POINTWISE CONVERGENCE OF THE DOUBLE FOURIER-LEGENDRE SERIES OF FUNCTIONS OF GENERALIZED BOUNDED VARIATION

RAMESHBHAI KARSHANBHAI BERA* AND BHIKHA LILA GHODADRA

Abstract. In this paper, we have studied the pointwise convergence of the double Fourier-Legendre series of functions of the generalized bounded variation. In particular, we also have the convergence of double Fourier-Legendre series of functions of (p,q)-bounded variation.

1. Preliminaries

The convergence of Fourier-Legendre series is useful in several areas of mathematics, physics, and engineering. For example in Approximation Theory, Boundary Value Problems, Quantum Mechanics, and Statistical Analysis. The Dirichlet-Jordan theorem (see [8] or [14, p. 57]) asserts that the Fourier series of a 2π -periodic function f of bounded variation on $[-\pi,\pi]$ converges at each point and the convergence is uniform on closed intervals of continuity of f. A similar theorem for the Fourier-Legendre series of a function of bounded variation on I := [-1,1] was proved by Hobson [6]. Many authors have studied pointwise convergence, rate of convergence, and uniform convergence of Fouier-Legendre series of functions of certain classes (see, e.g., [3], [4], [5], [10]). In this paper we will discuss pointwise convergence of double Fourier-Legendre series of functions of the class $(m^{\alpha}, n^{\beta})BV^{(p,q)}(I^2)$ (in particular, for $BV_{H}^{(p,q)}(I^2)$, $BV_{H}^{p}(I^2)$, $(m^{\alpha}, n^{\beta})BV(I^2)$).

Let $P_n(x)$ be the Legendre polynomial of degree *n* normalized so that $P_n(1) = 1$. If *f* is an integrable function on I := [-1,1], then the Fourier-Legendre series (see, e.g., [11, p. 237, section 8.3]) of *f* is the series

$$\sum_{k=0}^{\infty} a_k(f) P_k(x)$$

where

$$a_k(f) = \left(k + \frac{1}{2}\right) \int_{-1}^{1} f(t) P_k(t) dt, \ k = 0, 1, 2, \dots$$

The n^{th} partial sum of the Fourier-Legendre series of f, denoted by $S_n(f,x)$, is defined as

$$S_n(f,x) = \sum_{k=0}^n a_k(f) P_k(x), \quad n = 0, 1, 2, \dots,$$

* Corresponding author.

Mathematics subject classification (2020): 42C10.

Keywords and phrases: Fourier-Legendre series, pointwise convergence, generalized bounded variation, bounded variation.

which can be written as

$$S_n(f,x) = \int_{-1}^1 f(t) K_n(x,t) dt$$

where

$$K_n(x,t) = \sum_{k=0}^n \left(k + \frac{1}{2}\right) P_k(x) P_k(t) \text{ or } \frac{n+1}{2} \left(\frac{P_{n+1}(x) P_n(t) - P_n(x) P_{n+1}(t)}{x-t}\right).$$
(1)

DEFINITION 1. The (ordinary) oscillation of a function $h : [a,b] \to \mathbb{C}$ over a subinterval J of [a,b] is defined as

$$\operatorname{osc}_{1}(h, J) = \sup\{|h(t) - h(t')| : t, t' \in J\}.$$

In 1980, Shiba [12] introduced the following class ΛBV^p of functions of $p-\Lambda$ -bounded variation.

DEFINITION 2. Given a function $f : [a,b] \to \mathbb{R}$, a sequence $\Lambda = {\lambda_k}_{k \in \mathbb{N}}$ of nondecreasing of positive numbers such that $\sum \frac{1}{\lambda_k}$ diverges and a real number p, $1 \le p < \infty$, we say that $f \in \Lambda BV^p[a,b]$ (that is, f is of p- Λ -bounded variation over [a,b]) if

$$V_{p\Lambda}(f,[a,b]) = \sup\left\{\sum_{k=1}^{n} \frac{|f(a_k) - f(b_k)|^p}{\lambda_k}\right\}^{1/p} < \infty,$$

where the supremum is extended over all sequences $\{I_k\}$ of non-overlapping intervals with $I_k = [a_k, b_k] \subset [a, b], k = 1, ..., n$.

When $\Lambda = \{1\}$ and p = 1, the class is referred to as the class of functions of bounded variation (BV) and we denote the variation of any $f \in BV$ by V(f, [a, b]). When $\Lambda = \{n^{\alpha}\}$, $0 < \alpha < 1$ and p = 1, we denote this class by $(n^{\alpha})BV$ and the variation for any f in this class by $V_{n^{\alpha}}(f, [a, b])$. When $\Lambda = \{1\}$, the class is referred to as the class of functions of p-bounded variation (BV^p) (that is, Wiener class) and we denote the variation of any $f \in BV^{p}$ by $V_{p}(f, [a, b])$. When $\Lambda = \{n^{\alpha}\}$, $0 < \alpha < 1$, we denote this class by $(n^{\alpha})BV^{p}$ and the variation for any f in this class by $V_{nn^{\alpha}}(f, [a, b])$.

We note that if f is of p- Λ -bounded variation, then right-hand limit f(x+0) and left-hand limit f(x-0) exist at every point x of [a,b] (see [13, Theorem 2]). Also, M. Hormozi et. al. [7, Lemma 2.2] proved the following lemma.

LEMMA 1. If f is of p- Λ -bounded variation, then

(1)
$$\lim_{\delta \to 0^+} V_{p\Lambda}(f, (a, a + \delta]) = 0 = \lim_{\delta \to 0^+} V_{p\Lambda}(f, [b - \delta, b))$$

(2)
$$\lim_{\delta \to 0^+} V_{p\Lambda}(f, [a, a + \delta]) = \frac{|f(a) - f(a + 0)|}{\lambda_1^{1/p}}$$

(3)
$$\lim_{\delta \to 0^+} V_{p\Lambda}(f, [b - \delta, b]) = \frac{|f(b) - f(b - 0)|}{\lambda_1^{1/p}}$$

We define, for $x \in [a, b]$,

$$s(f,x) = \frac{1}{2}(f(x+0) + f(x-0)).$$

Hobson [6] proved the following theorem concerning the pointwise convergence of the Fourier-Legendre series of functions of bounded variation.

