjectured that the condition "non-integer" of Theorem 4 can be removed. Zhang and Liao [20] and Liu et al. [13] confirmed the conjecture. They proved

THEOREM 5. Let $f(z)$ be a transcendental entire function of finite order, let η *be a nonzero complex number, n be a positive integer, and let a and b be two distinct complex values. If* $f(z)$ *and* $\Delta_n^n f(z)$ *share a,b CM then* $f(z) \equiv \Delta_n^n f(z)$ *.*

Li et al. [15] proved

THEOREM 6. Let $f(z)$ be a transcendental entire function of finite order, let η be *a* nonzero complex number, *n* be a positive integer, and let a complex number. If $f(z)$ *and* $\Delta_{\eta}^{n} f(z)$ *share* 0 *CM and share a IM, then* $f(z) \equiv \Delta_{\eta}^{n} f(z)$ *.*

The authors posed a question:

QUESTION 1. Let $f(z)$ be a transcendental entire function of finite order, let $\eta(\neq$ $0 \in \mathbb{C}$, *n* be a positive integer and let *a*, *b* be two finite distinct complex values. If *f*(*z*) and $\Delta_{\eta}^{n} f(z)$ share *a* CM and share *b* IM, is $f(z) \equiv \Delta_{\eta}^{n} f(z)$?

Recently, Liu and Dong [14] first studied the complex differential difference equation $f'(z) = f(z + \eta)$, where $\eta \neq 0$ is a finite constant.

Qi et al. [17] investigated the value sharing problem related to $f'(z)$ and $f(z+\eta)$ and proved

THEOREM 7. Let $f(z)$ be a nonconstant entire function of finite order, and let a, η be two nonzero finite complex values. If $f'(z)$ and $f(z + \eta)$ share 0*,* a CM then $f'(z) = f(z + \eta).$

Recently, Yang and Qi [16] improved Theorem 7 and proved the following result.

THEOREM 8. Let $f(z)$ be a nonconstant entire function of finite order, and let a, η be two nonzero finite complex values. If $f'(z)$ and $f(z + \eta)$ share 0 *CM* and a *IM then* $f'(z) = f(z + \eta)$ *.*

Sharing value problems are studied, and uniqueness between entire or meromorphic functions are studied in [3], [5], [4], and a question regarding the precise form of the solutions of some difference equations has been posed in [3]. Further, a conjecture of Chen and Yi was studied in [1] for both entire and meromorphic functions when sharing two values, *a*, *b* CM. By examples, it has been shown in [1] that 2CM sharing cannot be reduced to 1CM+1IM or 2IM sharing. Recently, in [2], a result on the conjecture is established in [2] answering completely the question posed in [3] finding the solutions of that difference equations completely. A result in [1] for meromorphic functions is improved in [2] by removing a condition.

It is natural to ask the following question:

QUESTION 2. Let $f(z)$ be a transcendental entire function and

$$
f_1(z) = b_{-1} + \sum_{i=0}^{n} b_i f^{(k_i)}(z + i\eta),
$$
 (1)

where b_{-1} and b_i ($i = 0, 1 \cdots, n$) are small meromorphic functions of f, $k_i \ge 0$ ($i =$ $0,1,\dots,n$ are integers. Let *a*, *b* be two distinct finite complex values. If $f(z)$ and $f_1(z)$ share *a* CM and *b* IM, is $f(z) \equiv f_1(z)$?

The problem of sharing values between entire functions is a complex one that has been studied extensively by mathematicians. In this particular article, the focus is on sharing values between two entire functions $f(z)$ and $f_1(z)$.

We give a positive answer to the above question and obtain the following result.

THEOREM 1. (Main) Let $f(z)$ be a transcendental entire function and $f_1(z)$ be *defined as in equation* (1)*. Let a, b be two distinct finite complex values. If f*(*z*) *and f*1(*z*) *share a with counted multiplicity and share b with ignoring multiplicity, then either* $f(z) \equiv f_1(z)$ *or* $a = 2b = 2$, $f(z) = e^{2p(z)} - 2(e^p(z) - 1)$ *and* $f_1(z) = e^{p(z)}$, *where p*(*z*) *is a non-constant polynomial.*

2. Auxiliary lemmas

We present here some necessary lemmas which will play a key role to prove the main result of the paper.

LEMMA 1. [7] *Let f*(*z*) *be a transcendental meromorphic function of finite order,* $c \in \mathbb{C} \setminus \{0\}$ *be fixed. Then* $T(r, f(z+c)) = T(r, f(z)) + S(r, f)$.

LEMMA 2. [7] Let $f(z)$ be a meromorphic function of finite order σ , and let $c \in \mathbb{C} \setminus \{0\}$ *be fixed. Then for each* $\varepsilon > 0$ *, we have*

$$
m\left(r,\frac{f(z+c)}{f(z)}\right)+m\left(r,\frac{f(z)}{f(z+c)}\right)=O(r^{\sigma-1+\varepsilon})=S(r,f).
$$

The following lemma has a few modifications to the original version [7, Corollary 2.5]*.*

LEMMA 3. [19] *Suppose f and g are two nonconstant meromorphic functions in the complex plane, then*

$$
N_{fg}(r, \infty) - N_{fg}(r, 0) = N_f(r, \infty) + N_g(r, \infty) - N_f(r, 0) - N_g(r, 0).
$$

