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POINTWISE CONVERGENCE OF THE DOUBLE FOURIER–LEGENDRE

SERIES OF FUNCTIONS OF GENERALIZED BOUNDED VARIATION

RAMESHBHAI KARSHANBHAI BERA ∗ AND BHIKHA LILA GHODADRA

Abstract. In this paper, we have studied the pointwise convergence of the double Fourier-Legen-
dre series of functions of the generalized bounded variation. In particular, we also have the
convergence of double Fourier-Legendre series of functions of (p,q) -bounded variation.

1. Preliminaries

The convergence of Fourier-Legendre series is useful in several areas of mathe-
matics, physics, and engineering. For example in Approximation Theory, Boundary
Value Problems, Quantum Mechanics, and Statistical Analysis. The Dirichlet-Jordan
theorem (see [8] or [14, p. 57]) asserts that the Fourier series of a 2 -periodic func-
tion f of bounded variation on [− , ] converges at each point and the convergence
is uniform on closed intervals of continuity of f . A similar theorem for the Fourier-
Legendre series of a function of bounded variation on I := [−1,1] was proved by Hob-
son [6]. Many authors have studied pointwise convergence, rate of convergence, and
uniform convergence of Fouier-Legendre series of functions of certain classes (see,
e.g., [3], [4], [5], [10]). In this paper we will discuss pointwise convergence of double
Fourier-Legendre series of functions of the class (m ,n )BV(p,q)(I2) (in particular, for

BV(p,q)
H (I2) , BVp

H(I2) , (m ,n )BV(I2)).
Let Pn(x) be the Legendre polynomial of degree n normalized so that Pn(1) = 1.

If f is an integrable function on I := [−1,1] , then the Fourier-Legendre series (see,
e.g., [11, p. 237, section 8.3]) of f is the series




k=0

ak( f )Pk(x)

where

ak( f ) =
(

k+
1
2

)∫ 1

−1
f (t)Pk(t)dt, k = 0,1,2, . . . .

The nth partial sum of the Fourier-Legendre series of f , denoted by Sn ( f ,x) , is defined
as

Sn( f ,x) =
n


k=0

ak( f )Pk(x), n = 0,1,2, . . . ,
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which can be written as

Sn( f ,x) =
∫ 1

−1
f (t)Kn(x,t)dt,

where

Kn(x, t) =
n


k=0

(
k+

1
2

)
Pk(x)Pk(t) or

n+1
2

(
Pn+1(x)Pn(t)−Pn(x)Pn+1(t)

x− t

)
. (1)

DEFINITION 1. The (ordinary) oscillation of a function h : [a,b] → C over a
subinterval J of [a,b] is defined as

osc1 (h,J) = sup{|h(t)−h
(
t ′
) | : t,t ′ ∈ J}.

In 1980, Shiba [12] introduced the following class BVp of functions of p --
bounded variation.

DEFINITION 2. Given a function f : [a,b]→ R , a sequence = {k}k∈N of non-
decreasing of positive numbers such that  1

k
diverges and a real number p , 1 � p <

 , we say that f ∈ BVp[a,b] (that is, f is of p --bounded variation over [a,b]) if

Vp( f , [a,b]) = sup

{
n


k=1

| f (ak)− f (bk)|p
k

}1/p

< ,

where the supremum is extended over all sequences {Ik} of non-overlapping intervals
with Ik = [ak,bk] ⊂ [a,b], k = 1, . . . ,n.

When  = {1} and p = 1, the class is referred to as the class of functions of
bounded variation (BV) and we denote the variation of any f ∈ BV by V ( f , [a,b]) .
When  = {n} , 0 <  < 1 and p = 1, we denote this class by (n)BV and the
variation for any f in this class by Vn ( f , [a,b]) . When  = {1} , the class is referred
to as the class of functions of p -bounded variation (BVp) (that is, Wiener class) and we
denote the variation of any f ∈ BVp by Vp( f , [a,b]) . When = {n} , 0 <  < 1, we
denote this class by (n)BVp and the variation for any f in this class by Vpn ( f , [a,b]) .

We note that if f is of p --bounded variation, then right-hand limit f (x+0) and
left-hand limit f (x−0) exist at every point x of [a,b] (see [13, Theorem 2]). Also, M.
Hormozi et. al. [7, Lemma 2.2] proved the following lemma.

LEMMA 1. If f is of p--bounded variation, then

(1) lim
→0+

Vp( f ,(a,a+  ]) = 0 = lim
→0+

Vp( f , [b−  ,b))

(2) lim
→0+

Vp( f , [a,a+  ]) = | f (a)− f (a+0)|
 1/p

1

.

(3) lim
→0+

Vp( f , [b−  ,b]) = | f (b)− f (b−0)|
 1/p

1

.
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We define, for x ∈ [a,b] ,

s( f ,x) =
1
2
( f (x+0)+ f (x−0)).

Hobson [6] proved the following theorem concerning the pointwise convergence
of the Fourier-Legendre series of functions of bounded variation.

THEOREM 1. If f is of bounded variation on [−1,1] , then its Fourier-Legendre
series converges to s( f ,x) at each point x ∈ (−1,1) , i.e.,

Sn( f ,x) → s( f ,x), as n → .

Also, in [3], we have derived the rate of convergence of the Fourier-Legendre se-
ries of functions belonging to (n)BV class. In a particular case, we have the following
theorem.

THEOREM 2. If f ∈ (n)BV(I) , for 0 <  < 1 , then its Fourier-Legendre series
converges to s( f ,x) at each point x ∈ (−1,1) .

In this paper, we extend above theorems for the convergence of double Fourier-
Legendre series of functions belonging to classes (m ,n )BV(p,q)(I2) (in particular,
for the class BV(p,q)(I2) , (m ,n )BV(I2) , (m ,n )BVp(I2)) by proving analogous
result to (1) of above Lemma. We need the following definitions and notations.

If f is an integrable function on I2 , then the Fourier-Legendre series of f is the
series




j=0




k=0

a j,kPj(x)Pk(y),

where

a j,k( f ) =
(

j +
1
2

)(
k+

1
2

)∫ 1

−1

∫ 1

−1
f (u,v)Pj(u)Pk(v)dudv, j,k = 0,1,2, . . . ,

is the ( j,k)th Fourier-Legendre coefficient of the function f .
The rectangular partial sums of the double Fourier-Legendre series are defined by

Sm,n( f ,x,y) =
m


j=0

n


k=0

a j,kPj(x)Pk(y).

