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ON THE ZEROS OF QUATERNIONIC

POLYNOMIAL WITH RESTRICTED COEFFICIENTS

BILAL DAR ∗ AND ABDUL LIMAN

Abstract. Location of the zeros of regular polynomial of a quaternionic variable with quater-
nionic coefficients is addressed in this study. We derive new bounds for the zeros of such poly-
nomials by virtue of the structure of the zero sets in the newly developed theory of polynomials
of a quaternionic variable. We will generalize some recently proven results concerning the dis-
tribution of zeros of a quaternionic polynomial with restricted coefficients.

1. Introduction

In geometric function theory, a key focus is on finding the zeros of a polynomial in
the plane, using various methods and techniques. This study has profoundly impacted
the development of mathematics and its practical applications, including physical sys-
tems. It has also inspired a considerable amount of further research, both theoretically
and practically.

The need to estimate the zeros of a polynomial arises frequently in various ap-
plications. However, deriving bounds on the norms of zeros for a general algebraic
polynomial is quite complex. To obtain more precise estimates, it is helpful to impose
restrictions on the coefficients of the polynomial.

One classical result in the distribution of zeros of complex polynomials is the En-
eström–Kakeya theorem. This theorem plays a crucial role in geometric function theory
and is particularly important in the study of numerical methods for solving differential
equations.

THEOREM A. (Eneström–Kakeya) If p(z) =n
v=0 avzv is a polynomial of degree

n such that 0 < a0 � a1 � . . . � an , then all the zeros of p lie in |z| � 1.

Several extensions of the Eneström-Kakeya theorem can be found in the literature
(see references [10], [11]). A comprehensive survey of the Eneström-Kakeya theorem
and its various generalizations is provided in the thorough books by Marden [13] and
Milovanović et al. [19].

In 1967, Joyal, Labelle, and Rahman [11] extended Theorem A to include polyno-
mials with coefficients that are monotonic but not necessarily non-negative, as stated in
the following result.
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THEOREM B. If p(z) = n
v=0 avzv is a polynomial of degree n such that a0 �

a1 � . . . � an , then all the zeros of p lie in |z| � 1
|an| (|a0|+an−a0).

Of course, when a0 � 0, then Theorem B reduces to Theorem A.
Since the latter half of the 19th century, researchers have delved deeply into esti-

mating the locations of zeros of algebraic polynomials with specific coefficients. This
endeavor has yielded substantial breakthroughs, notably exemplified by the Eneström–
Kakeya theorem and its diverse extensions. Given the complexity of the complex do-
main, a natural query arises regarding the potential results in the quaternionic domain.
This paper seeks to extend certain classical Eneström–Kakeya results to the realm of
quaternions.

2. Preliminary and background

The historical discovery of quaternions by Sir Rowan William Hamilton is fas-
cinating. Indeed, Hamilton’s quest for a three-dimensional number system led to the
development of quaternions, a four-dimensional number system, on October 16, 1843.
This number system is the quaternions which we denote as H in honour of Hamilton.
We shall use the standard notation H = {+ i+ j+k|, ,, ∈R} where satisfy
i2 = j2 = k2 = i jk =−1. The quaternions are the standard example of non-commutative
division ring and also forms a four dimensional vector space over R with

{
1, i, j,k

}
as

a basis.
For q =  + i+  j+ k ∈ H , the real part of q is  and  ,, are the imag-

inary parts. The conjugate is q∗ =  −  i−  j − k and modulus is |q| =
√

qq∗ =√
2 + 2 + 2 +  2 . The modulus is then a norm on H . For r > 0, we define the ball