LEMMA 4. [19] Let $f(z)$ be a nonconstant meromorphic function, and let $\mathcal{P}(z)$ = $a_0 f^p + a_1 f^{p-1} + \cdots + a_p$ $(a_0 \neq 0)$ *be a ploynomial of degree p with constant coefficients a_j* $(j = 0, 1, \dots, p)$ *. Suppose that b_j* $(j = 0, 1, \dots, q)$ $(q > p)$ *<i>. Then*

$$
m\left(\frac{\mathscr{P}(f)f'}{(f-b_1)(f-b_2)\cdots(f-b_q)}\right)=S(r,f).
$$

LEMMA 5. [19] *Suppose that f*(*z*) *is meromorphic function in the complex plane and* $P(f) = a_0 f^n + a_1 f^{n-2} + \cdots + a_n$, where $a_0 (\equiv 0)$, $a_1, a_2, \cdots a_n$ are small functions *of f*(*z*)*. Then*

$$
T(r, P(f)) = nT(r, f) + S(r, f).
$$

LEMMA 6. Let $f(z)$ be a transcendental entire function and $f_1(z)$ be defined as *in equation* (1). Let a and b be two distinct finite complex value. If $f(z)$ and $f_1(z)$ *share a CM and* $N_{f_1-\mathscr{G}}(r,0) = S(r,f)$ *then there is a polynomial p such that either* $T(r,e^p) = S(r,f)$ or $\mathscr{Q} = \mathscr{H}e^p + \mathscr{G}$, where $\mathscr{G} = b_{-1} + \sum_{i=0}^n b_i a_i^{(k_i)}(z+i\eta)$.

Proof. Since $f(z)$ is a transcendental entire function and $f(z)$ and $f_1(z)$ share *a* CM, then there exist a polynomial *p* such that

$$
f(z) - a = \mathcal{A}e^{p}(f_1 - \mathcal{G})\mathcal{A}e^{p}(\mathcal{G} - a_1),
$$
\n(2)

where the zeros and poles of $\mathscr A$ come from the zeros and poles of b_{-1} and b_i (*i* = $(0,1,\dots,n)$ and $\mathscr{G} = b_{-1} + \sum_{i=0}^{n} b_i a_1^{(k_i)}(z+\eta i)$. Suppose $T(r,e^p) \neq o(T(r,f))$, set $\mathscr{Q} =$ $f_1 - \mathscr{G}$. From (2), we get

$$
\mathcal{Q} = \sum_{i=0}^{n} b_i \left(\mathcal{A}_{i\eta} e^{p_{i\eta}} \mathcal{Q}_{i\eta} \right)^{(k_i)} + \sum_{i=0}^{n} b_i \left(\mathcal{A}_{i\eta} e^{p_{i\eta}} (\mathcal{G} - a_1)_{i\eta} \right)^{(k_i)} + \mathcal{G}.
$$
 (3)

Then, we rewrite (3) as

$$
1 - \frac{\sum_{i=0}^{n} b_i \left(\mathcal{A}_{i\eta} e^{p_{i\eta}} (\mathcal{G} - a_1)_{i\eta} \right)^{(k_i)} + \mathcal{G}}{\mathcal{Q}} = \mathcal{D} e^p, \tag{4}
$$

where

$$
\mathscr{D} = \frac{\sum_{i=0}^{n} b_i \left(\mathscr{A}_{i\eta} e^{p_{i\eta}} \mathscr{Q}_{i\eta} \right)^{(k_i)}}{\mathscr{Q} e^p}.
$$
\n
$$
(5)
$$

Note that $N_{f_1-g}(r,0) = N_{\mathcal{Q}}(r,0) = S(r,f)$. Then

$$
T(r, \mathcal{D}) \leq \sum_{i=0}^{n} T\left(r, \frac{\sum_{i=0}^{n} b_i \left(\mathcal{A}_{i\eta} e^{p_{i\eta}} \mathcal{Q}_{i\eta}\right)^{(k_i)}}{\mathcal{Q}e^p}\right) + S(r, f),
$$

$$
\leq \sum_{i=0}^{n} m\left(r, \frac{\sum_{i=0}^{n} b_i \left(\mathcal{A}_{i\eta} e^{p_{i\eta}} \mathcal{Q}_{i\eta}\right)^{(k_i)}}{\mathcal{Q}e^p}\right)
$$

$$
+ \sum_{i=0}^{n} N\left(\frac{\sum_{i=0}^{n} b_i \left(\mathcal{A}_{i\eta} e^{p_{i\eta}} \mathcal{Q}_{i\eta}\right)^{(k_i)}}{\mathcal{Q}e^p}\right)^{(r, \infty)} + S(r, f)
$$

$$
\leq S(r, e^p) + S(r, f).
$$
 (6)

Next we discuss two cases.

Case 1. $e^{-p} - \mathcal{D} \neq 0$. Rewrite (4) as

$$
\mathscr{Q}e^{p}\left(e^{-p}-\mathscr{D}\right)=\sum_{i=0}^{n}b_{i}\left(\mathscr{A}_{i\eta}e^{p_{i\eta}}(\mathscr{G}-a_{1})_{i\eta}\right)^{(k_{i})}+\mathscr{G},\tag{7}
$$

when $\mathscr{D} \equiv 0$, (7) implies

$$
\mathcal{Q} = \sum_{i=0}^{n} b_i \left(\mathcal{A}_{i\eta} e^{p_{i\eta}} (\mathcal{G} - a_1)_{i\eta} \right)^{(k_i)} + \mathcal{G}
$$

$$
= \mathcal{H} e^p + \mathcal{G}, \tag{8}
$$

where $\mathcal{H} \neq 0$ is a small function of e^p . When $\mathcal{D} \neq 0$, it follows from (7) that $N_{(e^{-p}-\mathscr{D})}(r,0) = S(r,f)$. Then using the Second fundamental theorem to e^p , we can obtain

$$
T(r, e^p) = T(r, e^{-p}) + O(1)
$$

\$\le \overline{N}_{(e^{-p})}(r, \infty) + \overline{N}_{(e^{-p})}(r, 0) + \overline{N}_{(e^{-p} - \mathscr{D})}(r, 0) + O(1) = S(r, f).\$ (9)

