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POINTWISE CONVERGENCE OF THE DOUBLE FOURIER-LEGENDRE
SERIES OF FUNCTIONS OF GENERALIZED BOUNDED VARIATION

RAMESHBHAI KARSHANBHAI BERA™ AND BHIKHA LILA GHODADRA

Abstract. In this paper, we have studied the pointwise convergence of the double Fourier-Legen-
dre series of functions of the generalized bounded variation. In particular, we also have the
convergence of double Fourier-Legendre series of functions of (p,q)-bounded variation.

1. Preliminaries

The convergence of Fourier-Legendre series is useful in several areas of mathe-
matics, physics, and engineering. For example in Approximation Theory, Boundary
Value Problems, Quantum Mechanics, and Statistical Analysis. The Dirichlet-Jordan
theorem (see [8] or [14, p. 57]) asserts that the Fourier series of a 27 -periodic func-
tion f of bounded variation on [—7, 7] converges at each point and the convergence
is uniform on closed intervals of continuity of f. A similar theorem for the Fourier-
Legendre series of a function of bounded variation on 7 := [—1, 1] was proved by Hob-
son [6]. Many authors have studied pointwise convergence, rate of convergence, and
uniform convergence of Fouier-Legendre series of functions of certain classes (see,
e.g., [31, [4], [5], [10]). In this paper we will discuss pointwise convergence of double
Fourier-Legendre series of functions of the class (m®,nP)BV (P4 (12) (in particular, for
BV (12), BVE (12), (m®,nf)BV(12)).

Let P,(x) be the Legendre polynomial of degree n normalized so that P,(1) = 1.
If f is an integrable function on I := [—1,1], then the Fourier-Legendre series (see,
e.g., [11,p. 237, section 8.3]) of f is the series

3 a(f)P(x)
k=0

where

a(f) = <k+%) /jlf(t)Pk(t)dt, k=0,1,2,....

The ' partial sum of the Fourier-Legendre series of f, denoted by S, (f,x), is defined
as

Su(fox) =Y ar(f)P(x), n=0,1,2,...,
k=0
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which can be written as |
S0 = [ SR,
—1

where

=3 (k1) A L (P (OPa(t) = Pa(x) P (1)
e) = 3 (k45 ) AR or 0 ( )= )

DEFINITION 1. The (ordinary) oscillation of a function % : [a,b] — C over a
subinterval J of [a,b] is defined as

oscy (h,J) =sup{|h(t)—h(')|:t,t €J}.

In 1980, Shiba [12] introduced the following class ABV? of functions of p-A-
bounded variation.

DEFINITION 2. Given a function f : [a,b] — R, a sequence A = {A; };en of non-
decreasing of positive numbers such that Y, %k diverges and a real number p, 1 < p <

oo, we say that f € ABV?”[a,b] (thatis, f is of p-A-bounded variation over [a,b]) if

< oo,

& ftaw) ~ (o) }“ ’

VP/\(f7 [a7b]) :sup{ Afk

k=1

where the supremum is extended over all sequences {I;} of non-overlapping intervals
with I = [ag,by] C [a,b], k=1,...,n.

When A = {1} and p =1, the class is referred to as the class of functions of
bounded variation (BV) and we denote the variation of any f € BV by V(f,[a,b]).
When A = {n”}, 0 <o <1 and p =1, we denote this class by (n%)BV and the
variation for any f in this class by V,a(f,[a,b]). When A = {1}, the class is referred
to as the class of functions of p-bounded variation (BV?) (thatis, Wiener class) and we
denote the variation of any f € BV? by V,,(f,[a,b]). When A= {n”}, 0 <a <1, we
denote this class by (n*)BV? and the variation for any f in this class by Ve (f,[a,b]).

We note that if f is of p-A-bounded variation, then right-hand limit f (x4 0) and
left-hand limit f(x—0) exist at every point x of [a,b] (see [13, Theorem 2]). Also, M.
Hormozi et. al. [7, Lemma 2.2] proved the following lemma.

LEMMA 1. If f is of p- A-bounded variation, then

(1) Bli%{r VpA(fv (a,a+5]) =0= 511%1+ Vp/\(f7 [b_ svb))

(2) BIL%LVpA(f» la,a+8]) = w

i _ |f)=f(b-0
(3) Jim Von(f,[b—8,b)) = KR,
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We define, for x € [a,b],

(%) = 5 (F+0) + fx—0)).

Hobson [6] proved the following theorem concerning the pointwise convergence
of the Fourier-Legendre series of functions of bounded variation.

THEOREM 1. If f is of bounded variation on [—1,1], then its Fourier-Legendre
series converges to s(f,x) at each point x € (—1,1), i.e

Su(f,x) — s(f,x), as n— oo.

Also, in [3], we have derived the rate of convergence of the Fourier-Legendre se-
ries of functions belonging to (n*)BV class. In a particular case, we have the following
theorem.

THEOREM 2. If f € (n*)BV(I), for 0 < o0 < 1, then its Fourier-Legendre series
converges to s(f,x) at each point x € (—1,1).