THEOREM 1. If f is of bounded variation on [-1,1], then its Fourier-Legendre series converges to s(f,x) at each point $x \in (-1,1)$, i.e.,

$$S_n(f,x) \to s(f,x), as n \to \infty.$$

Also, in [3], we have derived the rate of convergence of the Fourier-Legendre series of functions belonging to (n^{α}) BV class. In a particular case, we have the following theorem.

THEOREM 2. If $f \in (n^{\alpha})$ BV(I), for $0 < \alpha < 1$, then its Fourier-Legendre series converges to s(f,x) at each point $x \in (-1,1)$.

In this paper, we extend above theorems for the convergence of double Fourier-Legendre series of functions belonging to classes $(m^{\alpha}, n^{\beta})BV^{(p,q)}(I^2)$ (in particular, for the class $BV^{(p,q)}(I^2)$, $(m^{\alpha}, n^{\beta})BV(I^2)$, $(m^{\alpha}, n^{\beta})BV^p(I^2)$) by proving analogous result to (1) of above Lemma. We need the following definitions and notations.

If f is an integrable function on I^2 , then the Fourier-Legendre series of f is the series

$$\sum_{j=0}^{\infty}\sum_{k=0}^{\infty}a_{j,k}P_j(x)P_k(y),$$

where

$$a_{j,k}(f) = \left(j + \frac{1}{2}\right) \left(k + \frac{1}{2}\right) \int_{-1}^{1} \int_{-1}^{1} f(u, v) P_j(u) P_k(v) du dv, \quad j, k = 0, 1, 2, \dots,$$

is the $(j,k)^{th}$ Fourier-Legendre coefficient of the function f.

The rectangular partial sums of the double Fourier-Legendre series are defined by

$$S_{m,n}(f,x,y) = \sum_{j=0}^{m} \sum_{k=0}^{n} a_{j,k} P_j(x) P_k(y).$$

It is easy to show that

$$S_{m,n}(f,x,y) = \int_{-1}^{1} \int_{-1}^{1} f(u,v) K_m(x,u) K_n(y,v) du dv,$$

where $K_m(x, u)$, $K_n(y, v)$ are in (1) as follows.

DEFINITION 3. Let f be a real valued measurable function defined on the rectangle $R := [a,b] \times [c,d]$ and $\Lambda = \{\lambda_n\}_{n=1}^{\infty}$ and $\Lambda' = \{\lambda'_n\}_{n=1}^{\infty}$ be non-decreasing sequences of positive numbers such that $\sum \frac{1}{\lambda_n}$, $\sum \frac{1}{\lambda'_n}$ diverges, and real numbers p and q, $1 \leq p, q < \infty$, we say that $f \in (\Lambda, \Lambda') \text{BV}^{(p,q)}(R)$ (that is, f is of $(p,q) \cdot (\Lambda, \Lambda')$ -bounded variation over R) if

- (1) $f(\cdot,c) \in \Lambda BV^p[a,b]$ and $f(a,\cdot) \in \Lambda' BV^q[c,d]$, and
- (2) if \mathscr{I}_1 and \mathscr{I}_2 are the sets of finite collections of non-overlapping intervals $I_j = [a_j, b_j], j = 1, 2, ..., m$, and $J_k = [c_k, d_k], k = 1, 2, ..., n$, in [a, b] and [c, d] respectively, and $f(I_j \times J_k) = f(a_j, c_k) f(a_j, d_k) f(b_j, c_k) + f(b_j, d_k)$, then

$$\sup_{\mathscr{I}_1,\mathscr{I}_2} \left(\sum_{j=1}^m \frac{1}{\lambda_j} \left(\sum_{k=1}^n \frac{(|f(I_j \times J_k)|)^q}{\lambda'_k} \right)^{p/q} \right)^{1/p} < \infty.$$
(2)

We denote the supremum in (2) by $V_{p\Lambda,q\Lambda'}(f,[a,b],[c,d])$.

When $\Lambda = \{m^{\alpha}\}$ and $\Lambda' = \{n^{\beta}\}$ for $\alpha, \beta \ge 0$ with $\alpha + \beta \le 1$, we denote this class by $(m^{\alpha}, n^{\beta}) BV^{(p,q)}$ class in which α, β, p and q satisfies the conditions $0 \le \alpha q + \beta p \le q$, $1 - \alpha p \ge 0$, and $1 - \beta q \ge 0$, and the variation for any f in this class by $V_{pm^{\alpha},qn^{\beta}}(f, [a,b], [c,d])$. When $\Lambda = \Lambda' = \{1\}$ and p = q = 1, the class is referred to as the class of functions of bounded variation in the sense of Hardy and Krause $(f \in BV_H(R))$ and we denote the variation of any $f \in BV_H$ by V(f, [a,b], [c,d]). When $\Lambda = \{m^{\alpha}\}$ and $\Lambda' = \{n^{\beta}\}$ for $\alpha, \beta \ge 0$ with $\alpha + \beta \le 1$ and p = q = 1, we refer this class by $(m^{\alpha}, n^{\beta}) BV$ class and we denote the variation for any f in this class by $V_{m^{\alpha}, n^{\beta}}(f, [a,b], [c,d])$. When $\Lambda = \Lambda' = \{1\}$ and p = q, the class is referred to as the class of functions of p-bounded variation in the sense of Hardy and Krause $(f \in BV_H^p(R))$ and we denote the variation of any $f \in BV_H^p$ by $V_p(f, [a,b], [c,d])$. When $\Lambda = \Lambda' = \{1\}$ and p = q, the class is referred to as the class of functions of p-bounded variation in the sense of Hardy and Krause $(f \in BV_H^p(R))$ and we denote the variation of any $f \in BV_H^p$ by $V_p(f, [a,b], [c,d])$. When $\Lambda = \Lambda' = \{1\}$, the class is referred to as the class of (p,q)-bounded variation in the sense of Hardy and Krause $(f \in BV_H^{(p,q)}(R))$ and we denote the variation of any $f \in BV_H^{(p,q)}(R)$ and we denote the variation of any $f \in BV_H^{(p,q)}(R)$ and we denote the variation of (p,q)-bounded variation in the sense of Hardy and Krause $(f \in BV_H^{(p,q)}(R))$ and we denote the variation $(f \in BV_H^{(p,q)}(R))$ and we denote the variation of any $f \in BV_H^{(p,q)}(R)$ by $V_{p,q}(f, [a,b], [c,d])$.