Case 2. $e^{-p} - \mathcal{D} \equiv 0$. It implies that,

$$
T(r, e^p) = T(r, e^{-p}) + O(1) = S(r, f).
$$

LEMMA 7. Let $f(z)$ be a transcendental entire function and $f_1(z)$ be defined *as in* (1). Let a, *b be distinct small function. Suppose* $\mathcal{W}(a-b, f-a) = \mathcal{L}(f)$, *W* (*a*−*b, f*₁−*a*) = $\mathcal{L}(f_1)$ *where* $\mathcal{W}(z_1, z_2)$ *is Wronskian of* z_1 *and* z_2 *and* $f(z)$ *and f*₁(*z*) *share a CM and b IM then* $\mathcal{L}(f) \not\equiv 0$ *and* $\mathcal{L}(f_1) \not\equiv 0$ *.*

Proof. Suppose that
$$
\mathcal{L}(f) = \begin{vmatrix} a-b & f-a \\ a'-b' & f'-a' \end{vmatrix} \equiv 0
$$
, then we get
\n
$$
(a-b)(f'-a') = (f-a)(a'-b')
$$
\n
$$
\implies \frac{f'^{-a'}}{f-a} = \frac{a'-b'}{a-b}.
$$

Integrating both side, we get

$$
f - a = C(a - b),
$$

where *C* is a non zero constant. So we have $T(r, f) = o(T(r, f))$ a contradiction.

Hence $\mathscr{L}(f) \neq 0$. Since $f_1(z)$ and *f* share *a* CM and *b* IM, then by Second fundamental theorem of Nevanlinna, we get

$$
T(r,f) \leq \overline{N}_{(f-a)}(r,0) + \overline{N}_{(f-b)}(r,0) + o(T(r,f))
$$

\n
$$
\leq \overline{N}_{(f_1-a)}(r,0) + \overline{N}_{(f_1-b)}(r,0) + o(T(r,f))
$$

\n
$$
\leq 2T(r,f_1) + O(T(r,f)).
$$
\n(10)

Hence *a* and *b* are small function of f_1 . If $\mathcal{L}(f_1) \equiv 0$, then we can get $f_1 - a =$ $C_1(a-b)$, where C_2 is a non zero constant. And we get $T(r, f_1) = o(T(r, f))$.

Therefore $T(r, f) = o(T(r, f))$, which is a contradiction. Hence $\mathscr{L}(f_1) \neq 0$. \Box

LEMMA 8. Let $f(z)$ be a transcendental meromorphic function and $f_1(z)$ be de*fined as in* (1)*. Let a and b be two finite distinct complex number.*

Then
$$
m\left(r, \frac{\mathcal{L}(f)f(z)}{f-a}\right) = S(r, f) = m\left(r, \frac{\mathcal{L}(f)f(z)}{f-b}\right)
$$
. And

$$
m\left(r, \frac{\mathcal{L}(f)f(z)}{(f-z_1)(f-z_2)\cdots(f-z_m)}\right) = o(T(r, f)),
$$

where $\mathcal{L}(f)$ *is defined as in Lemma* 7 *and* $2 \le m \le q$ *where* $d_i = a - l_i(a - b)$ (*j* = $1, 2, \cdots, q$.

Proof. Obviously, we have

$$
m\left(r, \frac{\mathcal{L}(f)f(z)}{f-a}\right) \leq m\left(r, -\frac{(a'-b')(f-a)}{f-a}\right) + m\left(r, \frac{(af'-a')(a-b)}{f-a}\right)
$$

$$
= o(T(r,f))
$$

and

$$
\frac{\mathscr{L}(f)f(z)}{(f-z_1)(f-z_2)\cdots(f-z_q)} = \sum_{i=1}^q \frac{\mathscr{C}_i \mathscr{L}(f)}{f-d_i},
$$

where \mathcal{C}_i ($i = 1, 2, \dots, q$) are small function of f. By Lemma 2, we have

$$
m\left(r, \frac{\mathscr{L}(f)f(z)}{(f-z_1)(f-z_2)\cdots(f-z_q)}\right) = m\left(r, \sum_{i=1}^q \frac{\mathscr{C}_i \mathscr{L}(f)}{f-d_i}\right)
$$

$$
\leqslant \sum_{i=1}^q m\left(r, \frac{\mathscr{L}(f)}{f-d_i}\right) = o(T(r,f)).\quad \Box
$$

LEMMA 9. Let f be non constant entire function and $f_1(z)$ be defined as in (1). *Let a and b be two distinct small function. If*

$$
\mathbb{H} = \frac{\mathscr{L}(f)}{(f-a)(f-b)} - \frac{\mathscr{L}(f_1)}{(f_1-a)(f_1-b)} \equiv 0,
$$

and $f(z)$ *and* $f_1(z)$ *share a CM and b IM, then either* $f \equiv f_1$ *or*

$$
2T(r, f) \leq \overline{N}_{(f-a)}(r, 0) + \overline{N}_{(f-b)}(r, 0) + S(r, f).
$$

Proof. Integrating $\mathbb H$ which leads to

$$
\frac{f_1 - b}{f_1 - a} = C \frac{f - b}{f - a}
$$

C is a non zero constant. If $C = 1$, then $f \equiv f_1$.