In this paper, we extend above theorems for the convergence of double Fourier-
Legendre series of functions belonging to classes (m®,nP)BV (P4 (1% (in particular,
for the class BV(?49) (12), (m®,nP)BV(I?), (m® nP)BVP(I2)) by proving analogous
result to (1) of above Lemma. We need the following definitions and notations.

If f is an integrable function on /2, then the Fourier-Legendre series of f is the

series
NN a; i Pi(x)P(y)
j=0k=0

where

aji(f) = (j—l—%) <k+ %) /_11 /_llf(u,v)Pj(u)Pk(v)dudv, j,k=0,1,2,

is the (j,k)"* Fourier-Legendre coefficient of the function f.
The rectangular partial sums of the double Fourier-Legendre series are defined by

m n

Sma(f:%.) =X, ¥, ajPi(x)

j=0k=0

It is easy to show that

1 1
Sunlfox) = [ [ Fu)Kon (e (),

where K,,(x,u), K,(y,v) are in (1) as follows.
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DEFINITION 3. Let f be a real valued measurable function defined on the rect-
angle R := [a,b] X [c,d] and A = {A,};7_| and A’ = {4}, be non-decreasing se-
quences of positive numbers such that Y, ﬁ, > % diverges, and real numbers p and
g, 1 < p,q < oo, we say that f € (A,A')BVP9I(R) (that is, f is of (p,q)-(A,A')-
bounded variation over R) if

(1) f(-,c) € ABV?[a,b] and f(a,-) € ABV[c,d], and

(2) if £ and #, are the sets of finite collections of non-overlapping intervals
Ij = [aj,bj]7 j: 1727...,m, and Jk = [Ck,dk}, k= 1,2,...,1’1, in [a,b] and [C7d]
respectively, and f(I; x Jy) = f(aj,cx) — f(aj,dx) — f(bj,cx) + f(bj,dk), then

1/p

m n ' rla
ap [$1 (Z (f(l,,;mw) e o
k

S5\ j=17"1 \k=1
We denote the supremum in (2) by V, 4a/(f; [a,b], [c,d]).

When A = {m*} and A’ = {nP} for o, > 0 with ot + B < 1, we denote this
class by (m%*,nP)BV(P49) class in which o,f,p and g satisfies the conditions 0 <
oaqg+Pp<q, 1l —ap>0,and 1—Bq >0, and the variation for any f in this class
by Ve g (f[a,0],[c,d]). When A = N = {1} and p = g =1, the class is referred
to as the class of functions of bounded variation in the sense of Hardy and Krause
(f € BV (R)) and we denote the variation of any f € BVy by V(f,|a,b],[c.d]). When
A= {m*} and A’ = {nP} for a,f >0 with ¢ +B <1 and p =g =1, we refer
this class by (mo‘,nB)BV class and we denote the variation for any f in this class
by Vo 8(f,[a,bl,[c,d]). When A =A"= {1} and p = g, the class is referred to
as the class of functions of p-bounded variation in the sense of Hardy and Krause
(f € BVL(R)) and we denote the variation of any f € BV, by V,(f,[a,b],[c,d]).
When A=A’ = {1}, the class is referred to as the class of functions of (p,q)-bounded

variation in the sense of Hardy and Krause ( f € ng’q) (R)) and we denote the variation

ofany £ € BV by V, ,(f.a,b].[c,d)).

REMARK 1. If f € (A,A")BV(P9(R) then f is bounded over R. In fact, let
f € (A,A)BVP4(R). Then for any (x,y) € R, we have

FEN < 1F(0y) = fla,y) = f(x.c)+ fla, )|+ |f(x,¢) = fla,c)]
+1f(ay) = fla,0)[+|f(a,c)]

)!/ra (f () = flary) = flos.0) +f<a,c>4> .
,11/1/17

=|f(a,0)[+ (A

x,c) — f(a,c 1/p a,y) — fla,c)[7\
+()L1)l/p<f( ) )llf( ) )|p) +(Al/)l/q<|f( ,_Y) )L{f( ) )|q)
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X, A — .Vt Fla.c)an P\ P
=fwowummuﬂm<h<f(w (JQ%’*”<Jq) )
x,c)— fla,c 1/p a 1/q
+@Nm<fb)lfh)W) +<>W(V(”A,(")

< ()Ll)l/p(ll/)l/qvp/\g/\’ (fv [a7b]v [C»d]) + ()Ll)l/prA(f(WC)v [a7b])
+ (AN Von (f(a, ), lesd]) + | fayc)].

Thus f is bounded on R.