B(0,r) = {q ∈ H | |q| < r} .
We define the indeterminate for a quaternionic polynomial as q . Without commu-

tatively we are left with the polynomial aqn and the polynomial a0qa1q · · ·qan , where
a = a0a1 · · ·an , as different. To alleviate this problem, we adopt the standard that poly-
nomials have indeterminate on the left and coefficients on the right so that we have

the quaternionic polynomial p1(q) =
m

l=0

qlal . For such a p1 and p2(q) =
n

l=0

qlbl , the

regular product of p1 and p2 is defined by
(
p1 ∗ p2

)
(q) =

n,m


i, j=0
qi+ jaib j . It is inter-

esting to note that the above notation convention for quaternionic polynomials aligns
with the definition of the regular product for power series of a quaternionic variable,
as outlined in Definition 3.1 of the reference [6]. The ∗ multiplication coinciding with
the usual point-wise multiplication when the polynomial has real coefficients is a no-
table characteristic. In particular, the absence of commutativity in the ∗ multiplication
leads to behaviour distinct from the real or complex case. The Factor Theorem, which
is a fundamental result in commutative algebra, states that if a is a zero of a polyno-
mial p(z) , then (z− a) is a divisor of p(z) . However, this theorem does not hold in
a non-commutative ring (see Theorem III. 6.6 of [8]). In the context of quaternionic
polynomials and non-commutative multiplication, the behaviour of zeros and divisors
is different from that in commutative rings. In the Quaternion case, the second degree
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polynomial q2 +1 has an infinite number of zeros namely q0 = i or j ork and all those
given by w0 = h−1q0h, h ∈ H .

The development of a new theory of regularity for functions, particularly focus-
ing on polynomials of a quaternionic variable, represents a significant advancement in
quaternionic analysis. The recent studies, such as [2] and [6]–[8], indicates an active
area of research in understanding the properties of quaternionic functions and polyno-
mials. In particular, the discreteness of zero sets as a fundamental property of holo-
morphic functions of a complex variable. The preliminary steps involving the structure
of the zero sets of quaternionic regular functions and the factorization property of ze-
ros provide foundational insights into the behaviour of these functions. The work by
Gentili and Stoppato [6], where they establish a necessary and sufficient condition for
a quaternionic regular function to have a zero at a point in terms of the coefficients of
the power series expansion, represents a significant contribution to understanding the
relationship between coefficients and zeros in quaternionic functions. In 2020, Carney
et al. [2] proved the following extension of Theorem A for the quaternionic polynomial
p(q) :

THEOREM C. If p(q) = n
v=0 qvav is a quaternionic polynomial of degree n with

real coefficients satisfying 0 < a0 � a1 � . . . � an , then all the zeros of p lie in |q|� 1.

In the same paper, they proved the following result which replaces the condition
of monotonicity on the real coefficients by monotonicity in the real and imaginary parts
of the quaternion coefficients:

THEOREM D. If p(q)=n
v=0 qlal is a quaternionic polynomial of degree n where

al = l +li+ l j + lk ∈ H ; 0 � l � n and

n � n−1 � · · · � 0; n � n−1 � · · · � 0

n � n−1 � · · · � 0; n � n−1 � · · · � 0;

then all the zeros of p lie in

|q| �
(|0|−0 +an

)
+

(|0|−0 +n
)
+

(|0|− 0 + n
)
+

(|0|− 0 + n
)

|an| .

As a generalization of above results, D. Tripathi [23] recently proved the following
result:

THEOREM E. If p(q)=n
v=0 qlal is a quaternionic polynomial of degree n where

al = l +li+ l j + lk ∈ H; 0 � l � n and

n � n−1 � · · · � l ; n � n−1 � · · · � l

n � n−1 � · · · � l; n � n−1 � · · · � l ; 0 � l � n,

then all the zeros of p lie in

|q| � |0|+ |0|+ |0|+ |0|+
(
n−l

)
+

(
n−l

)
+

(
n − l

)
+

(
n− l

)
+Ml

|an| ,
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where

Ml =
l


s=1

[
|s −s−1|+ |s−s−1|+ |s− s−1|+ |s− s−1|

]
.

Recognizing the importance of determining the roots of regular functions, par-
ticularly polynomials, in numerical mathematics, it is natural to study the geometric
properties of these functions and the distribution of their roots. Recent literature has
seen several works focusing on generalizations and refinements of these results. Inter-
ested readers can find more details in references [14, 15, 16, 17, 18, 20, 21]. The main
goal of this paper is to generalize Theorem D and Theorem E and also produce some
results related to the Eneström-Kakeya theorem by making use of recently established
result on structure of the zero sets of regular functions (Lemma 1) for a quaternion
variable.