It is easy to show that

Sm,n( f ,x,y) =
∫ 1

−1

∫ 1

−1
f (u,v)Km(x,u)Kn(y,v)dudv,

where Km(x,u) , Kn(y,v) are in (1) as follows.
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DEFINITION 3. Let f be a real valued measurable function defined on the rect-
angle R := [a,b]× [c,d] and  = {n}n=1 and ′ = { ′

n}n=1 be non-decreasing se-
quences of positive numbers such that  1

n
,  1

 ′
n

diverges, and real numbers p and

q , 1 � p,q <  , we say that f ∈ (,′)BV(p,q)(R) (that is, f is of (p,q)-(,′)-
bounded variation over R) if

(1) f (·,c) ∈ BVp[a,b] and f (a, ·) ∈ ′BVq[c,d] , and

(2) if I1 and I2 are the sets of finite collections of non-overlapping intervals
I j = [a j,b j], j = 1,2, . . . ,m , and Jk = [ck,dk], k = 1,2, . . . ,n, in [a,b] and [c,d]
respectively, and f (I j × Jk) = f (a j,ck)− f (a j,dk)− f (b j,ck)+ f (b j,dk), then

sup
I1,I2

⎛
⎝ m


j=1

1
 j

(
n


k=1

(| f (I j × Jk)|)q

 ′
k

)p/q
⎞
⎠

1/p

< . (2)

We denote the supremum in (2) by Vp,q′( f , [a,b], [c,d]) .

When  = {m} and ′ = {n} for , � 0 with  +  � 1, we denote this
class by (m ,n )BV(p,q) class in which , , p and q satisfies the conditions 0 �
q+ p � q , 1− p � 0, and 1−q � 0, and the variation for any f in this class
by Vpm ,qn ( f , [a,b], [c,d]) . When  = ′ = {1} and p = q = 1, the class is referred
to as the class of functions of bounded variation in the sense of Hardy and Krause
( f ∈BVH(R)) and we denote the variation of any f ∈BVH by V ( f , [a,b], [c,d]) . When
 = {m} and ′ = {n} for , � 0 with  +  � 1 and p = q = 1, we refer
this class by (m ,n )BV class and we denote the variation for any f in this class
by Vm ,n ( f , [a,b], [c,d]) . When  = ′ = {1} and p = q , the class is referred to
as the class of functions of p -bounded variation in the sense of Hardy and Krause
( f ∈ BVp

H(R)) and we denote the variation of any f ∈ BVp
H by Vp( f , [a,b], [c,d]) .

When =′ = {1} , the class is referred to as the class of functions of (p,q)-bounded

variation in the sense of Hardy and Krause ( f ∈BV(p,q)
H (R)) and we denote the variation

of any f ∈ BV(p,q)
H by Vp,q( f , [a,b], [c,d]) .

REMARK 1. If f ∈ (,′)BV(p,q)(R) then f is bounded over R . In fact, let
f ∈ (,′)BV(p,q)(R) . Then for any (x,y) ∈ R , we have

| f (x,y)| � | f (x,y)− f (a,y)− f (x,c)+ f (a,c)|+ | f (x,c)− f (a,c)|
+ | f (a,y)− f (a,c)|+ | f (a,c)|

= | f (a,c)|+( ′
1)

1/pq

(
| f (x,y)− f (a,y)− f (x,c)+ f (a,c)|q

 ′
1
1/p

)1/q

+(1)1/p
( | f (x,c)− f (a,c)|p

1

)1/p

+( ′
1)

1/q
( | f (a,y)− f (a,c)|q

 ′
1

)1/q
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= | f (a,c)|+(1)1/p( ′
1)

1/q

(
1
1

( | f (x,y)− f (a,y)− f (x,c)+ f (a,c)|q
 ′

1

)p/q
)1/p

+(1)1/p
( | f (x,c)− f (a,c)|p

1

)1/p

+( ′
1)

1/q
( | f (a,y)− f (a,c)|q

 ′
1

)1/q

� (1)1/p( ′
1)

1/qVp,q′( f , [a,b], [c,d])+ (1)1/pVp( f (·,c), [a,b])

+ ( ′
1)

1/qVq′( f (a, ·), [c,d])+ | f (a,c)|.

Thus f is bounded on R .

DEFINITION 4. The rectangular oscillation of a function f : [a,b]× [c,d] → C

over a subrectangle J×K of [a,b]× [c,d] is defined as

osc2( f ,J×K) = sup
u,u′∈J; v,v′∈K

| f (u,v)− f (u′,v)− f (u,v′)+ f (u′,v′)|.

Here we shall consider the class (,′)BV(p,q) , where = {m} and ′ = {n},
for , � 0. Also we will prove (in Lemma 2) that if f (x,y) ∈ (

m ,n
)
BV(p,q) for

, � 0, q+ p� q then all the four limits f (x±0,y±0) exist at every point (x,y) .
We denote

s( f ,x,y) =
1
4
[ f (x+0,y+0)+ f (x−0,y+0)+ f (x+0,y−0)+ f (x−0,y−0)],

 (u,v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (u,v)− f (x+0,y+0), if u > x,v > y,

f (u,v)− f (x−0,y+0), if u < x,v > y,

f (u,v)− f (x+0,y−0), if u > x,v < y,

f (u,v)− f (x−0,y−0), if u < x,v < y,

f (u,y)− f (x+0,y), if u > x,v = y,

f (u,y)− f (x−0,y), if u < x,v = y,

f (x,v)− f (x,y+0), if u = x,v > y,

f (x,v)− f (x,y−0), if u = x,v < y,

0, if (u,v) = (x,y),

and

g(u,v) = (u,v)−(x,v)−(u,y). (3)

We will also denote x + j(1−x)
n and x− j(1+x)

n by s j,x and t j,x respectively for x ∈
(−1,1) , j = 0,1, . . . ,n , also denote intervals I j,x := [t j+1,x,t j,x] and Jj,x := [s j,x,s j+1,x] ,
for j = 1,2, . . . ,n−1.