DEFINITION 4. The rectangular oscillation of a function f : [a,b] X [¢,d] — C
over a subrectangle J x K of [a,b] X [c,d] is defined as

OSC2(f7J X K) = sup |f(I/L,V) —f(u/7v) _f(uvv/) +f(u/,v/)|.

uu' €J; vy €K

Here we shall consider the class (A,A') BV where A = {m®} and A’ = {nP},
for o, > 0. Also we will prove (in Lemma 2) that if f(x,y) € (m* nP)BVP9 for
o, >0, ag+ Bp < g then all the four limits f (x+ 0,y £ 0) exist at every point (x,y).
We denote

S(f7x7y) = %[f(x+0,y+0)+f(x—07y+0)+f(x—|—07y—0)—|—f(x—0,y—0)],

flu,v) = f(x+0,y+0), if u>x,v>y,
Slu,w)— f(x—=0,y+0), if u<x,v>y,
Slu,w)— f(x+0,y—0), if u>x,v<y,
Sfluv)— f(x—=0,y—0), if u<x,v<y,
O (u,v) =< fu,y) — f(x+0,y), if u>x,v=y,
fluy) = f(x=0,y), if u<x,y=y,
Se,v) = f(x,y+0), if u=x,v>y,
fe,v) = flx,y—0), if u=x,v<y,
0, if (u,v) = (x,y),
and
9(u,v) = 9,v) — 9(x,) — (1), )

We will also denote x + @ and x — (Hx) by s;, and t;, respectively for x €

(—1,1), j=0,1,...,n, also denote intervals Im =[tjit1,0tj] and Jj =[5} ¢, Sj14)
for j=1,2,....n—1.

Throughout this paper, we write u < v if there exists a positive constant K, such
that u < Kv and K need not be the same at each occurrence.
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2. Main Theorem
Our main theorem is as follows.

THEOREM 3. Let f € (ma,nﬁ)BV(p’q)(Iz), 0<aq+PBp<qg, 1—ap>0,and
1—Bq>0. Then, for (x,y) € (—1,1) x (=1,1), we have Sy n(f,x,y) — s(f,x,y) in
Pringsheim sense as m,n — oo.

By putting o = 8 = 0 in Theorem 3, we get the following corollary for the class
of functions of (p,q)-bounded variation in the sense of Hardy and Krause.

COROLLARY 1. Let f € BV (12). Then, for (x,y) € (—1,1) x (—1,1), we
have Sy n(f,x,y) — s(f,x,y) in Pringsheim sense as m,n — oo,

Also, putting g = p and @ = 3 =0 in Theorem 3, we get the following corollary
for the class of functions of p-bounded variation in the sense of Hardy and Krause.

COROLLARY 2. Let f € BVY(I?). Then, for (x,y) € (—1,1) x (—1,1), we have
Sma(f,x,y) = s(f,x,y) in Pringsheim sense as m,n — oo.

At last, putting p = g = 1 in Theorem 3, we get the following corollary for the
class of functions of generalized bounded variation, which is a two-dimensional ana-
logue of Theorem 2.

COROLLARY 3. Let f € (m“mﬁ)BV(Iz), 0< a+pB < 1. Then, for (x,y) €
(—=1,1) x (=1,1), we have Sy (f,x,y) — s(f,x,y) in Pringsheim sense as m,n — co.

3. Lemmas
To prove main theorem, we require following lemmas.

LEMMA 2. If f € (m*,nPYBVP9(R) for o, >0, 0< aig+Bp < g, and every

(x0,y0) € I?, the four limits f (xo+0,y0+0) of f(x,y) as (x,y) — (x0,v0) and (x,y)
is in the corresponding open coordinate quadrant, exist.

Proof of Lemma 2. Our proof is similar to that of Theorem 7 of [2]. Suppose
flx,y) € (mo‘7n5)BV(p=‘1) (R), o, =0, ag+ Bp < g. Suppose also that there is a
point (xp,y0) € R such that f(x,y) does not have a limit as (x,y) — (xo,yo) within
an open coordinate quadrant with vertex (xop,vo). Without loss of generality, we may
assume that the quadrant is {(x,y) : xo <x < b,yo <y <d} =S, say.

Then, by Cauchy criterion (see, e.g., [9, Proposition 2.54]), there is an € > 0 such
that for every § > 0, there are points (x1,y1), (x},¥}) in SNSs(x0,y0) \ {(x0,y0)} such
that

|f(x1,1) = f(x1,01)] > 4de. (4)

Choose (s,1) € (x0,b) X (vo,d). Then, since f(x,7) and f(s,y) arein (m®)BV()([a,b])
and (nP)BV@([c,d]) respectively in each variable separately, limy,—, . f(x,¢) and
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limy_w0+ Sf(s,y) exist (see, e.g., [13, Theorem 2]). Therefore, as € > 0, by Cauchy
criterion, there are 81,0, > 0 such that §; < b —xq, 6, <d — yp, and

xo <x1,X] <X+ 8 = |f(x1,0) — f(x),0)] < &;
Yo <yiL,Y1 <yo+8& = |f(s,y1)— f(s,y])] <e.

Put 6 = min{d;, 8 }. Then, for this &, as above, there are points (x1,y;), (x},¥})
in SNSs(x0,0) \ {(x0,0)} such that (4) holds. Observe that

(x1,1), (¥1,¥1) € SN Ss(x0,0) \ { (x0,0)}
= [f(x1,0) = f(x1,0)| < & and [f(s,y1) = f(s,0})] <& 5)

Now, letting

P=f(s,t) = f(s,y1) — f(x1,2) + f(x1,31)
and

Q :f(SJ) _f(svy/l) _f(xllvt)+f(xllvy/l)»

in view of (4) and (5), we have

P = QI > |f(x1,y1) = fx, YD = [ (erst) = FL )] = 1f (s,31) = f(s,31)]

>4e—¢e—¢€e=2¢.