If $C \neq 1$, then from above we have

$$
\frac{a-b}{f_1-a} \equiv \frac{(C-1)f - Cb + a}{f - a} \quad \text{and} \quad T(r, f) = T(r, f_1) + o(T(r, f)).
$$

Obviously, $\frac{Cb-a}{C-1} \neq a$ and $\frac{Cb-a}{C-1} \neq b$. It follows that

$$
N_{(f-\frac{Cb-a}{C-1})}(r,0) = N_{(a-b)}(r,0) = o(T(r,f)).
$$

Then by the Second fundamental theorem

$$
2T(r, f) \leq \overline{N}_f(r, \infty) + \overline{N}_{(f-a)}(r, 0) + \overline{N}_{(f-b)}(r, 0) + \overline{N}_{(f-\frac{Cb-a}{C-1})}(r, 0),
$$

$$
\leq \overline{N}_{(f-a)}(r, 0) + \overline{N}_{(f-b)}(r, 0) + S(r, f). \quad \Box
$$

LEMMA 10. [19] Let f be a non constant meromorphic function and $\mathcal{R}(f)$ = $\frac{P(f)}{Q(f)}$ where $P(f) = \sum_{i=1}^{p}$ $\sum_{k=0}^{p} a_k f^k$ *and* $Q(f) = \sum_{j=0}^{q}$ $\sum_{j=0}^{3} a_j f^q$ are two mutually prime polynomials *in f. If the coefficient* a_k *and* b_j *are small functions of f and* $a_p \not\equiv 0$ *,* $b_q \not\equiv 0$ *, then*

$$
T(r, \mathcal{R}(f)) = \max\{p, q\} T(r, f) + S(r, f).
$$

LEMMA 11. [19] *Suppose* f_2, f_3, \dots, f_n $(n \neq 3)$ *are meromorphic functions and* $f_2^*, f_3^*, \cdots, f_n^*$ $(n \neq 3)$ *are entire functions such that*

- *1.* $\sum_{j=2}^{n} f_j e^{f_j^*} = 0$,
- 2. $f_j^* f_k^*$ are not constants for $2 \leq j < k \leq n$,
- 3. For $2 \leq j \leq n$ and $2 \leq h < k \leq n$, $T(r, f_j) = S(r, e^{f_j^* f_k^*})\{r \to \infty, r \notin E\}$. *Then* $f_i \equiv 0$ *for all* $1 \leq i \leq n$.

3. Proof of the theorem

If $f(z) \equiv f_1(z)$, where $f_1(z) = b_{-1} f^{(k_i)}(z + \eta i)$, then there is nothing to prove. Suppose $f(z) \neq f_1(z)$, since $f(z)$ and $f_1(z)$ share *a* CM, then we get

$$
\frac{f_1(z) - a}{f - a} = Be^{v_1},\tag{11}
$$

where *v*₁ is entire function and (11) implies *v*₁ = −*p*, *B* = $\frac{1}{\mathscr{A}}$.

Since $f(z)$ and $f_1(z)$ share *a* CM and *b* IM, then by Second fundamental theorem of Nevanlinna and Lemma 2, we have

$$
T(r, f) \leq N_{(f-a)}(r, 0) + N_{(f-b)}(r, 0) + S(r, f)
$$

= $N_{(f_1-a)}(r, 0) + N_{(f_1-b)}(r, 0) + S(r, f)$
 $\leq N_{(f-f_1)}(r, 0) + S(r, f) \leq T(r, f - f_1) + S(r, f)$
 $\leq m(r, f) + m\left(r, 1 - \frac{\sum_{i=0}^{n} b_i f^{(k_i)}(z + \eta_i)}{f}\right) + S(r, f)$
 $\leq T(r, f) + S(r, f).$

That is

$$
T(r,f) = \overline{N}_{(f-a)}(r,0) + \overline{N}_{(f-b)}(r,0) + S(r,f).
$$
 (12)

According to Lemma 2, (11) and (12)

$$
T(r, f) = T(r, f - f_1) + S(r, f) = N_{(f - f_1)}(r, 0) + S(r, f)
$$
\n(13)

$$
T(r, Be^{v_1}) = m(r, Be^{v_1}) \le m\left(r, \frac{1}{f-a}\right) + S(r, f).
$$
 (14)

Then it follows from (11) and (13) that

$$
m\left(r, \frac{1}{f-a}\right) = m\left(r, \frac{Be^{v_1}-1}{f-f_1}\right)
$$

\n
$$
\leq m\left(r, \frac{1}{f-f_1}\right) + m(r, Be^{v_1}-1)
$$

\n
$$
\leq T(r, e^{v_1}) + S(r, f).
$$
 (15)

Then by (14) and (15) ,

$$
T(r, e^{v_1}) = m\left(r, \frac{1}{f-a}\right) + S(r, f).
$$
 (16)

We rewrite (11) , as

$$
\frac{f_1 - f}{f - a} = Be^{v_1} - 1\tag{17}
$$

and it follows that,

$$
\overline{N}_{(f-b)}(r,0) \le \overline{N}_{(Be^{v_1}-1)}(r,0) = T(r,e^{v_1}) + S(r,f).
$$
 (18)

Thus by (12), (16) and (18)

$$
m\left(r, \frac{1}{f-a}\right) + N_{(f-a)}(r,0) = \overline{N}_{(f-a)}(r,0) + \overline{N}_{(f-b)}(r,0) + S(r,f)
$$

$$
\leq \overline{N}_{(f-a)}(r,0) + \overline{N}_{(Be^{v_1}-1)}(r,0) + S(r,f)
$$

i.e.,

$$
\overline{N}_{(f-a)}(r,0) = \overline{N}_{(f-b)}(r,0) + S(r,f). \tag{19}
$$

And then, we have

$$
\overline{N}_{(f-b)}(r,0) = T(r,e^{v_1}) + S(r,f).
$$
\n(20)