Throughout this paper, we write u � v if there exists a positive constant K , such
that u � Kv and K need not be the same at each occurrence.
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2. Main Theorem

Our main theorem is as follows.

THEOREM 3. Let f ∈ (
m ,n

)
BV(p,q)(I2) , 0 � q+ p � q, 1− p � 0 , and

1−q � 0 . Then, for (x,y) ∈ (−1,1)× (−1,1) , we have Sm,n( f ,x,y) → s( f ,x,y) in
Pringsheim sense as m,n →  .

By putting  =  = 0 in Theorem 3, we get the following corollary for the class
of functions of (p,q)-bounded variation in the sense of Hardy and Krause.

COROLLARY 1. Let f ∈ BV(p,q)
H (I2) . Then, for (x,y) ∈ (−1,1)× (−1,1) , we

have Sm,n( f ,x,y) → s( f ,x,y) in Pringsheim sense as m,n →  .

Also, putting q = p and  =  = 0 in Theorem 3, we get the following corollary
for the class of functions of p -bounded variation in the sense of Hardy and Krause.

COROLLARY 2. Let f ∈ BVp
H(I2) . Then, for (x,y) ∈ (−1,1)× (−1,1) , we have

Sm,n( f ,x,y) → s( f ,x,y) in Pringsheim sense as m,n →  .

At last, putting p = q = 1 in Theorem 3, we get the following corollary for the
class of functions of generalized bounded variation, which is a two-dimensional ana-
logue of Theorem 2.

COROLLARY 3. Let f ∈ (
m ,n

)
BV(I2) , 0 �  +  � 1 . Then, for (x,y) ∈

(−1,1)× (−1,1) , we have Sm,n( f ,x,y) → s( f ,x,y) in Pringsheim sense as m,n →  .

3. Lemmas

To prove main theorem, we require following lemmas.

LEMMA 2. If f ∈ (m ,n )BV(p,q)(R) for , � 0 , 0 � q+ p � q, and every
(x0,y0) ∈ I2 , the four limits f (x0 ±0,y0±0) of f (x,y) as (x,y) → (x0,y0) and (x,y)
is in the corresponding open coordinate quadrant, exist.

Proof of Lemma 2. Our proof is similar to that of Theorem 7 of [2]. Suppose
f (x,y) ∈ (m ,n )BV(p,q)(R) , , � 0, q +  p � q . Suppose also that there is a
point (x0,y0) ∈ R such that f (x,y) does not have a limit as (x,y) → (x0,y0) within
an open coordinate quadrant with vertex (x0,y0) . Without loss of generality, we may
assume that the quadrant is {(x,y) : x0 < x < b,y0 < y < d} = S , say.

Then, by Cauchy criterion (see, e.g., [9, Proposition 2.54]), there is an  > 0 such
that for every  > 0, there are points (x1,y1) , (x′1,y

′
1) in S∩S (x0,y0)\{(x0,y0)} such

that
| f (x1,y1)− f (x′1,y

′
1)| > 4. (4)

Choose (s, t)∈ (x0,b)×(y0,d) . Then, since f (x,t) and f (s,y) are in (m)BV(p)([a,b])
and (n )BV(q)([c,d]) respectively in each variable separately, limx→x0+ f (x,t) and
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limy→y0+ f (s,y) exist (see, e.g., [13, Theorem 2]). Therefore, as  > 0, by Cauchy
criterion, there are 1,2 > 0 such that 1 < b− x0 , 2 < d− y0 , and

x0 < x1,x
′
1 < x0 + 1 =⇒ | f (x1,t)− f (x′1,t)| < ;

y0 < y1,y
′
1 < y0 + 2 =⇒ | f (s,y1)− f (s,y′1)| < .

Put  = min{1,2} . Then, for this  , as above, there are points (x1,y1) , (x′1,y
′
1)

in S∩S (x0,y0)\ {(x0,y0)} such that (4) holds. Observe that

(x1,y1), (x′1,y
′
1) ∈ S∩S (x0,y0)\ {(x0,y0)}

=⇒ | f (x1,t)− f (x′1,t)| <  and | f (s,y1)− f (s,y′1)| < . (5)

Now, letting
P = f (s,t)− f (s,y1)− f (x1,t)+ f (x1,y1)

and
Q = f (s,t)− f (s,y′1)− f (x′1,t)+ f (x′1,y

′
1),

in view of (4) and (5), we have

|P−Q|� | f (x1,y1)− f (x′1,y
′
1)|− | f (x1,t)− f (x′1,t)|− | f (s,y1)− f (s,y′1)|

� 4− −  = 2.

So, at least one |P| or |Q| , must exceed  . Hence renaming endpoints, we obtained a
rectangle, say, I1×J1 := [x1,x′1]× [y1,y′1] with x0 < x1 < x′1 < b and y0 < y1 < y′1 < d ,
for which | f (I1 × J1)| > .

Now, let (s, t) ∈ (x0,x1)× (y0,y1) . Then arguing as above, and now choosing
1 < x1−x0 and 2 < y1−y0 , we can obtain a rectangle, say, I2×J2 := [x2,x′2]× [y2,y′2]
with x0 < x2 < x′2 < x1 and y0 < y2 < y′2 < y1 , for which | f (I2 × J2)| >  . Note that
this construction gives I1∩ I2 = /0 and J1∩J2 = /0 . Continuing in this way, we can form
a sequence {In × Jn} of rectangles in (x0,b)× (y0,d) such that the intervals In ’s are
disjoint, the intervals Jn ’s are disjoint, and that | f (In × Jn)| >  for each n ∈ N . But
then, as 0 � q + p � q , we have

⎛
⎝ N


j=1

1
j

(
N


k=1

| f (I j × Jk)|q
k

)p/q
⎞
⎠

1/p

>

⎛
⎝ N


j=1

1
j

(
j


k=1

| f (I j × Jk)|q
k

)p/q
⎞
⎠

1/p

�
(

N


j=1

1
j

( | f (I j × Jj)|q
j

)p/q
)1/p

> 

(
N


j=1

1

j(q+p )/q

)1/p

→ 

as N →  , which is a contradiction as f (x,y) ∈ (m ,n )BV(p,q)(R) . This completes
the proof of Lemma 2. �
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LEMMA 3. If f is of (p,q)-(,′)-bounded variation on [a,b]× [c,d] then

(a) lim
→0+

Vp,q′( f ,(a,a+  ], [c,d]) = 0 .