So, at least one |P| or |Q|, must exceed €. Hence renaming endpoints, we obtained a
rectangle, say, I} X J; := [x1,x}] X [y1,¥]] with xo <x; < x| <band yo <y; <y| <d,
for which |f (I} x J;)| > €.

Now, let (s,#) € (x0,x1) X (yo,y1). Then arguing as above, and now choosing
01 <x1—xp and &, <y —yo, we can obtain a rectangle, say, I X J, := [x2,x5] X [y2,¥}]
with xg < x2 < x5, <x; and yp <y <y < yi, for which |f(L, x J»)| > €. Note that
this construction gives I} NI, = 0 and J; NJ, = 0. Continuing in this way, we can form
a sequence {I, x J,} of rectangles in (xo,b) X (yo,d) such that the intervals I,’s are
disjoint, the intervals J,’s are disjoint, and that |f(I, x J,,)| > € for each n € N. But

then, as 0 < ga + pP < g, we have
1 IUERAl xJk\ rla
¥ 2

AT AN
><~,211_°‘< P ))

N 1 I/p
>e\ X | T

as N — oo, which is a contradiction as f(x,y) € (m® nP)BVP9(R). This completes
the proof of Lemma 2. [l

I/p

Z (Zfl < J)| )’7/’1 .

JlJ

I/p

TMz



112 R. K. BERA AND B. L. GHODADRA

LEMMA 3. If f is of (p,q)- (A, N')-bounded variation on [a,b] x [c,d] then

(a) Slil‘& Vonan (f5(a,a+ 8], [c,d]) = 0.

(b) 511%1+ Voagn' (fsla,a+ 6], [c,d]) =0, if f(x,-) is continuous at a point a.

(c) Sli%h Vpagn (f:la,bl,(c,c+6]) =0.

(d) BILI(I)I+ Voagn' (f[a,bl,[c,c+8]) =0, if f(-,y) is continuous at a point c.

(e) BIE(I)L Voagn (f;(a,a+ 6], (c,c+68]) = 0.

) 6111‘(1)1+ Voagn (fsla,a+6],[c,c+8]) =0, if f(x,y) is continuous at a point (a,c).

Proof of Lemma 3. Clearly, Vz a/(f, (a,a+8],[c,d]) > 0. Suppose that there is
€ > 0 such that

Vorgn (f:(a,a+8),[c,d]) > €, V8 > 0. 6)

Now, as f is of (p,q)-(A,A’)-bounded variation on [a,b] X [c,d], f is of p-A-
bounded variation on [a,b] for a fixed variable y then the right-hand limit f(x+0,-)
exists. Therefore, for m6,n6 € N, and given ¢ there exist 0y < 0 satisfies

M\ Ve g
0 1 1
f“f”<(zﬁ &g) e

for all subintervals I° C (a,a+ &).
Now, for this 8y and from (6), existence of disjoint rectangles I? X J;) C (a,a+
O X [e,d]: i=0,1,...,mg, j=0,1,2,... n9, my,no € N such that

/q
moy (2o [FUP < I\ "
— g > el
A (2 /11/' z¢€

i=1""

g

j=1
Now, as

1/ N\ 1/
f(I?XJ?)|<2|f(10,.)|<<%) p(%) 7

A nty 21 +1/p”

and as numerical inequalities (see [, p. 16]) for any positive numbers a,b, and p, we
have

2P(a?+bP)  for p>1,

= (a+b)’ <27(a? +b?) forp >0,
al 4+ bP for 0< p<1, ( ) ( ) P

(a+b)P < {
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we have
ii<§:ﬂ ><J())|q>p/q>gp
A Al -
=1 J=1 J
/ r/a r/a
moop [ Lo | fP < I moo [ o [ (I x 9 ep
D DR B o D e
Sr\A A S =1 Aj 2v/d

’ P
my o 1 ny |f(Il-0><JQ)\q m 1 noy |f(Il-0><JQ)\‘1
= X+t X\ X Xz e
=1 i=m+1 L\ Jj=1 j =17\ =l 11 j
ep
> &
~ op/q
n 0 0 pla 0 r/q
Lo Q<IN W[ f(IxT)
= 2 1. 2 A EW 2 A
t=m6+1 L\ j=1 ] i=1"" j=n6+1 j
/ pla
NER YR
20/4 A A = /1;
w1 (" o (m e
i "V
= X A ) Y ZI by Y
i=mp+1 7\ j=1 i=1 j=ny+1 J
eP eb eb eb 3eP