Set

$$
\Phi = \frac{\mathcal{L}(f)(f - f_1)}{(f - a)(f - b)}\tag{21}
$$

$$
\Psi = \frac{\mathcal{L}(f_1)(f - f_1)}{(f -_1 a)(f_1 - b)}.
$$
\n(22)

It is easy to see that $\Phi \neq 0$ because of $f \neq f_1$ and Φ is an entire function. By Lemma 2 and Lemma 8, we have

$$
T(r, \Phi) = m(r, \Phi) = m\left(r, \frac{f'(f - f_1)}{(f - a)(f - b)}\right) + S(r, f)
$$

\n
$$
\leq m\left(r, \frac{\mathcal{L}(f)f}{(f - a)(f - b)}\right) + m\left(r, 1 - \frac{f_1}{f}\right) = S(r, f)
$$

\ni.e., $T(r, \Phi) = S(r, f)$. (23)

Let $s = a - j(a - b)$, $(j \neq 0, 1)$. Obviously by Lemma 2 and the first fundamental theorem of Nevanlinna, we obtain

$$
m(r,1/f) = m\left(r, \frac{\mathcal{L}(f)f}{(f-a)(f-b)} \frac{f - \sum_{i=0}^{n} b_i f^{(k_i)}(z)}{f}\right)
$$
(24)

and

$$
m\left(r, \frac{1}{f-d}\right) = m\left(r, \frac{\mathcal{L}(f)(f-f_1)}{\Phi(f-a)(f-b)(f-d)}\right)
$$

\$\leq m\left(r, \frac{\mathcal{L}(f)f}{(f-a)(f-b)(f-d)}\right) + m\left(r, 1 - \frac{f_1}{f}\right) + S(r, f) = S(r, f). \tag{25}\$

Set

$$
\phi = \frac{\mathcal{L}(f_1)}{(f_1 - a)(f_1 - b)} - \frac{\mathcal{L}(f)}{(f - a)(f - b)}\tag{26}
$$

we discuss two cases.

Case 1. Suppose that $\phi \equiv 0$. By (26), we have

$$
\frac{f-b}{f-a} = c\frac{f_1 - b}{f_1 - a}
$$
\n(27)

where c is a non zero constant, then by Lemma 9

$$
2T(r,f) \leq \overline{N}_{(f-a)}(r,0) + \overline{N}_{(f-b)}(r,0) + S(r,f)
$$
\n(28)

which contradiction with (12) .

Case 2. $\phi \neq 0$. By (13) and (23), (26), we can obtain

$$
m(r, f) = m(r, f - f_1) + S(r, f)
$$

\n
$$
\leq m\left(r, \frac{\Psi - \Phi}{\phi}\right) + S(r, f) \leq T\left(r, \frac{\phi}{\Psi - \Phi}\right) + S(r, f)
$$

\n
$$
\leq T(r, \Psi - \Phi) + T(r, \phi) + S(r, f)
$$

\n
$$
\leq T(r, \Psi) + \overline{N}_{(f - b)}(r, 0) + S(r, f).
$$
 (29)

On the otherhand,

$$
T(r, \Phi) = T\left(r, \frac{\mathcal{L}(f_1)(f - f_1)}{(f_1 - a)(f_1 - b)}\right) = m\left(r, \frac{\mathcal{L}(f_1)(f - f_1)}{(f_1 - a)(f_1 - b)}\right) + S(r, f)
$$

$$
\leq m\left(r, \frac{1}{f - a}\right) + S(r, f) = \overline{N}_{(f - b)}(r, 0) + S(r, f).
$$
 (30)

Combining (29) and (30), we obtain

$$
T(r, f) \leq 2\overline{N}_{(f-b)}(r, 0) + S(r, f). \tag{31}
$$

Next, case 2 is divided into two subcases.

Subcase 1. Let $a = \mathcal{G}$, where \mathcal{G} is defined as $\mathcal{G} = b_{-1} + b_0 a_1$. Then by (11) and Lemma 2, we can get

$$
m(r, e^{\nu_1}) = m\left(r, \frac{f_1 - \mathscr{G}}{f - a}\right) = S(r, f). \tag{32}
$$

Then by (20), (31) and (32) we can have $T(r, f) = S(r, f)$, a contradiction.

Subcase 2. Let $b = \mathscr{G}$. Then by (16), (20) and (31), we get

$$
T(r, f) \le m\left(r, \frac{1}{f-a}\right) + \overline{N}_{(f_1-g)}(r, 0) + S(r, f)
$$

\n
$$
\le m\left(r, \frac{1}{f_1-g}\right) + \overline{N}_{(f_1-g)}(r, 0) + S(r, f)
$$

\n
$$
\le T(r, f_1) + S(r, f).
$$
\n(33)

From the fact that

$$
T(r, f_1) \leqslant T(r, f) + S(r, f). \tag{34}
$$

From (33), we

$$
T(r, f) = T(r, f_1) + S(r, f).
$$
 (35)

By the Second fundamental theorem of Nevanlinna, Lemma 2, (12), (35), we get

$$
2T(r, f) \leq 2T(r, f_1) + S(r, f)
$$

\n
$$
\leq \overline{N}_{f_1}(r, \infty) + \overline{N}_{(f_1 - \mathcal{G})}(r, 0) + \overline{N}_{(f_1 - a)}(r, 0) + \overline{N}_{(f_1 - s)}(r, 0) + S(r, f)
$$