REMARK 1. If $f \in (\Lambda, \Lambda') BV^{(p,q)}(R)$ then f is bounded over R. In fact, let $f \in (\Lambda, \Lambda') BV^{(p,q)}(R)$. Then for any $(x, y) \in R$, we have

$$\begin{split} |f(x,y)| &\leqslant |f(x,y) - f(a,y) - f(x,c) + f(a,c)| + |f(x,c) - f(a,c)| \\ &+ |f(a,y) - f(a,c)| + |f(a,c)| \\ &= |f(a,c)| + (\lambda_1')^{1/pq} \left(\frac{|f(x,y) - f(a,y) - f(x,c) + f(a,c)|^q}{\lambda_1'^{1/p}} \right)^{1/q} \\ &+ (\lambda_1)^{1/p} \left(\frac{|f(x,c) - f(a,c)|^p}{\lambda_1} \right)^{1/p} + (\lambda_1')^{1/q} \left(\frac{|f(a,y) - f(a,c)|^q}{\lambda_1'} \right)^{1/q} \end{split}$$

$$= |f(a,c)| + (\lambda_1)^{1/p} (\lambda_1')^{1/q} \left(\frac{1}{\lambda_1} \left(\frac{|f(x,y) - f(a,y) - f(x,c) + f(a,c)|^q}{\lambda_1'} \right)^{p/q} \right)^{1/p} \\ + (\lambda_1)^{1/p} \left(\frac{|f(x,c) - f(a,c)|^p}{\lambda_1} \right)^{1/p} + (\lambda_1')^{1/q} \left(\frac{|f(a,y) - f(a,c)|^q}{\lambda_1'} \right)^{1/q} \\ \leqslant (\lambda_1)^{1/p} (\lambda_1')^{1/q} V_{p\Lambda,q\Lambda'}(f,[a,b],[c,d]) + (\lambda_1)^{1/p} V_{p\Lambda}(f(\cdot,c),[a,b]) \\ + (\lambda_1')^{1/q} V_{q\Lambda'}(f(a,\cdot),[c,d]) + |f(a,c)|.$$

Thus f is bounded on R.

DEFINITION 4. The rectangular oscillation of a function $f : [a,b] \times [c,d] \rightarrow \mathbb{C}$ over a subrectangle $J \times K$ of $[a,b] \times [c,d]$ is defined as

$$\operatorname{osc}_{2}(f, J \times K) = \sup_{u, u' \in J; \ v, v' \in K} |f(u, v) - f(u', v) - f(u, v') + f(u', v')|.$$

Here we shall consider the class $(\Lambda, \Lambda') BV^{(p,q)}$, where $\Lambda = \{m^{\alpha}\}$ and $\Lambda' = \{n^{\beta}\}$, for $\alpha, \beta \ge 0$. Also we will prove (in Lemma 2) that if $f(x,y) \in (m^{\alpha}, n^{\beta}) BV^{(p,q)}$ for $\alpha, \beta \ge 0, \alpha q + \beta p \le q$ then all the four limits $f(x \pm 0, y \pm 0)$ exist at every point (x, y). We denote

$$s(f,x,y) = \frac{1}{4} [f(x+0,y+0) + f(x-0,y+0) + f(x+0,y-0) + f(x-0,y-0)],$$

$$\phi(u,v) = \begin{cases} f(u,v) - f(x+0,y+0), & \text{if } u > x, v > y, \\ f(u,v) - f(x-0,y+0), & \text{if } u < x, v > y, \\ f(u,v) - f(x+0,y-0), & \text{if } u > x, v < y, \\ f(u,v) - f(x-0,y-0), & \text{if } u > x, v < y, \\ f(u,y) - f(x+0,y), & \text{if } u > x, v = y, \\ f(u,y) - f(x-0,y), & \text{if } u < x, v = y, \\ f(x,v) - f(x,y+0), & \text{if } u = x, v > y, \\ f(x,v) - f(x,y-0), & \text{if } u = x, v < y, \\ 0, & \text{if } (u,v) = (x,y), \end{cases}$$

and

$$g(u,v) = \phi(u,v) - \phi(x,v) - \phi(u,y).$$
 (3)

We will also denote $x + \frac{j(1-x)}{n}$ and $x - \frac{j(1+x)}{n}$ by $s_{j,x}$ and $t_{j,x}$ respectively for $x \in (-1,1)$, j = 0, 1, ..., n, also denote intervals $I_{j,x} := [t_{j+1,x}, t_{j,x}]$ and $J_{j,x} := [s_{j,x}, s_{j+1,x}]$, for j = 1, 2, ..., n-1.

Throughout this paper, we write $u \ll v$ if there exists a positive constant *K*, such that $u \leq Kv$ and *K* need not be the same at each occurrence.

2. Main Theorem

Our main theorem is as follows.

THEOREM 3. Let $f \in (m^{\alpha}, n^{\beta})$ BV^(p,q) (I^{2}) , $0 \leq \alpha q + \beta p \leq q$, $1 - \alpha p \geq 0$, and $1 - \beta q \geq 0$. Then, for $(x, y) \in (-1, 1) \times (-1, 1)$, we have $S_{m,n}(f, x, y) \rightarrow s(f, x, y)$ in Pringsheim sense as $m, n \rightarrow \infty$.

By putting $\alpha = \beta = 0$ in Theorem 3, we get the following corollary for the class of functions of (p,q)-bounded variation in the sense of Hardy and Krause.

COROLLARY 1. Let $f \in BV_H^{(p,q)}(I^2)$. Then, for $(x,y) \in (-1,1) \times (-1,1)$, we have $S_{m,n}(f,x,y) \to s(f,x,y)$ in Pringsheim sense as $m,n \to \infty$.

Also, putting q = p and $\alpha = \beta = 0$ in Theorem 3, we get the following corollary for the class of functions of *p*-bounded variation in the sense of Hardy and Krause.

COROLLARY 2. Let $f \in BV_H^p(I^2)$. Then, for $(x,y) \in (-1,1) \times (-1,1)$, we have $S_{m,n}(f,x,y) \rightarrow s(f,x,y)$ in Pringsheim sense as $m, n \rightarrow \infty$.