> = = _
“oplg  2ptl 2plg 22+p/g  p+l

Now again, suppose all subintervals 1° C (ag,a + 8] then removing the part
(ag,a+ 8], we proceed similarly for m,n} € N, and given ¢ there exist §; < J satis-

fies
AN\YP NV ¢
I M 21 _c
o< () (3w

for all subintervals I' C (a,a+ 8], a+ 8 < ap. Now again, for this §; and from
(6), existence of disjoint rectangles I} x J} (a,a+ 01 x[e,d]: i=0,1,....my, j=
0,1,2,...,n1, my,n; €N thereis a collection of rectangles (I; xJ; : i=m,...,my; j=
0,1,...,n) satisfy

1 1 |f( Jl)‘ Pl 1 1 |f(]l Jl)‘q P/a P P
z 1 u X m o n L x J: € €

R DLRECIE S N T
i=m)+1 Jj=1 J =17\ j=n+1 j

3P
T ooptl”
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Similarly, we can constuct an finite families of disjoint rectangles inductively on re-
mainig rectangle, so that

n k k rla k k r/d
n W1 [ & U <IN W w | f(IF < TN 3neP
DRI B NS P (D et B

k=0 | i=m} +1 j=1 j =170\ j=n 41 J

forall n. It follows that f ¢ (A, A')BV (79 ([a,b] x [c,d]), a contradiction. Thus, it must
be V(f,(a,a+d],[c,d]) — 0 as & — 0. This completes the proof of (a). Similarly, one
can prove (c) and (e).

Now, suppose Vs 4a/(f; (a,a+8],[c,d]) — 0 as § — 0. Then for any € > 0 there
is 8 > 0 such that

Vongn' (f,(@.a+ &), [c,d]) <& V& <§. 7

We will prove that condition (b) holds. Given any family {; x J;}}"} ;_; of [a,a+
O] x [c,d], also an interval I; which contain a, denoting it by I, we have

m n pla 1 noq pla
>3 (ZA,IfliH) =E<zf|f<zi/x1j>|q>

By our assumption f(x,-) is continuous at point «, then for given € > 0 there is 0 <
d1 < Oy satisfying

fla) = fla+81.)] < ()P (4)19) /27 o',

Now, decomposing Iy = [a,a+ 8] = [a,a+ 8] U[a+ 81,a+ &) := I} UI;, we have

pla r/q
1 (&1 op(1+1/q) noq
Z(Z W|f(1i'><1j)|q> gT[(Zﬁf(lil’x‘lj)q>
\j=1"%j i j=17
nq pla
+<2 —,f(l,-"?xf,»‘f) } ©)
=17

Now, as [£(I} x J;)| <2 sup |f(a,)— fla+61,)] < (A)/P(2))V7) & /21 ant e,
yE[c,d]
we have
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Also from (7), the second terms of right hand side of an inequality (8) and (9)
becomes

ap(1+1/g) (0 1 ) rla rla
£ _ 2 N
)Li’ j;lxj/|f(lz ><‘Ij)| + z )L ZA/|f(I XJ)|

i=1,iAi’

<KVh, (fo(a,a+ 8], [c.d]) <Ke?,

where K is some positive constant. Since € is arbitrary, condition (b) holds true. Sim-
ilarly, one can prove (d) and (f). U

We also recall the partial summation formulas for single and double sequences,
which are as follows.

LEMMA 4. Consider n € N. For j=0,1,...,n, let aj and b; be real numbers.
n
Let Bj= 3 by for j=0,1,2,...,n, and B,;1 =0. Then
k=j

Y ajb; Z( —aj_1)Bj+ayB. (10)
j=1 j=1

J
Also, for Bj = ¥, by, we have
k=0

n n—1
N ajb; =Y (aj—aji1)Bj+ anBy. (11
Jj=0 Jj=0

LEMMA 5. Consider (m,n) € N?.Let ajr and bjy be real numbers, and let Bj j =

/2 k,zkb K and By i1 p41 = Bjpy1 = Bpy1x. =0, for j=0,1,...,m, k=0,1,...,n,
J=jk'=

m n m n
zzaj,kbj,k—ZZ(ajk ajg1—aj-1x+aj-14-1) Bj
j j=lk=1
m n
+ Y (ajo—aj-10)Bj1+ Y, (aox — aox—1)Bix +aooBi 1.
j= k=1

—

4. Proof of the main Theorem

Proof of Theorem 3. For any m,n € N, x,y € (—1,1), and using the facts (see [4,
Lemma 1])

1 x 1 1
/ Ko(x,1)di = ——EP( X)Pyy1(x) and LlKn(x7t)dt: S+ 3PP (), (12)
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we have the representation (see [4, Proof of Theorem 1])
Sma(f.x,y) —s(f,x,y)
=[] Ko ity s(7.)
— [ 11 [ 11 0 (ut,v)Kon (6, 1)Ko (3, v)dudv + %[f(x—i— 0,y+0) — f(x+0,y—0)
—f(x=0,y+0) + f(x =0,y = 0)]Pu(x) Pt (X) P () Pas1 (v) — %(f(xﬂLO,erO)

+f(x+0,y—0)—f(x—07y+0)—f(x—O,y—O))Pm(x)PmH(x)—%(f(x+0,y+0)
—f(x+0,y=0)+ f(x—0,y+0) = f(x =0,y = 0)) Pa(y) Pry-1(y)- (13)