\n
$$
\leq T(r, f) + T(r, f_1) - m\left(r, \frac{1}{f_1 - s}\right) + S(r, f)
$$

\n
$$
\leq 2T(r, f) - m\left(r, \frac{1}{f_1 - s}\right) + S(r, f).
$$

Thus

$$
m\left(r,\frac{1}{f_1-s}\right) = S(r,f). \tag{36}
$$

From the first fundamental theorem of Nevanlinna, Lemma 2, Equations (24), (25), (35), (36) and that *f* is transcendental entire function, we obtain

$$
m\left(r, \frac{f-s}{f_1-s}\right) \leq m\left(r, \frac{f}{f_1-s}\right) + m\left(r, \frac{s}{f_1-s}\right) + S(r, f)
$$

$$
\leq T\left(r, \frac{f}{f_1-s}\right) - N_{\left(\frac{f}{f_1-s}\right)}(r, 0) + S(r, f)
$$

$$
\leq N_f(r, 0) - N_{(f_1-s)}(r, 0) + S(r, f)
$$

$$
\leq T(r, f) - T(r, f_1) + S(r, f) = S(r, f).
$$

Thus we get,

$$
m\left(r, \frac{f-s}{f_1-s}\right) = S(r, f). \tag{37}
$$

It's easy to see that $N_{\Psi}(r, \infty) = S(r, f)$ and (22) can be rewritten as

$$
\Psi = \left[\frac{a - s \mathcal{L}(f_1)}{a} - \frac{s \mathcal{L}(f_1)}{f_1 - a} \right] \left[\frac{f - s}{f_1 - s} - 1 \right].
$$
\n(38)

Then by (37) and (38) we can get

$$
T(r, \Psi) = m(r, \Psi) + N_{\Psi}(r, \infty) = S(r, f). \tag{39}
$$

By (12), (29) and (39), we get

$$
\overline{N}_{(f-a)}(r,0) = S(r,f). \tag{40}
$$

Moreover by (12) , (35) and (40) , we have

$$
m\left(r, \frac{1}{f_1 - \mathcal{G}}\right) = S(r, f) \tag{41}
$$

which implies

$$
\overline{N}_{(f-b)}(r,0) = m\left(r, \frac{1}{f-b}\right) \le m\left(r, \frac{1}{f_1-g}\right) = S(r,f) \tag{42}
$$

then by (12) we obtain $T(r, f) = S(r, f)$ a contradiction.

Subcase 3. Suppose that $a \neq \mathscr{G}$ and $b \neq \mathscr{G}$. So by (16), (20), (31) and Second fundamental theorem of Nevanlinna, we can get

$$
T(r, f) \leq 2m\left(r, \frac{1}{f-a}\right) + S(r, f) \leq 2m\left(r, \frac{1}{f_1-g}\right) + S(r, f)
$$

\n
$$
\leq 2\left[T(r, f_1) - N_{(f_1-g)}(r, 0)\right] + S(r, f)
$$

\n
$$
\leq N_{(f_1-a)}(r, 0) + \overline{N}_{(f_1-b)}(r, 0) + \overline{N}_{(f_1-g)}(r, 0) - 2N_{(f_1-g)} + S(r, f)
$$

\n
$$
\leq T(r, f) - N_{(f_1-g)}(r, 0) + S(r, f)
$$

\n
$$
\implies N_{(f_1-g)}(r, 0) = S(r, f).
$$
\n(43)

It follows from (43) and Second fundamental theorem that

$$
T(r, f_1) \leq \overline{N}_{(f_1 - \mathscr{G})}(r, 0) + \overline{N}_{(f_1 - a)}(r, 0) + S(r, f)
$$

\n
$$
\leq T(r, f_1) + S(r, f)
$$

\n
$$
\implies T(r, f_1) = \overline{N}_{(f_1 - a)}(r, 0) + S(r, f).
$$
 (44)

Similarly,

$$
T(r, f_1) = \overline{N}_{(f_1 - b)}(r, 0) + S(r, f). \tag{45}
$$

Then by (12), (44), (45) and the fact that f and f_1 share a CM and b IM, we get

$$
T(r, f) = 2T(r, f_1) + S(r, f).
$$
\n(46)

Easy to see from (26) that

$$
T(r, \Phi) = N_{\Phi}(r, \infty) + S(r, f) \leq N_{(f_1 - b)}(r, 0) + S(r, f). \tag{47}
$$

We claim that

$$
T(r, \Phi) = \overline{N}_{(f_1 - b)}(r, 0) + S(r, f). \tag{48}
$$

Otherwise,

$$
T(r, \Phi) < \overline{N}_{(f_1 - b)}(r, 0) + S(r, f). \tag{49}
$$

We can deduce from (12), (22) and Lemma 3 that

$$
T(r,\Psi) = T\left(r, \frac{\mathcal{L}(f_1)(f-f_1)}{(f_1-a)(f_1-b)}\right) = m\left(r, \frac{\mathcal{L}(f_1)(f-f_1)}{(f_1-a)(f_1-b)}\right) + S(r,f)
$$

\n
$$
\leq m\left(r, \frac{\mathcal{L}(f_1)}{f_1-a}\right) + m\left(r, \frac{f-b}{f_1-b}-1\right) + S(r,f)
$$

\n
$$
\leq m\left(r, \frac{f_1-b}{f-b}\right) + N_{\left(\frac{f_1-b}{f-b}\right)}(r, \infty) - N_{\left(\frac{f-b}{f_1-b}\right)}(r, \infty) + S(r,f)
$$

\n
$$
\leq N_{\left(f-a\right)}(r,0) + S(r,f).
$$
\n(50)