At last, putting p = q = 1 in Theorem 3, we get the following corollary for the class of functions of generalized bounded variation, which is a two-dimensional analogue of Theorem 2.

COROLLARY 3. Let $f \in (m^{\alpha}, n^{\beta})$ BV (I^2) , $0 \leq \alpha + \beta \leq 1$. Then, for $(x, y) \in (-1, 1) \times (-1, 1)$, we have $S_{m,n}(f, x, y) \rightarrow s(f, x, y)$ in Pringsheim sense as $m, n \rightarrow \infty$.

3. Lemmas

To prove main theorem, we require following lemmas.

LEMMA 2. If $f \in (m^{\alpha}, n^{\beta})$ BV^(p,q)(R) for $\alpha, \beta \ge 0$, $0 \le \alpha q + \beta p \le q$, and every $(x_0, y_0) \in I^2$, the four limits $f(x_0 \pm 0, y_0 \pm 0)$ of f(x, y) as $(x, y) \to (x_0, y_0)$ and (x, y) is in the corresponding open coordinate quadrant, exist.

Proof of Lemma 2. Our proof is similar to that of Theorem 7 of [2]. Suppose $f(x,y) \in (m^{\alpha}, n^{\beta})$ BV^(p,q)(R), $\alpha, \beta \ge 0$, $\alpha q + \beta p \le q$. Suppose also that there is a point $(x_0, y_0) \in R$ such that f(x, y) does not have a limit as $(x, y) \to (x_0, y_0)$ within an open coordinate quadrant with vertex (x_0, y_0) . Without loss of generality, we may assume that the quadrant is $\{(x, y) : x_0 < x < b, y_0 < y < d\} = S$, say.

Then, by Cauchy criterion (see, e.g., [9, Proposition 2.54]), there is an $\varepsilon > 0$ such that for every $\delta > 0$, there are points (x_1, y_1) , (x'_1, y'_1) in $S \cap S_{\delta}(x_0, y_0) \setminus \{(x_0, y_0)\}$ such that

$$|f(x_1, y_1) - f(x'_1, y'_1)| > 4\varepsilon.$$
(4)

Choose $(s,t) \in (x_0,b) \times (y_0,d)$. Then, since f(x,t) and f(s,y) are in $(m^{\alpha})BV^{(p)}([a,b])$ and $(n^{\beta})BV^{(q)}([c,d])$ respectively in each variable separately, $\lim_{x\to x_{\alpha+1}} f(x,t)$ and $\lim_{y \to y_{0^+}} f(s, y)$ exist (see, e.g., [13, Theorem 2]). Therefore, as $\varepsilon > 0$, by Cauchy criterion, there are $\delta_1, \delta_2 > 0$ such that $\delta_1 < b - x_0, \ \delta_2 < d - y_0$, and

$$\begin{aligned} x_0 < x_1, x_1' < x_0 + \delta_1 \implies |f(x_1, t) - f(x_1', t)| < \varepsilon; \\ y_0 < y_1, y_1' < y_0 + \delta_2 \implies |f(s, y_1) - f(s, y_1')| < \varepsilon. \end{aligned}$$

Put $\delta = \min{\{\delta_1, \delta_2\}}$. Then, for this δ , as above, there are points (x_1, y_1) , (x'_1, y'_1) in $S \cap S_{\delta}(x_0, y_0) \setminus {\{(x_0, y_0)\}}$ such that (4) holds. Observe that

$$(x_1, y_1), (x'_1, y'_1) \in S \cap S_{\delta}(x_0, y_0) \setminus \{(x_0, y_0)\} \Longrightarrow |f(x_1, t) - f(x'_1, t)| < \varepsilon \text{ and } |f(s, y_1) - f(s, y'_1)| < \varepsilon.$$
 (5)

Now, letting

$$P = f(s,t) - f(s,y_1) - f(x_1,t) + f(x_1,y_1)$$

and

$$Q = f(s,t) - f(s,y'_1) - f(x'_1,t) + f(x'_1,y'_1),$$

in view of (4) and (5), we have

$$|P - Q| \ge |f(x_1, y_1) - f(x'_1, y'_1)| - |f(x_1, t) - f(x'_1, t)| - |f(s, y_1) - f(s, y'_1)| \\\ge 4\varepsilon - \varepsilon - \varepsilon = 2\varepsilon.$$

So, at least one |P| or |Q|, must exceed ε . Hence renaming endpoints, we obtained a rectangle, say, $I_1 \times J_1 := [x_1, x'_1] \times [y_1, y'_1]$ with $x_0 < x_1 < x'_1 < b$ and $y_0 < y_1 < y'_1 < d$, for which $|f(I_1 \times J_1)| > \varepsilon$.

Now, let $(s,t) \in (x_0,x_1) \times (y_0,y_1)$. Then arguing as above, and now choosing $\delta_1 < x_1 - x_0$ and $\delta_2 < y_1 - y_0$, we can obtain a rectangle, say, $I_2 \times J_2 := [x_2, x'_2] \times [y_2, y'_2]$ with $x_0 < x_2 < x'_2 < x_1$ and $y_0 < y_2 < y'_2 < y_1$, for which $|f(I_2 \times J_2)| > \varepsilon$. Note that this construction gives $I_1 \cap I_2 = \emptyset$ and $J_1 \cap J_2 = \emptyset$. Continuing in this way, we can form a sequence $\{I_n \times J_n\}$ of rectangles in $(x_0, b) \times (y_0, d)$ such that the intervals I_n 's are disjoint, the intervals J_n 's are disjoint, and that $|f(I_n \times J_n)| > \varepsilon$ for each $n \in \mathbb{N}$. But then, as $0 \leq q\alpha + p\beta \leq q$, we have

$$\begin{split} \left(\sum_{j=1}^{N} \frac{1}{j^{\alpha}} \left(\sum_{k=1}^{N} \frac{|f(I_j \times J_k)|^q}{k^{\beta}}\right)^{p/q}\right)^{1/p} > \left(\sum_{j=1}^{N} \frac{1}{j^{\alpha}} \left(\sum_{k=1}^{j} \frac{|f(I_j \times J_k)|^q}{k^{\beta}}\right)^{p/q}\right)^{1/p} \\ \ge \left(\sum_{j=1}^{N} \frac{1}{j^{\alpha}} \left(\frac{|f(I_j \times J_j)|^q}{j^{\beta}}\right)^{p/q}\right)^{1/p} \\ > \varepsilon \left(\sum_{j=1}^{N} \frac{1}{j^{(q\alpha+p\beta)/q}}\right)^{1/p} \to \infty \end{split}$$

as $N \to \infty$, which is a contradiction as $f(x, y) \in (m^{\alpha}, n^{\beta}) BV^{(p,q)}(R)$. This completes the proof of Lemma 2. \Box