For fixed x and y, for simplicity denote K,(x,u) and K,(y,v) by X, (u) and Y,(v)
respectively, and using notation as in (3), we decompose the double integral as

/ / O (14, v) X (u) Y, (v)dudv
m—1n—1
<; —0 k= o/ / +// +/ /+//) Xon (1) Yy (v)dudv
+LILI¢(u,y)Xm dudv+/ / & (2, V)Xo (1) Y, (v)dudy

=A1+Ar+...+As+ Ag, say. (14)

First decomposing A, we have
—1n—1
2 2 {/ / (u,v) = g(tjx,v) — 8(ustiy) + 8t xsthy)
j=0 k=0

+/ /1 (u,1ky) — 8(tj st y) +/ /1 8(tjxv) = 8t s 1ky))

+/ [ s t,mzky)}x ()Y, (v)dudv
k.y
=Ai+Ap+Ai3+ Ay, say. (15)

Now for m > 2, j=1,2,...,m— 1, and for fixed x € (—1,1), using an inequality (see

3, 3.12)])
4+/2m 1 m
| ateyar < T e < G e (16)

Jx

and an inequality (see [4, Lemma 2])

S1,x 4

fx
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we proceed as follows

m—1n—1
IE / /1 (1,v) = g(t10v) — 8o iey) + 8t t1y)) X () Yo (v) iy
Jj=0 k=0
ln 1
/ / O(1j0,9) = O (1, 15y) + O (8,00 1y) [ X () [ Yo (v) | il
j= Ok 0 I
Vm \Vn
< 08C2( @, 1, I y) — - . (18)
;S?sz?) T GA D (m— )V (k+ 1) (n— k)12
Also, defining
.y
Riy={ Yu(v)dv for k=1,2,....,n—1 and R, =0, (19)

and using partial summation formula (see (10) of Lemma 4) with aq; = g(u,tky) —
8(tjxtry) and by = (R, , — R, ), and as ap = 0, we have

n—1
An—z / 3, (8(0t) = 800 1k3)) (R = R o1
Ljx k=

m—1 —
= 2/1 (2( gu,try) — 8t try) — 8, tk1y) + 8(tj s k1)) (Rip — Ry, )
Jj=0"14ix \ k=1
+ (g(u,y) — &(tj.0,7)) Ry, — R;,n)>Xm(u)du~

2/ 2( 8(utiy) = g(tx,thy) — 8w ti1,y) + 8 (1, th—1,y)) Ry Xon ()l
J: :

as g(u,y) —g(tjr,y) =0 by (3),and as R;, , = 0 by (19). Since

g(utiy) —&(tj o, tey) —8(uti—1y) + &(tj s tr—1.,y)
= O(utry) — O(tjxtiy) — O, ti—1y) + O(tjx,ti—1,y)  (20)
and for fixed n > 2 and —1 <t <y < 1, we have an inequality (see [4, Lemma 3])

! 6
/4 (Vv < n(y—t)
1 1

tk‘y 1
R, = / Y,(v)dv| < = =
|Rien ‘ B0 " —1ry) n(y_ (y_k(l:y))) k(1+y)

Now, using (16), (20), and (21), we have

(l _y2)—1/2 <

=

1
n(y—t)

1
.1
<<k()

ln 1
|Ap| < / (14,11 ) = O (1 xs ey = O (st 1,y)F 9 (8l 1) | [RY | [ X () | e
Jj= O k=1

<35 Gk \/—OSCz( i Tiy). (22)
Jj=0 k=1
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Since Aj3 is symmetric to Ay, defining
1ix
Rjm= /" Xp(u)du, for j=1,2,...,m—1 and Ry, =0, (23)
—1

Wwe can prove

\/_
A —_— Li 1,1 y). 24
| 13| < ,21 ]{2‘6 k+l mosc2(¢7 Jj—1, k,y) ( )

Now, from (19), (23), using double summation formula (see Lemma 5) with a;; =
8(tjtky) and bjj = (Rjm _Rj+1.,m)(R;<,n _R§<+1,n) ;and as agx =ajo=apo =0, we
have

1n 1 1 x Ty
Ay = 2 / / tj)mtk,y m( ) n(v)dudv
Jj=0 k=0 Titix Y41,y

I
M|

2 g(tj.,thk,y)(R Jm RJ+1,m)(Rk,n _R;{+l,n)
pa

IS ~
[
_ =

=
|
—_ =

(g(tj.,x»tk,y) —8(tjx,tim1y) —8(tj—10tky) + g(tjfl,xatk—l,y)) Rj,mR;wp
1k

~.
Il
Il

MR

Therefore, from (21) and putting u =¢; 1  in (20), we have

m—1n—
Al < Y 2 10 ky) = O (11 s Thy) = (s th1,y) + O (15— 1 s 1 )[R | | R
j=1lk=
m—1n—1
<Y 2 —OSC2 (0,113 Tk—1,y)- (25)
j=1lk=