(b) lim
→0+

Vp,q′( f , [a,a+  ], [c,d]) = 0 , if f (x, ·) is continuous at a point a .

(c) lim
→0+

Vp,q′( f , [a,b],(c,c+  ]) = 0 .

(d) lim
→0+

Vp,q′( f , [a,b], [c,c+  ]) = 0 , if f (·,y) is continuous at a point c .

(e) lim
→0+

Vp,q′( f ,(a,a+  ],(c,c+  ]) = 0 .

(f) lim
→0+

Vp,q′( f , [a,a+ ], [c,c+ ]) = 0 , if f (x,y) is continuous at a point (a,c) .

Proof of Lemma 3. Clearly, Vp,q′( f ,(a,a+ ], [c,d]) � 0. Suppose that there is
 > 0 such that

Vp,q′( f ,(a,a+  ], [c,d]) > , ∀ � 0. (6)

Now, as f is of (p,q)-(,′)-bounded variation on [a,b]× [c,d] , f is of p --
bounded variation on [a,b] for a fixed variable y then the right-hand limit f (x+ 0, ·)
exists. Therefore, for m′

0,n
′
0 ∈ N , and given  there exist 0 �  satisfies

| f (I0, ·)| �
(
1

m′
0

)1/p( ′
1

n′0

)1/q 
22+1/p

,

for all subintervals I0 ⊂ (a,a+ 0] .
Now, for this 0 and from (6), existence of disjoint rectangles I0

i × J0
j ⊂ (a,a +

0]× [c,d] : i = 0,1, . . . ,m0 , j = 0,1,2, . . . ,n0 , m0,n0 ∈ N such that

m0


i=1

1
i

(
n0


j=1

| f (I0
i × J0

j )|q
 ′

j

)p/q

�  p.

Now, as

| f (I0
i × J0

j )| � 2| f (I0, ·)| �
(
1

m′
0

)1/p( ′
1

n′0

)1/q 
21+1/p

,

and as numerical inequalities (see [1, p. 16]) for any positive numbers a,b , and p , we
have

(a+b)p �
{

2p(ap +bp) for p � 1,

ap +bp for 0 � p < 1,
=⇒ (a+b)p � 2p(ap +bp) for p � 0,
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we have

m0


i=1

1
i

(
n0


j=1

| f (I0
i × J0

j )|q
 ′

j

)p/q

�  p

=⇒
m0


i=1

1
i

⎛
⎝ n′0

j=1

| f (I0
i × J0

j )|q
 ′

j

⎞
⎠

p/q

+
m0


i=1

1
i

⎛
⎝ n0


j=n′0+1

| f (I0
i × J0

j )|q
 ′

j

⎞
⎠

p/q

�  p

2p/q

=⇒
⎡
⎣m′

0


i=1

+
m0


i=m′

0+1

⎤
⎦ 1
i

⎛
⎝ n′0

j=1

| f (I0
i × J0

j )|q
 ′

j

⎞
⎠

p/q

+
m0


i=1

1
i

⎛
⎝ n0


j=n′0+1

| f (I0
i × J0

j )|q
 ′

j

⎞
⎠

p/q

�  p

2p/q

=⇒
m0


i=m′

0+1

1
i

⎛
⎝ n′0

j=1

| f (I0
i × J0

j )|q
 ′

j

⎞
⎠

p/q

+
m0


i=1

1
i

⎛
⎝ n0


j=n′0+1

| f (I0
i × J0

j )|q
 ′

j

⎞
⎠

p/q

�  p

2p/q
−

m′
0


i=1

1
i

⎛
⎝ n′0

j=1

| f (I0
i × J0

j )|q
 ′

j

⎞
⎠

p/q

=⇒
m0


i=m′

0+1

1
i

⎛
⎝ n′0

j=1

| f (I0
i × J0

j )|q
 ′

j

⎞
⎠

p/q

+
m0


i=1

1
i

⎛
⎝ n0


j=n′0+1

| f (I0
i × J0

j )|q
 ′

j

⎞
⎠

p/q

�  p

2p/q
−  p

2p+1 =
 p

2p/q
−  p

22+p/q
=

3 p

2p+1 .

Now again, suppose all subintervals I0 ⊂ (a0,a + 0] then removing the part
(a0,a+  ] , we proceed similarly for m′

1,n
′
1 ∈ N , and given  there exist 1 �  satis-

fies

| f (I1, ·)| �
(
1

m′
1

)1/p( ′
1

n′1

)1/q 
22+1/p

,

for all subintervals I1 ⊂ (a,a + 1] , a + 1 � a0 . Now again, for this 1 and from
(6), existence of disjoint rectangles I1

i × J1
j ⊂ (a,a+ 1]× [c,d] : i = 0,1, . . . ,m1 , j =

0,1,2, . . . ,n1 , m1,n1 ∈N there is a collection of rectangles (Ii×Jj : i =m′
1, . . . ,m1; j =

0,1, . . . ,n) satisfy

m1


i=m′

1+1

1
i

⎛
⎝ n′1

j=1

| f (I1
i × J1

j )|q
 ′

j

⎞
⎠

p/q

+
m1


i=1

1
i

⎛
⎝ n1


j=n′1+1

| f (I1
i × J1

j )|q
 ′

j

⎞
⎠

p/q

�  p

2p/q
−  p

21+p

=
3 p

2p+1 .
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Similarly, we can constuct an finite families of disjoint rectangles inductively on re-
mainig rectangle, so that

n


k=0

⎡
⎢⎣ mk


i=m′

k+1

1
i

⎛
⎝ n′k

j=1

| f (Ik
i × Jk

j )|q
 ′

j

⎞
⎠

p/q

+
mk


i=1

1
i

⎛
⎝ nk


j=n′k+1

| f (Ik
i × Jk

j )|q
 ′

j

⎞
⎠

p/q
⎤
⎥⎦� 3n p

2p+1 ,

for all n . It follows that f /∈ (,′)BV (p,q)([a,b]× [c,d]) , a contradiction. Thus, it must
be V ( f ,(a,a+ ], [c,d])→ 0 as  → 0. This completes the proof of (a). Similarly, one
can prove (c) and (e).