LEMMA 3. If f is of (p,q)- (Λ,Λ') -bounded variation on $[a,b] \times [c,d]$ then

(a)
$$\lim_{\delta \to 0^+} V_{p\Lambda,q\Lambda'}(f,(a,a+\delta],[c,d]) = 0$$

- (b) $\lim_{\delta \to 0^+} V_{p\Lambda,q\Lambda'}(f,[a,a+\delta],[c,d]) = 0$, if $f(x,\cdot)$ is continuous at a point a.
- (c) $\lim_{\delta \to 0^+} V_{p\Lambda,q\Lambda'}(f,[a,b],(c,c+\delta]) = 0.$
- (d) $\lim_{\delta \to 0^+} V_{p\Lambda,q\Lambda'}(f,[a,b],[c,c+\delta]) = 0$, if $f(\cdot,y)$ is continuous at a point c.
- (e) $\lim_{\delta \to 0^+} V_{p\Lambda,q\Lambda'}(f,(a,a+\delta],(c,c+\delta]) = 0.$
- (f) $\lim_{\delta \to 0^+} V_{p\Lambda,q\Lambda'}(f,[a,a+\delta],[c,c+\delta]) = 0, \text{ if } f(x,y) \text{ is continuous at a point } (a,c).$

Proof of Lemma 3. Clearly, $V_{p\Lambda,q\Lambda'}(f,(a,a+\delta],[c,d]) \ge 0$. Suppose that there is $\varepsilon > 0$ such that

$$V_{p\Lambda,q\Lambda'}(f,(a,a+\delta],[c,d]) > \varepsilon, \ \forall \delta \ge 0.$$
(6)

Now, as f is of $(p,q) \cdot (\Lambda, \Lambda')$ -bounded variation on $[a,b] \times [c,d]$, f is of $p \cdot \Lambda$ bounded variation on [a,b] for a fixed variable y then the right-hand limit $f(x+0,\cdot)$ exists. Therefore, for $m'_0, n'_0 \in \mathbb{N}$, and given ε there exist $\delta_0 \leq \delta$ satisfies

$$|f(I^0,\cdot)| \leqslant \left(\frac{\lambda_1}{m'_0}\right)^{1/p} \left(\frac{\lambda'_1}{n'_0}\right)^{1/q} \frac{\varepsilon}{2^{2+1/p}}$$

for all subintervals $I^0 \subset (a, a + \delta_0]$.

Now, for this δ_0 and from (6), existence of disjoint rectangles $I_i^0 \times J_j^0 \subset (a, a + \delta_0] \times [c, d]$: $i = 0, 1, ..., m_0, j = 0, 1, 2, ..., n_0, m_0, n_0 \in \mathbb{N}$ such that

$$\sum_{i=1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_0} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} \geqslant \varepsilon^p.$$

Now, as

$$|f(I_i^0 \times J_j^0)| \leq 2|f(I^0, \cdot)| \leq \left(\frac{\lambda_1}{m_0'}\right)^{1/p} \left(\frac{\lambda_1'}{n_0'}\right)^{1/q} \frac{\varepsilon}{2^{1+1/p}},$$

and as numerical inequalities (see [1, p. 16]) for any positive numbers a, b, and p, we have

$$(a+b)^p \leqslant \begin{cases} 2^p(a^p+b^p) & \text{ for } p \ge 1, \\ a^p+b^p & \text{ for } 0 \le p < 1, \end{cases} \implies (a+b)^p \le 2^p(a^p+b^p) \text{ for } p \ge 0,$$

we have

$$\begin{split} \sum_{i=1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_0} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} \geqslant \varepsilon^p \\ \Longrightarrow \sum_{i=1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_0'} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} + \sum_{i=1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=n_0'+1}^{n_0} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} \geqslant \frac{\varepsilon^p}{2^{p/q}} \\ \Longrightarrow \left[\sum_{i=1}^{m_0'} + \sum_{i=m_0'+1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_0'} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} + \sum_{i=1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=n_0'+1}^{n_0} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} \right)^{p/q} \\ \geqslant \frac{\varepsilon^p}{2^{p/q}} \\ \Longrightarrow \sum_{i=m_0'+1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_0'} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} + \sum_{i=1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=n_0'+1}^{n_0} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} \\ \geqslant \frac{\varepsilon^p}{2^{p/q}} - \sum_{i=1}^{m_0'} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_0'} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} + \sum_{i=1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=n_0'+1}^{n_0} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} \\ \Longrightarrow \sum_{i=m_0'+1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_0'} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} + \sum_{i=1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=n_0'+1}^{n_0} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} \\ \Longrightarrow \sum_{i=n_0'+1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_0'} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} + \sum_{i=1}^{m_0} \frac{1}{\lambda_i} \left(\sum_{j=n_0'+1}^{n_0} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} \\ \Longrightarrow \sum_{i=n_0'+1}^{m_0'} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_0'} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} + \sum_{i=1}^{m_0'} \frac{1}{\lambda_i} \left(\sum_{j=n_0'+1}^{n_0'} \frac{|f(I_i^0 \times J_j^0)|^q}{\lambda_j'} \right)^{p/q} \\ \geqslant \frac{\varepsilon^p}{2^{p/q}} - \frac{\varepsilon^p}{2^{p/q}} - \frac{\varepsilon^p}{2^{p/q}} - \frac{\varepsilon^p}{2^{2+p/q}} = \frac{3\varepsilon^p}{2^{p+1}}. \end{split}$$