Therefore, from (15), (18), (22), (24), and (25), we have

\/mn
A I'X7I
1<<J§:0k§;) G+ D) (k+1)(m—j)/2(n— k)1/20502(¢’ o liy)

[m/2] 1 m—1
<<[ —+ Y ¢]

j=0 Jj+1 j=[m/2]+1 (j+ 1)(m—j)1/2

2 n-l Jn
y i ——————— | osca (@, L, i)
L:o k+1 k=[g§]+1 (k""l)(n_k)l/z] ' '

/2] n/2] 1 me1 (/2] —
- '74_ 2 2 = 1/2
S S GHDE+D) S G+ Dk D (m = )

m/2]  n—1

\/ﬁ
* 2 2 (j—|—1)(k—i—1)(n—k)1/2

J=0 k=[n/2]+1
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m—1 n—1 M
+ aI')mI.
e TG 1><m—j>1/2<n—k>1/2] el ledo)
=A+B+C+D, say. (26)

Now, applying Holder’s inequality with given p, ¢ and taking r, s such that 1/p+
1/r=1,1/q+1/s=1, we have

w2 (/2 .
AT 2T\ & e e i)

w2 me s
< 71 ANl /a aI'X7I. 1
2 G0 \ & e s 0O i) § wr e

w2 Va /s
- I.x,l q -
kg() (k+1)1/q(OSC2(¢7 s k,}’)) ,Zf) (k+1)1+1/‘1

n

1/q
< 2:‘6 jH+ DY (Zﬁ (k+1)1/a (°S°2(¢Jj7xalk,y>)‘f>
& 1 n 1 p/q 1/p
< iyl q
Zo(f'ﬂ)”p (%(kﬂ)l/q(os”(q) i lw)))

m 1/r
(Borir)
1/p

rla
< 1 z 1
< (ZB (j+1)lr (,;6 (k-l—l)l/q(OSCZ((P:Ij,XaIk,y))q) ) : @27

Now, first fixing j, we define

~
—~

[r]-1 1
ajo=0,for t €[0,1) and a;, = Z ———(0sca (9,1 x, 11 )7, fort € [I,n+1].
' T A (+1)B e

(28)

Now, as 1 — g >0 = - > 3, and using partial summation formula (see (11) of

1
q
Lemma 4), we have

z": 1 (osca (9, I7x,1ky B zn: o
& (k+1)1/a=h (k+1)P B ~ (k+1) 1/q g Aj 1 —Ajk
— -~ 1
_ZB l/q B~ (k+2)i/aB )ikt
1
" (29)

(n+ 1)i/a—Binst
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Since a;, is non-decreasing on ¢ € [k+ 1,k+ 2] for fixed j and k € [0,n— 1], we have

1ol 1 1 nl 2
(1/q—B) kgo <<k+ 1)i/ab <k+2>1/qﬁ> Gt %"“‘“/kﬂ RS R
n+1 a;
Jit
g/l g G0)

Now, changing variable 7 by "H ,wehavet -1 <= s—n+1,t = n+1 <= s—
1,and 4 = (—1)%5L. Therefore

n+1 aj; g n+1 s 1+1/q-B n+1 4
/1 t1+1/9-P t_/l G\ 2 S
1 k+2 1
B (n+ 1)1/4—!3 k%/kﬂ ] (sl—l/q+ﬁ> ds

nl/q B Z k+1kUs+B s 31

Therefore, from (29), (30), and (31), we have

n
1
2 m(osc2(¢71j,)ﬁlk,y))q < aj7n+1. (32)
k=0
Similarly, for fixed n, defining
[t]_l 1 /
bom =0 for t € [O,l) and bt7n = Z (aj7n+1)17 q fort e [l,m—l— l],

2 G e

we can prove the following inequality

. 1 . | . p/q
2 G\ e 00 dinio)

J
- 1 i rla 1 L 1
b Z‘o Grom @) < Z‘l el O3

J

Now, by definition of a; 1 and b, ,, we have

COR

W(aﬂmﬂ)l’/‘f

=0
=

n rla
= 7 +1 ( +1) (osc2 ¢71j’7xall,y))q>
~

Jj'=

vl
Ve (00 = ) 1) (34)
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Therefore, from (27), (33), and (34), we have

1/p
A< (ml/l’a 2‘1 jl/r+ocVZm°‘7qn/3 <¢’[ - j 7x] ,[—l,y])>
j=

=o0(l) as m — oo, (35)

Also, we have the following inequality

S (e
e GHDm =2 " m S\ om
U (med TR m—j om—j—1
_j:1 m m m

m—1 mT; 1
<Y | " xVax< | xVax=2.  (36)
m—j—1 0

Using (36) and Holder’s inequality with 1/g+ 1/s= 1, we have

m—1 \/ﬁ [n/2] 1
B = Ii I
2 D= & ey el )
= 1
<<k§6 (k+ 1)1 -1/a+1/4 0s¢2(9, [—1,4], i)