3. Main results

In this section, we mention our main result about the location of zeros of quater-
nionic polynomials with restricted coefficients. More precisely, we prove the following
result:

THEOREM 1. If

p(q) = qnan +qn−1an−1 + · · ·+quau + · · ·+qvav + · · ·+qa1 ++a0

is a polynomial of degree n where v � u and al = l +li+ l j + lk ∈ H; 0 � l � n
such that

u � u−1 � · · · � v; u � u−1 � · · · � v

u � u−1 � · · · � v; u � u−1 � · · · � v, (1)

then all the zeros of p(q) lie in

|q| � |0|+ |0|+ |0|+ |0|+
(
u−v

)
+

(
u−v

)
+

(
u − v

)
+

(
u − v

)
+Mu +Mv

|an| .

Here

Mu =
n


s=u+1

[
|s −s−1|+ |s−s−1|+ |s− s−1|+ |s− s−1|

]
.

and

Mv =
v


s=1

[
|s −s−1|+ |s−s−1|+ |s− s−1|+ |s− s−1|

]
.

For u = n and v = 0 Theorem 1 reduces to Theorem D. Also for u = n , the
number Mu = 0 therefore Theorem 1 reduces to Theorem E. If we take l = l = l = 0,
l = 0,1,2, · · · ,n so that al = l ∈ R , we get for u = n and v = 0 in Theorem 1 the
following quaternionic analogue of Theorem B:
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COROLLARY 1. If p(q) =
n

l=0

qlal is a polynomial of degree n, where q is quater-

nionic variable, with real coefficients satisfying

an � an−1 � · · · � ao

then all the zeros of p(q) lie in

|q| � |a0|+an−a0

|an| .

For l = 0,1,2, · · · ,n , if we take l = l = l = 0 in Theorem 1 so that al =l ∈R ,
we obtain the following result:

COROLLARY 2. If

p(q) = qnan +qn−1an−1 + · · ·+quau + · · ·+qvav + · · ·+qa1 ++a0,

where v � u, is a polynomial of degree n with real coefficients satisfying

au � au−1 � · · · � av

then all the zeros of p(q) lie in

|q| � |a0|+
(
au−av

)
+M′

u +M′
v

|an| ,

where

M′
u =

n


s=u+1

|as−as−1| and M′
v =

v


s=1

|as−as−1|.

Taking u = n in Corollary 2, we get a recently proved result [Corollary 3.2 of
[23]].

For u = v = n , Theorem 1 gives the following result which gives a new bound for
the zeros of quaternionic polynomials without any restriction on the coefficients:

COROLLARY 3. All the zeros of polynomial p(q) =
n

l=0

qlal where q is quater-

nionic variable, with quaternionic coefficients al = l +li+ l j + lk ∈ H lie in

|q| �
|0|+ |0|+ |0|+ |0|+

n

s=1

(|l −l−1|+ |l −l−1|++|l − l−1|+ |l − l−1|
)

|an| .

If we take all coefficients al ; l = 0,1,2, · · · ,n real satisfying an � an−1 � · · · � a0 > 0
then Corollary 3 reduces to Theorem C.
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4. Lemmas

In order to prove the Theorem 1, we need the following lemma due to Gentili et al
[7]:

LEMMA 1. Let f and g be given quaternionic power series with radii of con-
vergence greater than R and let q0 ∈ B(0, R) . Then

(
f ∗ g

)
(q0) = 0 if and only if

f (q0) = 0 or f (q0) �= 0 implies g
(
f (q0)−1q0 f (q0)

)
= 0 .

5. Proofs of Theorems

Proof of Theorem 1. For v � u , given quaternionic polynomial is

p(q) = qnan +qn−1an−1 + · · ·+quau + · · ·+qvav + · · ·+qa1 +a0.