Now again, suppose all subintervals $I^0 \subset (a_0, a + \delta_0]$ then removing the part $(a_0, a + \delta]$, we proceed similarly for $m'_1, n'_1 \in \mathbb{N}$, and given ε there exist $\delta_1 \leq \delta$ satisfies

$$|f(I^1,\cdot)| \leqslant \left(\frac{\lambda_1}{m_1'}\right)^{1/p} \left(\frac{\lambda_1'}{n_1'}\right)^{1/q} \frac{\varepsilon}{2^{2+1/p}},$$

for all subintervals $I^1 \subset (a, a + \delta_1]$, $a + \delta_1 \leq a_0$. Now again, for this δ_1 and from (6), existence of disjoint rectangles $I_i^1 \times J_j^1 \subset (a, a + \delta_1] \times [c, d]$: $i = 0, 1, ..., m_1$, $j = 0, 1, 2, ..., n_1, m_1, n_1 \in \mathbb{N}$ there is a collection of rectangles $(I_i \times J_j : i = m'_1, ..., m_1; j = 0, 1, ..., n)$ satisfy

$$\sum_{i=m_1'+1}^{m_1} \frac{1}{\lambda_i} \left(\sum_{j=1}^{n_1'} \frac{|f(I_i^1 \times J_j^1)|^q}{\lambda_j'} \right)^{p/q} + \sum_{i=1}^{m_1} \frac{1}{\lambda_i} \left(\sum_{j=n_1'+1}^{n_1} \frac{|f(I_i^1 \times J_j^1)|^q}{\lambda_j'} \right)^{p/q} \geqslant \frac{\varepsilon^p}{2^{p/q}} - \frac{\varepsilon^p}{2^{1+p}} = \frac{3\varepsilon^p}{2^{p+1}}.$$

Similarly, we can constuct an finite families of disjoint rectangles inductively on remainig rectangle, so that

$$\sum_{k=0}^{n} \left[\sum_{i=m'_{k}+1}^{m_{k}} \frac{1}{\lambda_{i}} \left(\sum_{j=1}^{n'_{k}} \frac{|f(I_{i}^{k} \times J_{j}^{k})|^{q}}{\lambda'_{j}} \right)^{p/q} + \sum_{i=1}^{m_{k}} \frac{1}{\lambda_{i}} \left(\sum_{j=n'_{k}+1}^{n_{k}} \frac{|f(I_{i}^{k} \times J_{j}^{k})|^{q}}{\lambda'_{j}} \right)^{p/q} \right] \ge \frac{3n\varepsilon^{p}}{2^{p+1}},$$

for all *n*. It follows that $f \notin (\Lambda, \Lambda') BV^{(p,q)}([a,b] \times [c,d])$, a contradiction. Thus, it must be $V(f, (a, a + \delta), [c, d]) \rightarrow 0$ as $\delta \rightarrow 0$. This completes the proof of (a). Similarly, one can prove (c) and (e).

Now, suppose $V_{p\Lambda,a\Lambda'}(f,(a,a+\delta),[c,d]) \to 0$ as $\delta \to 0$. Then for any $\varepsilon > 0$ there is $\delta > 0$ such that

$$V_{p\Lambda,q\Lambda'}(f,(a,a+\delta_0],[c,d]) \leqslant \varepsilon, \ \forall \ \delta_0 < \delta.$$

$$\tag{7}$$

We will prove that condition (b) holds. Given any family $\{I_i \times J_j\}_{i=1,j=1}^{m,n}$ of [a, a + a] $\delta_0 \times [c,d]$, also an interval I_i which contain a, denoting it by $I_{i'}$, we have

$$\sum_{i=1}^{m} \frac{1}{\lambda_{i}} \left(\sum_{j=1}^{n} \frac{1}{\lambda_{j}'} |f(I_{i} \times J_{j})|^{q} \right)^{p/q} = \frac{1}{\lambda_{i'}} \left(\sum_{j=1}^{n} \frac{1}{\lambda_{j}'} |f(I_{i'} \times J_{j})|^{q} \right)^{p/q} + \sum_{i=1, i \neq i'}^{m} \frac{1}{\lambda_{i}} \left(\sum_{j=1}^{n} \frac{1}{\lambda_{j}'} |f(I_{i} \times J_{j})|^{q} \right)^{p/q}$$
(8)

By our assumption $f(x, \cdot)$ is continuous at point a, then for given $\varepsilon > 0$ there is $0 < \varepsilon$ $\delta_1 < \delta_0$ satisfying

$$|f(a,\cdot) - f(a+\delta_1,\cdot)| \leq \left((\lambda_{i'})^{1/p} (\lambda_1')^{1/q} \right) \varepsilon/2^{2+1/q} n^{1/q}$$

Now, decomposing $I_{i'} = [a, a + \delta_0] = [a, a + \delta_1] \cup [a + \delta_1, a + \delta_0] := I_{i'}^1 \cup I_{i'}^2$, we have

$$\frac{1}{\lambda_{i'}} \left(\sum_{j=1}^{n} \frac{1}{\lambda_j'} |f(I_{i'} \times J_j)|^q \right)^{p/q} \leqslant \frac{2^{p(1+1/q)}}{\lambda_{i'}} \left[\left(\sum_{j=1}^{n} \frac{1}{\lambda_j'} |f(I_{i'}^1 \times J_j)|^q \right)^{p/q} + \left(\sum_{j=1}^{n} \frac{1}{\lambda_j'} |f(I_{i'}^2 \times J_j)|^q \right)^{p/q} \right]. \quad (9)$$

Now, as $|f(I_{i'}^1 \times J_j)| \leq 2 \sup_{y \in [c,d]} |f(a,\cdot) - f(a+\delta_1,\cdot)| \leq ((\lambda_{i'})^{1/p} (\lambda_1')^{1/q}) \varepsilon/2^{1+1/q} n^{1/q},$

we have

$$\frac{2^{p(1+1/q)}}{\lambda_{i'}} \left(\sum_{j=1}^n \frac{1}{\lambda'_j} |f(I_{i'}^1 \times J_j)|^q\right)^{p/q} \leqslant \varepsilon^p.$$

_

Also from (7), the second terms of right hand side of an inequality (8) and (9) becomes

$$\frac{2^{p(1+1/q)}}{\lambda_{i'}} \left(\sum_{j=1}^n \frac{1}{\lambda_j'} |f(I_{i'}^2 \times J_j)|^q \right)^{p/q} + \sum_{i=1, i \neq i'}^m \frac{1}{\lambda_i} \left(\sum_{j=1}^n \frac{1}{\lambda_j'} |f(I_i \times J_j)|^q \right)^{p/q} \\ \leqslant K V_{p\Lambda, q\Lambda'}^p(f, (a, a + \delta_0], [c, d]) \leqslant K \varepsilon^p,$$

where *K* is some positive constant. Since ε is arbitrary, condition (b) holds true. Similarly, one can prove (d) and (f). \Box

We also recall the partial summation formulas for single and double sequences, which are as follows.