Then combining (12) , (49) , (50) and the proof of (29) , we obtain

$$
\overline{N}_{(f-a)}(r,0) + \overline{N}_{(f-b)}(r,0) = T(r,f) + S(r,f)
$$

$$
\leq \overline{N}_{(f-a)}(r,0) + T(r,\Phi) + S(r,f)
$$

that is

$$
\overline{N}_{(f-b)}(r,0) \leqslant T(r,\Phi) + S(r,f)
$$
\n(51)

a contradiction. Similarly, we can also obtain

$$
T(r, \Psi) = \overline{N}_{(f_1 - a)}(r, 0) + S(r, f). \tag{52}
$$

By Lemma 6, if $T(r, e^p) = S(r, f)$, then we can obtain $T(r, f) = S(r, f)$ from (20) and (31), a contradiction. Hence

$$
f_1 = \mathcal{H}e^p + \mathcal{G}
$$
 (53)

where $\mathcal{H} \neq 0$ is a small function of e^p .

Rewrite (26) as

$$
\Phi = \frac{\mathcal{L}(f_1)(f-a)(f-b) - \mathcal{L}(f)(f_1-a)(f_1-b)}{(f-a)(f-b)(f_1-a)(f_1-b)}.
$$
\n(54)

Combining (2) with (48), we can set

$$
\mathscr{P} = \mathscr{L}(f_1)(f - a)(f - b) - \mathscr{L}(f)(f_1 - a)(f_1 - b)
$$

=
$$
\sum_{i=0}^{5} \alpha_i e^{ip}
$$
 (55)

and

$$
Q = (f - a)(f - b)(f_1 - a)(f_1 - b)
$$

=
$$
\sum_{l=0}^{6} \beta_l e^{lp}
$$
 (56)

where α_i and β_l are small functions of e^p and $\alpha_5 \neq 0$, $\beta_6 \neq 0$. If $\mathscr P$ and O are two mutually prime polynomails in e^p , then by Lemma 5 we can get

$$
T(r, \Phi) = 6T(r, e^p) + S(r, f).
$$

It follows from (20), (48) and (54)–(56) that $T(r, f) = S(r, f)$ a contradiction.

If $\mathscr P$ and Q are not two mutually prime polynomials in e^p , it is easy to see that the degree of *Q* is large than \mathscr{P} .

According to (48), (54) and by simple computation, we obtain

$$
\Phi = \frac{C}{f_1 - b} \tag{57}
$$

where $C \not\equiv 0$ is a small function of e^p .

Put (57) into (26) , we obtain

$$
\frac{Cf_1 - \mathcal{L}(f_1) - Ca}{(f_1 - a)(f_1 - b)} = -\frac{\mathcal{L}(f)}{(f - a)(f - b)}.
$$
\n(58)

We claim that $C\mathcal{H}e^p \equiv (a-b)(\mathcal{H}^1 + p^1\mathcal{H})e^p - (a^1 - b^1)\mathcal{H}e^p$. Otherwise, combining (2), (53) and (58) and Lemma 5, we can get $T(r, e^p) = S(r, f)$. It follows from (20) and (31) that $T(r, f) = S(r, f)$, a contradiction.

Then substituting (53) into (26) , we have

$$
\Psi = \frac{\left(C\mathcal{H}e^{p} + F\right)\left(\mathcal{A}e^{p} - 1\right)}{\left(\mathcal{H}e^{p} + \mathcal{G} - b\right)}
$$
(59)

where $F = (\mathscr{G}'' - a')(a - b) - (\mathscr{G} - a)(a' - b')$. $Put \mathscr{R} = \mathscr{A} \mathscr{C} \mathscr{H} e^{2p} + (\mathscr{A} F - \mathscr{C} \mathscr{H}) e^p - F$, $\mathscr{S} = \mathscr{H} e^p + \mathscr{G} - b$.

If $\mathcal R$ and $\mathcal S$ are two mutually prime polynomials in e^p , then by Lemma 10, we get $T(r, \Psi) = 2T(r, e^p) + S(r, f)$. Then by (19), (30), (31), we can get $T(r, f) = S(r, f)$. Therefore $\mathscr R$ and $\mathscr S$ are not two mutually prime polynomials in e^p .

(59) implies

$$
\Psi = C \mathscr{A} e^p, \qquad \mathscr{H} \equiv -\mathscr{A}(\mathscr{G} - b). \tag{60}
$$

It follows from (58) , (59) that

$$
N_{(C\mathcal{H}e^p+F)}(r,0) = S(r,f). \tag{61}
$$

We claim that $F \equiv 0$. Otherwise, if $F \not\equiv 0$ then by (55), (56) and Second fundamental theorem of Nevanlinna, we get,

$$
T(r, e^p) \le \overline{N}_{(e^p)}(r, \infty) + \overline{N}_{(e^p)}(r, 0) + \overline{N}_{(e^p + \frac{F}{C\mathcal{H}})}(r, 0) + S(r, f) = S(r, f). \tag{62}
$$

(20) and (30) deduce that $T(r, f) = S(r, f)$, and hence a contradiction. Due to (53), (58) and (60), we get

$$
\mathcal{H} \equiv b\mathcal{A}, \qquad \mathcal{G} \equiv 0 \tag{63}
$$

and hence

$$
f_1 \equiv b \mathscr{A} e^p,\tag{64}
$$

$$
f_1 - b = b(\mathscr{A}e^p - 1). \tag{65}
$$

Furthermore, we can deduce from (64) and (11) that

$$
f \equiv (\mathscr{A}e^p)^2 b - a\mathscr{A}e^p + a. \tag{66}
$$

Since f and f_1 share b IM and by (45)–(46) and (66), we get

$$
f - b \equiv b \left(\mathcal{A} e^p - 1 \right)^2. \tag{67}
$$

It follows from $F \equiv 0$, (66) and (67) that

$$
a \equiv 2b. \tag{68}
$$

By (68) and the fact that $C\mathcal{H}e^{p} \equiv (a-b)(\mathcal{H}^{1}+p^{t}\mathcal{H})e^{p}-(a^{t}-b^{t})\mathcal{H}e^{p}$, we get $C = \frac{\mathscr{A}'}{\mathscr{A}} + bp'$.