Now, suppose Vp,q′( f ,(a,a+ ], [c,d])→ 0 as  → 0. Then for any  > 0 there
is  > 0 such that

Vp,q′( f ,(a,a+ 0], [c,d]) � , ∀ 0 <  . (7)

We will prove that condition (b) holds. Given any family {Ii × Jj}m,n
i=1, j=1 of [a,a +

0]× [c,d] , also an interval Ii which contain a , denoting it by Ii′ , we have

m


i=1

1
i

(
n


j=1

1
 ′

j
| f (Ii × Jj)|q

)p/q

=
1
i′

(
n


j=1

1
 ′

j
| f (Ii′ × Jj)|q

)p/q

+
m


i=1,i�=i′

1
i

(
n


j=1

1
 ′

j
| f (Ii × Jj)|q

)p/q

(8)

By our assumption f (x, ·) is continuous at point a , then for given  > 0 there is 0 <
1 < 0 satisfying

| f (a, ·)− f (a+ 1, ·)| �
(
(i′)

1/p( ′
1)

1/q
)
/22+1/qn1/q.

Now, decomposing Ii′ = [a,a+ 0] = [a,a+ 1]∪ [a+ 1,a+ 0] := I1
i′ ∪ I2

i′ , we have

1
i′

(
n


j=1

1
 ′

j
| f (Ii′ × Jj)|q

)p/q

� 2p(1+1/q)

i′

[( n


j=1

1
 ′

j
| f (I1

i′ × Jj)|q
)p/q

+

(
n


j=1

1
 ′

j
| f (I2

i′ × Jj)|q
)p/q]

. (9)

Now, as | f (I1
i′ ×Jj)|� 2 sup

y∈[c,d]
| f (a, ·)− f (a+1, ·)|�

(
(i′)1/p( ′

1)
1/q
)
/21+1/qn1/q ,

we have

2p(1+1/q)

i′

(
n


j=1

1
 ′

j
| f (I1

i′ × Jj)|q
)p/q

�  p.
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Also from (7), the second terms of right hand side of an inequality (8) and (9)
becomes

2p(1+1/q)

i′

(
n


j=1

1
 ′

j
| f (I2

i′ × Jj)|q
)p/q

+
m


i=1,i�=i′

1
i

(
n


j=1

1
 ′

j
| f (Ii × Jj)|q

)p/q

� KV p
p,q′( f ,(a,a+ 0], [c,d]) � K p,

where K is some positive constant. Since  is arbitrary, condition (b) holds true. Sim-
ilarly, one can prove (d) and (f). �

We also recall the partial summation formulas for single and double sequences,
which are as follows.

LEMMA 4. Consider n ∈ N . For j = 0,1, . . . ,n, let a j and b j be real numbers.

Let B j =
n


k= j
bk for j = 0,1,2, . . . ,n, and Bn+1 = 0 . Then

n


j=1

a jb j =
n


j=1

(
a j −a j−1

)
Bj +a0B1. (10)

Also, for B j =
j


k=0
bk , we have

n


j=0

a jb j =
n−1


j=0

(
a j −a j+1

)
Bj +anBn. (11)

LEMMA 5. Consider (m,n)∈N2 .Let a j,k and b j,k be real numbers, and let B j,k =
m


j′= j

n


k′=k
b j′,k′ and Bm+1,n+1 = Bj,n+1 = Bm+1,k = 0 , for j = 0,1, . . . ,m, k = 0,1, . . . ,n,

then

m


j=1

n


k=1

a j,kb j,k =
m


j=1

n


k=1

(
a j,k −a j,k−1−a j−1,k +a j−1,k−1

)
Bj,k

+
m


j=1

(a j,0−a j−1,0)Bj,1 +
n


k=1

(a0,k −a0,k−1)B1,k +a0,0B1,1.

4. Proof of the main Theorem

Proof of Theorem 3. For any m,n ∈ N , x,y ∈ (−1,1) , and using the facts (see [4,
Lemma 1])

∫ 1

x
Kn(x, t)dt =

1
2
− 1

2
Pn(x)Pn+1(x) and

∫ x

−1
Kn(x, t)dt =

1
2

+
1
2
Pn(x)Pn+1(x), (12)
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we have the representation (see [4, Proof of Theorem 1])

Sm,n( f ,x,y)− s( f ,x,y)

=
∫ 1

−1

∫ 1

−1
f (u,v)Km(x,u)Kn(y,v)dudv− s( f ,x,y)

=
∫ 1

−1

∫ 1

−1
(u,v)Km(x,u)Kn(y,v)dudv+

1
4
[ f (x+0,y+0)− f (x+0,y−0)

− f (x−0,y+0)+ f (x−0,y−0)]Pm(x)Pm+1(x)Pn(y)Pn+1(y)− 1
4
( f (x+0,y+0)

+ f (x+0,y−0)− f (x−0,y+0)− f (x−0,y−0))Pm(x)Pm+1(x)− 1
4
( f (x+0,y+0)

− f (x+0,y−0)+ f (x−0,y+0)− f (x−0,y−0))Pn(y)Pn+1(y). (13)

For fixed x and y , for simplicity denote Km(x,u) and Kn(y,v) by Xm(u) and Yn(v)
respectively, and using notation as in (3), we decompose the double integral as

∫ 1

−1

∫ 1

−1
(u,v)Xm(u)Yn(v)dudv

=
(m−1


j=0

n−1


k=0

∫
Ij,x

∫
Ik,y

+
∫ 1

x

∫ y

−1
+
∫ x

−1

∫ 1

y
+
∫ 1

x

∫ 1

y

)
g(u,v)Xm(u)Yn(v)dudv

+
∫ 1

−1

∫ 1

−1
(u,y)Xm(u)Yn(v)dudv+

∫ 1

−1

∫ 1

−1
(x,v)Xm(u)Yn(v)dudv

= A1 +A2 + . . .+A5 +A6, say. (14)

First decomposing A1 , we have

A1 =
m−1


j=0

n−1


k=0

[∫
Ij,x

∫
Ik,y

(g(u,v)−g(t j,x,v)−g(u,tk,y)+g(t j,x,tk,y)

+
∫
Ij,x

∫
Ik,y

(
g(u,tk,y)−g(t j,x,tk,y)