LEMMA 4. Consider $n \in \mathbb{N}$. For j = 0, 1, ..., n, let a_j and b_j be real numbers. Let $B_j = \sum_{k=j}^n b_k$ for j = 0, 1, 2, ..., n, and $B_{n+1} = 0$. Then

$$\sum_{j=1}^{n} a_j b_j = \sum_{j=1}^{n} \left(a_j - a_{j-1} \right) B_j + a_0 B_1.$$
(10)

Also, for $B_j = \sum_{k=0}^{j} b_k$, we have

$$\sum_{j=0}^{n} a_j b_j = \sum_{j=0}^{n-1} \left(a_j - a_{j+1} \right) B_j + a_n B_n.$$
(11)

LEMMA 5. Consider $(m,n) \in \mathbb{N}^2$. Let $a_{j,k}$ and $b_{j,k}$ be real numbers, and let $B_{j,k} = \sum_{j'=j}^{m} \sum_{k'=k}^{n} b_{j',k'}$ and $B_{m+1,n+1} = B_{j,n+1} = B_{m+1,k} = 0$, for j = 0, 1, ..., m, k = 0, 1, ..., n, then

$$\sum_{j=1}^{m} \sum_{k=1}^{n} a_{j,k} b_{j,k} = \sum_{j=1}^{m} \sum_{k=1}^{n} \left(a_{j,k} - a_{j,k-1} - a_{j-1,k} + a_{j-1,k-1} \right) B_{j,k} + \sum_{j=1}^{m} (a_{j,0} - a_{j-1,0}) B_{j,1} + \sum_{k=1}^{n} (a_{0,k} - a_{0,k-1}) B_{1,k} + a_{0,0} B_{1,1}.$$

4. Proof of the main Theorem

Proof of Theorem 3. For any $m, n \in \mathbb{N}$, $x, y \in (-1, 1)$, and using the facts (see [4, Lemma 1])

$$\int_{x}^{1} K_{n}(x,t)dt = \frac{1}{2} - \frac{1}{2}P_{n}(x)P_{n+1}(x) \text{ and } \int_{-1}^{x} K_{n}(x,t)dt = \frac{1}{2} + \frac{1}{2}P_{n}(x)P_{n+1}(x), \quad (12)$$

we have the representation (see [4, Proof of Theorem 1])

$$S_{m,n}(f,x,y) - s(f,x,y) = \int_{-1}^{1} \int_{-1}^{1} f(u,v)K_m(x,u)K_n(y,v)dudv - s(f,x,y)$$

$$= \int_{-1}^{1} \int_{-1}^{1} \phi(u,v)K_m(x,u)K_n(y,v)dudv + \frac{1}{4}[f(x+0,y+0) - f(x+0,y-0) - f(x-0,y+0) + f(x-0,y-0)]P_m(x)P_{m+1}(x)P_n(y)P_{n+1}(y) - \frac{1}{4}(f(x+0,y+0) + f(x+0,y-0) - f(x-0,y+0) - f(x-0,y-0))P_m(x)P_{m+1}(x) - \frac{1}{4}(f(x+0,y+0) - f(x+0,y-0) + f(x-0,y+0) - f(x-0,y-0))P_n(y)P_{n+1}(y).$$
(13)

For fixed x and y, for simplicity denote $K_m(x,u)$ and $K_n(y,v)$ by $X_m(u)$ and $Y_n(v)$ respectively, and using notation as in (3), we decompose the double integral as

$$\int_{-1}^{1} \int_{-1}^{1} \phi(u, v) X_{m}(u) Y_{n}(v) du dv$$

$$= \left(\sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \int_{I_{j,x}} \int_{I_{k,y}} + \int_{x}^{1} \int_{-1}^{y} + \int_{-1}^{x} \int_{y}^{1} + \int_{x}^{1} \int_{y}^{1} \right) g(u, v) X_{m}(u) Y_{n}(v) du dv$$

$$+ \int_{-1}^{1} \int_{-1}^{1} \phi(u, y) X_{m}(u) Y_{n}(v) du dv + \int_{-1}^{1} \int_{-1}^{1} \phi(x, v) X_{m}(u) Y_{n}(v) du dv$$

$$= A_{1} + A_{2} + \ldots + A_{5} + A_{6}, \text{ say.}$$
(14)

First decomposing A_1 , we have

$$\begin{aligned} \mathbf{A}_{1} &= \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \left[\int_{I_{j,x}} \int_{I_{k,y}} (g(u,v) - g(t_{j,x},v) - g(u,t_{k,y}) + g(t_{j,x},t_{k,y}) \right. \\ &+ \int_{I_{j,x}} \int_{I_{k,y}} (g(u,t_{k,y}) - g(t_{j,x},t_{k,y})) + \int_{I_{j,x}} \int_{I_{k,y}} (g(t_{j,x},v) - g(t_{j,x},t_{k,y})) \\ &+ \int_{I_{j,x}} \int_{I_{k,y}} g(t_{j,x},t_{k,y}) \right] X_{m}(u) Y_{n}(v) du dv \\ &= \mathbf{A}_{11} + \mathbf{A}_{12} + \mathbf{A}_{13} + \mathbf{A}_{14}, \text{ say.} \end{aligned}$$
(15)