We have

∣∣p(q)∗ (1−q)
∣∣ =

∣∣∣−qn+1an +qn(an−an−1)+qn−1(an−1−an−2)+ · · ·+qu(au−au−1)

+qu−1(au−1−au−2)+ · · ·+qv(av −av−1)+ · · ·+q(a1−a0)+a0

∣∣∣
�|q|n+1|an|−

(
|q|n|an−an−1|+ |q|n−1|an−1−an−2|+ · · ·

+ |q|u|au−au−1|+ · · ·+ |q|v|av−av−1|+ · · ·+ |q||a1−a0|+ |a0|
)

�|q|n
{
|q||an|−

[
|an−an−1|+ |an−1−an−2|

|q| + · · ·

+
|au−au−1|
|q|n−u + · · ·+ |av −av−1|

|q|n−v| + · · ·+ |a1−a0|
|q|n−1 +

|a0|
|q|n

]}
.

Let |q|> 1 so that 1
|q|n−t < 1, t = 0,1,2, · · · ,n , therefore we obtain from above

∣∣p(q)∗ (1−q)
∣∣ > |q|n

{
|q||an|−

[
|an−an−1|+ |an−1−an−2|+ · · ·

+ |au−au−1|+ · · ·+ |av−av−1|+ · · ·+ |a1−a0|+ |a0|
]}

. (2)

Noting that for all s = 1,2, · · · ,n

|as−as−1| = |(s −s−1)+ i(s−s−1)+ j(s− s−1)+ k(s− s−1)|
� |s −s−1|+ |s−s−1|+ |s− s−1|+ |s− s−1|,
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we obtain from inequality (2) by using the hypothesis (1) that for |q| > 1

∣∣p(q)∗ (1−q)
∣∣

> |q|n
{
|q||an|−

[ n


s=u+1

(
|s −s−1|+ |s−s−1|+ |s− s−1|+ |s− s−1|

)

+(u−v)+ (u−v)+ (u− v)+ (u− v)

+
v


s=1

(
|s −s−1|+ |s−s−1|+ |s− s−1|+ |s− s−1|

)

+ |0|+ |0|+ |0|+ |0|
]}

.

That is for |q| > 1, we have

∣∣p(q)∗ (1−q)
∣∣ > |q|n

{
|q||an|−

[
Mu +Mv +(u−v)+ (u−v)

+ (u− v)+ (u− v)+ |0|+ |0|+ |0|+ |0|
]}

.

Hence, if

|q| > 1
|an|

(
Mu +Mv +(u−v)+ (u−v)+ (u− v)+ (u− v)

+ |0|+ |0|+ |0|+ |0|
)
, (3)

then for |q| > 1, we have |p(q)∗ (1−q)|> 0, that is p(q)∗ (1−q) �= 0.
Since by Lemma 1, p(q) ∗ (1− q) = 0 if and only if either p(q) = 0 or p(q) �=

0 implies 1− p(q)−1qp(q) = 0. Notice that 1− p(q)−1qp(q) = 0 is equivalent to
p(q)−1qp(q) = 1 and if p(q) �= 0, this implies that q = 1. So the only zeros of the
product p(q)∗ (1−q) are zeros of p(q) and q = 1. Therefore, it follows from (3) that
p(q) �= 0 for

|q| > Mu +Mv +(u−v)+ (u−v)+ (u− v)+ (u− v)+ |0|+ |0|+ |0|+ |0|
|an| .

In other words, all the zeros of p(q) lie in

|q| � Mu +Mv +(u−v)+ (u−v)+ (u− v)+ (u− v)+ |0|+ |0|+ |0|+ |0|
|an| .

This completes the proof of Theorem 1. �
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6. Conclusions

Some fresh findings on Eneström-Kakeya Theorem for quaternionic polynomi-
als with quaternion coefficients has been discovered that not only generalizes already
proved results but are also useful in determining the regions containing all the zeros of
the polynomial.

Acknowledgement. The authors are highly grateful to the referees for their valuable
suggestions and comments in making the results more useful and interesting.
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