)
+
∫
Ij,x

∫
Ik,y

(
g(t j,x,v)−g(t j,x,tk,y)

)
+
∫
Ij,x

∫
Ik,y

g(t j,x,tk,y)
]
Xm(u)Yn(v)dudv

= A11 +A12 +A13 +A14, say. (15)

Now for m � 2, j = 1,2, . . . ,m−1, and for fixed x ∈ (−1,1) , using an inequality (see
[3, (3.12)])

∫
Ij,x

|Xm(t)|dt � 4
√

2m

 j(1− x2)(m− j)1/2
� 1

( j +1)

√
m

m− j
, (16)

and an inequality (see [4, Lemma 2])∫ s1,x

t1,x

|Xm(t)|dt � 4
1− x2 � 1, (17)
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we proceed as follows

|A11| =
∣∣∣∣∣
m−1


j=0

n−1


k=0

∫
Ij,x

∫
Ik,y

(g(u,v)−g(t j,x,v)−g(u,tk,y)+g(t j,x,tk,y))Xm(u)Yn(v)dudv

∣∣∣∣∣
�

m−1


j=0

n−1


k=0

∫
Ij,x

∫
Ik,y

|(u,v)−(t j,x,v)−(u,tk,y)+(t j,x,tk,y)||Xm(u)||Yn(v)|dudv

�
m−1


j=0

n−1


k=0

osc2( , I j,x, Ik,y)
√

m

( j +1)(m− j)1/2

√
n

(k+1)(n− k)1/2
. (18)

Also, defining

R′
k,n =

∫ tk,y

−1
Yn(v)dv for k = 1,2, . . . ,n−1 and R′

n,n = 0, (19)

and using partial summation formula (see (10) of Lemma 4) with ak = g(u,tk,y)−
g(t j,x, tk,y) and bk = (R′

k,n−R′
k+1,n) , and as a0 = 0, we have

A12 =
m−1


j=0

∫
Ij,x

n−1


k=1

(g(u,tk,y)−g(t j,x,tk,y))(R′
k,n −R′

k+1,n)Xm(u)du

=
m−1


j=0

∫
Ij,x

(
n−1


k=1

(
g(u,tk,y)−g(t j,x,tk,y)−g(u,tk−1,y)+g(t j,x,tk−1,y)

)
(R′

k,n−R′
n,n)

+ (g(u,y)−g(t j,x,y))(R′
1,n −R′

n,n)

)
Xm(u)du.

=
m−1


j=1

∫
Ij,x

n−1


k=1

(
g(u,tk,y)−g(t j,x,tk,y)−g(u,tk−1,y)+g(t j,x,tk−1,y)

)
R′

k,nXm(u)du,

as g(u,y)−g(t j,x,y) = 0 by (3), and as R′
n,n = 0 by (19). Since

g(u, tk,y)−g(t j,x, tk,y)−g(u,tk−1,y)+g(t j,x,tk−1,y)
= (u,tk,y)−(t j,x,tk,y)−(u,tk−1,y)+(t j,x,tk−1,y) (20)

and for fixed n � 2 and −1 � t < y < 1, we have an inequality (see [4, Lemma 3])∣∣∣∣
∫ t

−1
Yn(v)dv

∣∣∣∣� 6
n(y− t)

(1− y2)−1/2 � 1
n(y− t)

=⇒

|R′
k,n| =

∣∣∣∣
∫ tk,y

−1
Yn(v)dv

∣∣∣∣� 1
n(y− tk,y)

=
1

n
(
y−

(
y− k(1+y)

n

)) =
1

k(1+ y)
� 1

k
. (21)

Now, using (16), (20), and (21), we have

|A12| �
m−1


j=0

n−1


k=1

∫
Ij,x

|(u,tk,y)−(t j,x,tk,y)−(u,tk−1,y)+(t j,x,tk−1,y)||R′
k,n| |Xm(u)|du

�
m−1


j=0

n−1


k=1

√
m

( j +1)k
√

m− j
osc2( , I j,x, Ik−1,y). (22)
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Since A13 is symmetric to A12 , defining

Rj,m =
∫ t j,x

−1
Xm(u)du, for j = 1,2, . . . ,m−1 and Rm,m = 0, (23)

we can prove

|A13| �
m−1


j=1

n−1


k=0

√
n

j(k+1)
√

(n− k)
osc2( , I j−1,x, Ik,y). (24)

Now, from (19), (23), using double summation formula (see Lemma 5) with a j,k =
g(t j,x, tk,y) and b j,k = (Rj,m−Rj+1,m)(R′

k,n−R′
k+1,n) , and as a0,k = a j,0 = a0,0 = 0, we

have

A14 =
m−1


j=0

n−1


k=0

∫ t j,x

t j+1,x

∫ tk,y

tk+1,y

g(t j,x,tk,y)Xm(u)Yn(v)dudv

=
m−1


j=1

n−1


k=1

g(t j,x,tk,y)(Rj,m −Rj+1,m)(R′
k,n −R′

k+1,n)

=
m−1


j=1

n−1


k=1

(
g(t j,x,tk,y)−g(t j,x,tk−1,y)−g(t j−1,x,tk,y)+g(t j−1,x,tk−1,y)

)
Rj,mR′

k,n.

Therefore, from (21) and putting u = t j−1,x in (20), we have

|A14| �
m−1


j=1

n−1


k=1

|(t j,x,tk,y)−(t j−1,x,tk,y)−(t j,x,tk−1,y)+(t j−1,x,tk−1,y)||Rj,m||R′
k,n|

�
m−1


j=1

n−1


k=1

1
jk

osc2( , I j−1,x, Ik−1,y). (25)

Therefore, from (15), (18), (22), (24), and (25), we have

A1 �
m−1


j=0

n−1


k=0

√
mn

( j +1)(k+1)(m− j)1/2(n− k)1/2
osc2( , I j,x, Ik,y)

�
[

[m/2]


j=0

1
j +1

+
m−1


j=[m/2]+1

√
m

( j +1)(m− j)1/2

]

×
[

[n/2]


k=0

1
k+1

+
n−1


k=[n/2]+1

√
n

(k+1)(n− k)1/2

]
osc2( , I j,x, Ik,y)

=

[
[m/2]


j=0

[n/2]


k=0

1
( j +1)(k+1)