1/q 1/s
n n 1
< (kgf) Py oscz((I);[—l,x],Ik,y))q) (%m)

n 1/‘1
D (osca (¢, [—1,x], Iy, ))‘1>
= ( k+1 (k+1)1/a Y

<
s Vo
nl/’i B 2 k_|_1 1/s+B far (Z+I)B (0502((})7[_17)6]7117))))[1
1/q
! (1+y)
< nl/q B 2 (k4 1)1/s+B pmaqnﬁ <¢ [—1,x], [ T k1 J]))
=o0(l) as n — oo, 37)
Since C is symmetric to B, we can prove
C:O(l) as m — oo, (38)

Also, for j € [[2]+1,m—1] and k € [[4]+ 1,n— 1], osc2(, 1} x,Iy) — O as m,n —
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oo, we have
m—1 n—1 mn
. ' v 0sc2(¢, L v, I )
j:[mE/:z]ﬂk:[n/z]ﬂ 4+ Dk+1)(m=j) 2 (n—k)/? o
m—1 n—1 1
- 0sC2 (9,1}, Iy.y)

o ka1 202 — )2 (n — k)12
J=lm/2)+1k=[n/2]+1 m' 212 (m — j)V2(n—k)1/2
Therefore, from (26), (35), (37), (38), and (39), we have

Al < A+B+C+D=0o(l) as m,n — eo.

=o(1)

=o(1l) as m,n — oo.

Similar way, we can prove

ln 1
/ g(u,v) Xy (u)Y,(v)dudv = o(1) as m,n — oo,
j= 01< 0 Iy

ln 1
/ g(u,v) Xy (u)Y,(v)dudv = o(1) as m,n — oo,
j= Ok 0 Ty

and

Ay = 2 2/ g(u,v) X ()Y, (v)dudv = o(1) as m,n — eo.

=0 k=0 Jky

Now, as f_ll Y,(v)dv =1 by (12), and decomposing the integral on As, we have

1,1
As :/_1/_lq)(my)Xm(u)Yn(v)dudv

= /_11¢(u,y)X

m—1 fjx m—1
=3 [ 0 =0 Xl 3 [ 00700000 )

j=0/tjt1a Lt

= As; + A5y + As3, say.
Now, from (16), (17), (36) and using Holder’s inequality, we first have

Asi| < / 0(0:3) = 0(tj0) X 0]
Tit1x

Z %Oscl ((P('?y)’ [tj-‘rl.,mtj,xD

(39)

(40)

(41)

(42)

(43)
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[m/2] 1
< 2 (j+1)= 1/p2+1/p? 0sC1 (¢ (), [tj1.0:2).x])
m—1 1
+ 2 7,0501(¢('7y)7[thrl,mtj,x])

j=lmy2)+1 V/m(m—j)

[m/2] 1 1/p
< (,Sf) W(OSQ (0(,y), [fj+1,x,tj,x}))”>

m—1 1

+ 2 —0sC1 (@ (-, ¥), [tjt1.052)4))- (44)
=21 Vm(m— j)

Now, defining

-1 1
r_ r_ ) AN
a, =0 for t €[0,1) and «, Zf) (H_l)a(oscl(q)( ), Lix))P for t € [1,m+1].

Then, proceeding as in (28) to (31), we have

m—1

S, G O 90 bt

I+1/p—«a 5": 1 J
(m+ D) & (G 1)1 rra ]

=o(l) as m — oo, (45)

~

Also,

m—1 1
WOSCI((})(.J% [tj+l,x7tj.,XD = 0(1) as m — oo. (46)
j=[m/2]+1

Now, using partial summation formula (see (10) of Lemma 4) with a; = ¢(¢;+,y),
[j.x
bj= [ Xn(u)du and as ap =0, we have

Tit1x

ljx
Asy = 2 q)(tj.,x»y) Xm(u)du
j=1 Tit1x
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Now, using Holder’s inequality and in view of (21), we have

Jj(1+x)

/:_T Xon(u)du

m—1

Asa| < X 10(t7y) = 9(tj-1.0))]

Jj=1

m—1
1
< _.OSCI(¢('7y)7[tj.,xatjfl,x])
=17

m—1
1
< 0osc V)41t B
part (j+l)1_l/p2+l/p2 l(q)( y) [J+1, jXD
m—1 1 1/p
< —(osc Y [tic1x,tix]))? . 47)
3 G e 06 st
Therefore, from (43)—(47), we have
Asi +Asy =o0(1) as m — oo, (43)
similarly, we can have
m—1 Sj+1x
Asz= ), / O (u,9)Xpn(u)du = o(1) as m — oo. (49)
j:() Sjx

Therefore, from (48) and (49), we have

As=o0(1) as m — oo, (50)
and proceeding similarly as in As, we can have

Ag=o0(l) as n— oo. (51)

Also, using an inequality (see [4, Lemma 1])

1/2
[P ()] < (%) (1=x)""Pm 12, xe (—1,1),

last three terms on the right-hand side of the equation (13) tend to zero as m,n — oo.
Therefore, from (13), (14), (40), (41), (50), and (51), we have

Sm7n(f7xay) —>s(f,x7y) as m,n — oo, [
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