It follows from (11) , (58) , (67) and (68) that

$$
\mathscr{A} = b = 1, \qquad C = p' \tag{69}
$$

and therefore

$$
b = 2\tag{70}
$$

$$
f_1 = e^p \tag{71}
$$

where $C \neq 0$ and *a* are two finite constants. Thus by (11) and (69), (71), we obtain

$$
f(z) = e^{2p} - 2(e^p - 1).
$$
 (72)

If $m(r, e^p) = m(r, e^h) + O(1) = S(r, f)$.

Then by (20) and (31), we deduce $T(r, f) = S(r, f)$ and thus a contradiction.

REFERENCES

- [1] M. B. AHAMED, *An Investigation on the Conjecture of Chen and Yi*, Results. Math. **74**, 122 (2019), <https://doi.org/10.1007/s00025-019-1045-4>.
- [2] M. B. AHAMED, *The class of meromorphic functions sharing values with their difference polynomials*, Indian. J. Pure. Appl. Math. **54**, 1158–1169 (2023), <https://doi.org/10.1007/s13226-022-00329-3>.
- [3] S. MALLICK, M. B. AHAMED, *On uniqueness of a meromorphic function and its higher difference operators sharing two sets*, Anal. Math. Phys. **12**, 78 (2022), <https://doi.org/10.1007/s13324-022-00668-8>.
- [4] A. BANERJEE, M. B. AHAMED, *On some sufficient conditions for periodicity of meromorphic function under new shared sets*, Filomat, **33** (18) (2019), 6055–6072.
- [5] A. BANERJEE, M. B. AHAMED, *Uniqueness of meromorphic function with its shift operator under the purview of two or three shared sets*, Mathematica Slovaca, **69** (3) (2019), 557–572.
- [6] ZONG-XUAN CHEN, HONG-XUN YI, *On sharing values of meromorphic functions and their differences*, Results Math. **63** (2013), no. 1–2, 557–565.
- [7] YIK-MAN CHIANG, SHAO-JI FENG, *On the Nevanlinna characteristic of* $f(z+n)$ *and difference equations in the complex plane*, Ramanujan J. **16** (1) (2008), 105–129.
- [8] R. G. HALBURD, R. J. KORHONEN, *Difference analogue of the lemma on the logarithmic derivative with applications to difference equations*, J. Math. Anal. Appl. **314** (2) (2006), 477–487.
- [9] R. G. HALBURD, R. J. KORHONEN, *Nevanlinna theory for the difference operator*, Ann. Acad. Sci. Fenn. Math. **31** (2) (2006), 463–478.
- [10] W. K. HAYMAN, *Meromorphic functions*, Oxford Math. Monogr. Clarendon Press, Oxford, 1964, xiv+191.
- [11] J. HEITTOKANGAS, R. KORHONEN, I. LAINE, J. RIEPPO, *Uniqueness of meromorphic functions sharing values with their shifts*, Complex Var. Elliptic Equ. **56** (2011), no. 1–4, 81–92.
- [12] SHENG LI, DUAN MEI, BAOQIN CHEN, *Uniqueness of entire functions sharing two values with their difference operators*, Adv. Difference Equ. (2017), Paper No. 390, 9.
- [13] DAN LIU, DEGUI YANG, MINGLIANG FANG, *Unicity of entire functions concerning shifts and difference operators*, Abstr. Appl. Anal. (2014), Art. ID 380910, 5.
- [14] KAI LIU, XIANJING DONG, *Some results related to complex differential-difference equations of certain types*, Bull. Korean Math. Soc. **51** (5) (2014), 1453–1467.
- [15] PING LI, CHUNG-CHUN YANG, *Value sharing of an entire function and its derivatives*, J. Math. Soc. Japan, **51** (4) (1999), 781–799.
- [16] XIAOGUANG QI, LIANZHONG YANG, *Uniqueness of meromorphic functions concerning their shifts and derivatives*, Comput. Methods Funct. Theory, **20** (1) (2020), 159–178.
- [17] XIAOGUANG QI, NAN LI, LIANZHONG YANG, *Uniqueness of meromorphic functions concerning their differences and solutions of difference Painlevé equations*, Comput. Methods Funct. Theory, 18 (4) (2018), 567–582.
- [18] L. A. RUBEL, CHUNG CHUN YANG, *Values shared by an entire function and its derivative*, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), 101–103.
- [19] CHUNG-CHUN YANG, HONG-XUN YI, *Uniqueness theory of meromorphic functions*, Math. Appl. **557**, Kluwer Academic Publishers Group, Dordrecht, 2003, viii+569, ISBN:1-4020-1448-1.
- [20] JIE ZHANG, LIANGWEN LIAO, *Entire functions sharing some values with their difference operators*, Sci. China Math. **57** (10) (2014), 2143–2152.

(Received October 11, 2023) *Harina P. Waghamore Department of Mathematics Bangalore University Jnana Bharathi Campus, Bangalore-560 056, India e-mail:* harinapw@gmail.com

> *B. E. Manjunath Department of Mathematics Bangalore University Jnana Bharathi Campus, Bangalore-560 056, India e-mail:* manjunath.bebub@gmail.com