+
m−1


j=[m/2]+1

[n/2]


k=0

√
m

( j +1)(k+1)(m− j)1/2

+
[m/2]


j=0

n−1


k=[n/2]+1

√
n

( j +1)(k+1)(n− k)1/2
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+
m−1


j=[m/2]+1

n−1


k=[n/2]+1

√
mn

( j +1)(k+1)(m− j)1/2(n− k)1/2

]
osc2( , I j,x, Ik,y)

= A+B+C+D, say. (26)

Now, applying Hölder’s inequality with given p , q and taking r , s such that 1/p +
1/r = 1, 1/q+1/s = 1, we have

A =
[m/2]


j=0

1
( j +1)

(
[n/2]


k=0

1

(k+1)1−1/q2+1/q2 osc2( , I j,x, Ik,y)

)

�
[m/2]


j=0

1
( j +1)

(
[n/2]


k=0

1

(k+1)1/q
(osc2( , I j,x, Ik,y))q

)1/q([n/2]


k=0

1

(k+1)s−s/q2

)1/s

=
[m/2]


j=0

1
( j +1)

(
[n/2]


k=0

1

(k+1)1/q
(osc2( , I j,x, Ik,y))q

)1/q([n/2]


k=0

1

(k+1)1+1/q

)1/s

�
m


j=0

1

( j +1)1−1/p2+1/p2

(
n


k=0

1

(k+1)1/q
(osc2( , I j,x, Ik,y))q

)1/q

�
⎛
⎝ m


j=0

1

( j +1)1/p

(
n


k=0

1

(k+1)1/q
(osc2( , I j,x, Ik,y))q

)p/q
⎞
⎠

1/p

×
(

m


j=0

1

( j +1)r−r/p2

)1/r

�
⎛
⎝ m


j=0

1

( j +1)1/p

(
n


k=0

1

(k+1)1/q
(osc2( , I j,x, Ik,y))q

)p/q
⎞
⎠

1/p

. (27)

Now, first fixing j , we define

a j,0 = 0, for t ∈ [0,1) and a j,t =
[t]−1


l=0

1

(l +1)
(osc2( , I j,x, Il,y))q, for t ∈ [1,n+1].

(28)

Now, as 1− q � 0 =⇒ 1
q �  , and using partial summation formula (see (11) of

Lemma 4), we have

n


k=0

1

(k+1)1/q−
(osc2( , I j,x, Ik,y))q

(k+1)
=

n


k=0

1

(k+1)1/q− (a j,k+1−a j,k)

=
n−1


k=0

(
1

(k+1)1/q− − 1

(k+2)1/q−

)
a j,k+1

+
1

(n+1)1/q− a j,n+1. (29)
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Since a j,t is non-decreasing on t ∈ [k+1,k+2] for fixed j and k ∈ [0,n−1] , we have

1
(1/q− )

n−1


k=0

(
1

(k+1)1/q− − 1

(k+2)1/q−

)
a j,k+1 =

n−1


k=0

a j,k+1

∫ k+2

k+1

1

t1+1/q− dt

�
∫ n+1

1

a j,t

t1+1/q− dt. (30)

Now, changing variable t by n+1
s , we have t → 1 ⇐⇒ s→ n+1, t → n+1 ⇐⇒ s→

1, and dt
ds = (−1) n+1

s2
. Therefore

∫ n+1

1

a j,t

t1+1/q− dt =
∫ n+1

1
a j,[ n+1

s ]

(
s

n+1

)1+1/q− (n+1
s2

)
ds

=
1

(n+1)1/q−
n−1


k=0

∫ k+2

k+1
a j,[ n+1

s ]

(
1

s1−1/q+

)
ds

� 1

n1/q−
n−1


k=0

a j,[ n+1
k+1 ]

(k+1)1/s+ � a j,n+1. (31)

Therefore, from (29), (30), and (31), we have

n


k=0

1

(k+1)1/q
(osc2( , I j,x, Ik,y))q � a j,n+1. (32)

Similarly, for fixed n , defining

b0,n = 0 for t ∈ [0,1) and bt,n =
[t]−1


j=0

1
( j +1)

(
a j,n+1

)p/q for t ∈ [1,m+1],

we can prove the following inequality

m


j=0

1

( j +1)1/p

(
n


k=0

1

(k+1)1/q
(osc2( , I j,x, Ik,y))q

)p/q

�
m


j=0

1

( j +1)1/p

(
a j,n+1

)p/q � 1

m1/p−
m


j=1

1

j1/r+ b[m+1
j

]
,n
. (33)

Now, by definition of a j,n+1 and bt,n , we have

b[m+1
j

]
,n

=

[
m+1

j

]
−1


j′=0

1
( j′ +1)

(a j′,n+1)
p/q

=

[
m+1

j

]
−1


j′=0

1
( j′ +1)

(
n


l=0

1

(l +1)
(osc2( , I j′ ,x, Il,y))

q

)p/q

� Vp
pm ,qn

(
 ,

[
x− (1+ x)

j
,x

]
, [−1,y]

)
. (34)
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Therefore, from (27), (33), and (34), we have

A �
(

1

m1/p−
m


j=1

1

j1/r+ Vp
pm ,qn

(
 ,

[
x− (1+ x)

j
,x

]
, [−1,y]

))1/p

= o(1) as m → . (35)

Also, we have the following inequality

m−1


j=[m/2]+1

√
m

( j +1)(m− j)1/2
� 1

m

m−1


j=1

(
m− j

m

)−1/2

=
m−1


j=1

(
m− j

m

)−1/2 [m− j
m

− m− j−1
m

]

�
m−1


j=1

∫ m− j
m

m− j−1
m

x−1/2dx �
∫ 1

0
x−1/2dx = 2. (36)

Using (36) and Hölder’s inequality with 1/q+1/s = 1, we have

B =
m−1


j=[m/2]+1

√
m

( j +1)(m− j)1/2

[n/2]


k=0

1
(k+1)

osc2( , I j,x, Ik,y)

�
n


k=0

1

(k+1)1−1/q2+1/q2 osc2( , [−1,x], Ik,y)

�
(

n


k=0

1

(k+1)1/q
(osc2( , [−1,x], Ik,y))q

)1/q( n


k=0

1

(k+1)s−s/q2

)1/s

�
(

n


k=0

1

(k+1)1/q
(osc2( , [−1,x], Ik,y))q

)1/q

�
⎛
⎝ 1

n1/q−
n−1


k=0

1

(k+1)1/s+

[ n+1
k+1 ]−1


l=0

1

(l +1)
(osc2( , [−1,x], Il,y))q

⎞
⎠

1/q

�
(

1

n1/q−
n−1


k=0

1

(k+1)1/s+ Vq
pm ,qn

(
 , [−1,x],

[
y− (1+ y)

k+1
,y

]))1/q

= o(1) as n → . (37)

Since C is symmetric to B, we can prove

C = o(1) as m → . (38)

Also, for j ∈ [
[m
2 ]+1,m−1

]
and k ∈ [

[ n
2 ]+1,n−1

]
, osc2( , I j,x, Ik,y)→ 0 as m,n→
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 , we have

D =
m−1


j=[m/2]+1

n−1


k=[n/2]+1

√
mn

( j +1)(k+1)(m− j)1/2(n− k)1/2
osc2( , I j,x, Ik,y)

�
m−1


j=[m/2]+1

n−1


k=[n/2]+1

1

m1/2n1/2(m− j)1/2(n− k)1/2
osc2( , I j,x, Ik,y)

= o(1)
m−1


j=[m/2]+1

n−1


k=[n/2]+1

1

m1/2n1/2(m− j)1/2(n− k)1/2
= o(1) as m,n → . (39)

Therefore, from (26), (35), (37), (38), and (39), we have

A1 � A+B+C+D = o(1) as m,n → . (40)

Similar way, we can prove

A2 =
m−1


j=0

n−1


k=0

∫
Jj,x

∫
Ik,y

g(u,v)Xm(u)Yn(v)dudv = o(1) as m,n → ,

A3 =
m−1


j=0

n−1


k=0

∫
Ij,x

∫
Jk,y

g(u,v)Xm(u)Yn(v)dudv = o(1) as m,n → ,

(41)

and

A4 =
m−1


j=0

n−1


k=0

∫
Jj,x

∫
Jk,y

g(u,v)Xm(u)Yn(v)dudv = o(1) as m,n → . (42)

Now, as
∫ 1
−1Yn(v)dv = 1 by (12), and decomposing the integral on A5 , we have

A5 =
∫ 1

−1

∫ 1

−1
(u,y)Xm(u)Yn(v)dudv

=
∫ 1

−1
(u,y)Xm(u)du

=
m−1


j=0

∫ t j,x

t j+1,x

((u,y)−(t j,x,y))Xm(u)du+
m−1


j=1

∫ t j,x

t j+1,x

(t j,x,y)Xm(u)du

+
∫ 1

x
(u,y)Xm(u)du

= A51 +A52 +A53, say. (43)

Now, from (16), (17), (36) and using Hölder’s inequality, we first have

|A51| �
m−1


j=0

∫ t j,x

t j+1,x

|(u,y)−(t j,x,y)||Xm(u)|du

�
m−1


j=0

√
m

( j +1)
√

m− j
osc1((·,y), [t j+1,x,t j,x])
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�
[m/2]


j=0

1

( j +1)1−1/p2+1/p2 osc1((·,y), [t j+1,x,t j,x])

+
m−1


j=[m/2]+1

1√
m(m− j)

osc1((·,y), [t j+1,x,t j,x])

�
(

[m/2]


j=0

1

( j +1)1/p
(osc1((·,y), [t j+1,x, t j,x]))p

)1/p

+
m−1


j=[m/2]+1

1√
m(m− j)

osc1((·,y), [t j+1,x,t j,x]). (44)

Now, defining

a′t = 0 for t ∈ [0,1) and a′t =
[t]−1


i=0

1
(i+1)

(osc1((·,y), Ii,x))p for t ∈ [1,m+1].

Then, proceeding as in (28) to (31), we have

m−1


j=0

1

( j +1)1/p
(osc1((·,y), [t j+1,x,t j,x]))p

� 1+1/p−
(m+1)1/p−

m


j=0

1

( j +1)1−1/p+ a′[m+1
j+1

]
= o(1) as m → . (45)

Also,

m−1


j=[m/2]+1

1

m1/2(m− j)1/2
osc1((·,y), [t j+1,x,t j,x]) = o(1) as m → . (46)

Now, using partial summation formula (see (10) of Lemma 4) with a j = (t j,x,y) ,

b j =
t j,x∫

t j+1,x

Xm(u)du and as a0 = 0, we have

A52 =
m−1


j=1

(t j,x,y)
∫ t j,x

t j+1,x

Xm(u)du

=
m−1


j=1

∫ t j,x

−1

(
(t j,x,y)−(t j−1,x,y)

)
Xm(u)du.



124 R. K. BERA AND B. L. GHODADRA

Now, using Hölder’s inequality and in view of (21), we have

|A52| �
m−1


j=1

|(t j,x,y)−(t j−1,x,y)|
∣∣∣∣∣
∫ x− j(1+x)

m

−1
Xm(u)du

∣∣∣∣∣
�

m−1


j=1

1
j
osc1((·,y), [t j,x,t j−1,x])

�
m−1


j=0

1

( j +1)1−1/p2+1/p2 osc1((·,y), [t j+1,x,t j,x])

�
(

m−1


j=0

1

( j +1)1/p
(osc1((·,y), [t j+1,x,t j,x]))p

)1/p

. (47)

Therefore, from (43)–(47), we have

A51 +A52 = o(1) as m → , (48)

similarly, we can have

A53 =
m−1


j=0

∫ s j+1,x

s j,x

(u,y)Xm(u)du = o(1) as m → . (49)

Therefore, from (48) and (49), we have

A5 = o(1) as m → , (50)

and proceeding similarly as in A5 , we can have

A6 = o(1) as n → . (51)

Also, using an inequality (see [4, Lemma 1])

|Pm(x)| �
(

2


)1/2

(1− x2)−1/2m−1/2, x ∈ (−1,1),

last three terms on the right-hand side of the equation (13) tend to zero as m,n →  .
Therefore, from (13), (14), (40), (41), (50), and (51), we have

Sm,n( f ,x,y) → s( f ,x,y) as m,n → . �
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