Now for $m \ge 2$, j = 1, 2, ..., m - 1, and for fixed $x \in (-1, 1)$, using an inequality (see [3, (3.12)])

$$\int_{I_{j,x}} |X_m(t)| dt \leqslant \frac{4\sqrt{2m}}{\pi j(1-x^2)(m-j)^{1/2}} \ll \frac{1}{(j+1)}\sqrt{\frac{m}{m-j}},\tag{16}$$

and an inequality (see [4, Lemma 2])

$$\int_{t_{1,x}}^{s_{1,x}} |X_m(t)| dt \leqslant \frac{4}{1-x^2} \ll 1,$$
(17)

we proceed as follows

$$\ll \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \operatorname{osc}_2(\phi, I_{j,x}, I_{k,y}) \frac{\sqrt{m}}{(j+1)(m-j)^{1/2}} \frac{\sqrt{n}}{(k+1)(n-k)^{1/2}}.$$
(18)

Also, defining

$$R'_{k,n} = \int_{-1}^{t_{k,y}} Y_n(v) dv \text{ for } k = 1, 2, \dots, n-1 \text{ and } R'_{n,n} = 0,$$
(19)

and using partial summation formula (see (10) of Lemma 4) with $a_k = g(u, t_{k,y}) - g(t_{j,x}, t_{k,y})$ and $b_k = (R'_{k,n} - R'_{k+1,n})$, and as $a_0 = 0$, we have

$$\begin{split} A_{12} &= \sum_{j=0}^{m-1} \int_{I_{j,x}} \sum_{k=1}^{n-1} (g(u,t_{k,y}) - g(t_{j,x},t_{k,y})) (R'_{k,n} - R'_{k+1,n}) X_m(u) du \\ &= \sum_{j=0}^{m-1} \int_{I_{j,x}} \left(\sum_{k=1}^{n-1} \left(g(u,t_{k,y}) - g(t_{j,x},t_{k,y}) - g(u,t_{k-1,y}) + g(t_{j,x},t_{k-1,y}) \right) (R'_{k,n} - R'_{n,n}) \right. \\ &+ \left(g(u,y) - g(t_{j,x},y) \right) (R'_{1,n} - R'_{n,n}) \right) X_m(u) du. \end{split}$$

$$=\sum_{j=1}^{m-1}\int_{I_{j,x}}\sum_{k=1}^{n-1}\left(g(u,t_{k,y})-g(t_{j,x},t_{k,y})-g(u,t_{k-1,y})+g(t_{j,x},t_{k-1,y})\right)R'_{k,n}X_m(u)du,$$

as $g(u,y) - g(t_{j,x},y) = 0$ by (3), and as $R'_{n,n} = 0$ by (19). Since

$$g(u,t_{k,y}) - g(t_{j,x},t_{k,y}) - g(u,t_{k-1,y}) + g(t_{j,x},t_{k-1,y}) = \phi(u,t_{k,y}) - \phi(t_{j,x},t_{k,y}) - \phi(u,t_{k-1,y}) + \phi(t_{j,x},t_{k-1,y})$$
(20)

and for fixed $n \ge 2$ and $-1 \le t < y < 1$, we have an inequality (see [4, Lemma 3])

$$\left| \int_{-1}^{t} Y_{n}(v) dv \right| \leq \frac{6}{n(y-t)} (1-y^{2})^{-1/2} \ll \frac{1}{n(y-t)} \Longrightarrow$$
$$|R'_{k,n}| = \left| \int_{-1}^{t_{k,y}} Y_{n}(v) dv \right| \ll \frac{1}{n(y-t_{k,y})} = \frac{1}{n\left(y-\left(y-\frac{k(1+y)}{n}\right)\right)} = \frac{1}{k(1+y)} \ll \frac{1}{k}.$$
(21)

Now, using (16), (20), and (21), we have

$$|\mathbf{A}_{12}| \leq \sum_{j=0}^{m-1} \sum_{k=1}^{n-1} \int_{I_{j,x}} |\phi(u, t_{k,y}) - \phi(t_{j,x}, t_{k,y}) - \phi(u, t_{k-1,y}) + \phi(t_{j,x}, t_{k-1,y})| |R'_{k,n}| |X_m(u)| du$$
$$\ll \sum_{j=0}^{m-1} \sum_{k=1}^{n-1} \frac{\sqrt{m}}{(j+1)k\sqrt{m-j}} \operatorname{osc}_2(\phi, I_{j,x}, I_{k-1,y}).$$
(22)

Since A₁₃ is symmetric to A₁₂, defining

$$R_{j,m} = \int_{-1}^{t_{j,x}} X_m(u) du, \text{ for } j = 1, 2, \dots, m-1 \text{ and } R_{m,m} = 0,$$
(23)

we can prove

$$|\mathbf{A}_{13}| \ll \sum_{j=1}^{m-1} \sum_{k=0}^{n-1} \frac{\sqrt{n}}{j(k+1)\sqrt{(n-k)}} \operatorname{osc}_2(\phi, I_{j-1,x}, I_{k,y}).$$
(24)

Now, from (19), (23), using double summation formula (see Lemma 5) with $a_{j,k} = g(t_{j,x}, t_{k,y})$ and $b_{j,k} = (R_{j,m} - R_{j+1,m})(R'_{k,n} - R'_{k+1,n})$, and as $a_{0,k} = a_{j,0} = a_{0,0} = 0$, we have

$$\begin{split} \mathbf{A}_{14} &= \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \int_{t_{j+1,x}}^{t_{j,x}} \int_{t_{k+1,y}}^{t_{k,y}} g(t_{j,x}, t_{k,y}) X_m(u) Y_n(v) du dv \\ &= \sum_{j=1}^{m-1} \sum_{k=1}^{n-1} g(t_{j,x}, t_{k,y}) (R_{j,m} - R_{j+1,m}) (R'_{k,n} - R'_{k+1,n}) \\ &= \sum_{j=1}^{m-1} \sum_{k=1}^{n-1} \left(g(t_{j,x}, t_{k,y}) - g(t_{j,x}, t_{k-1,y}) - g(t_{j-1,x}, t_{k,y}) + g(t_{j-1,x}, t_{k-1,y}) \right) R_{j,m} R'_{k,n}. \end{split}$$

Therefore, from (21) and putting $u = t_{j-1,x}$ in (20), we have

$$|\mathbf{A}_{14}| \leqslant \sum_{j=1}^{m-1} \sum_{k=1}^{n-1} |\phi(t_{j,x}, t_{k,y}) - \phi(t_{j-1,x}, t_{k,y}) - \phi(t_{j,x}, t_{k-1,y}) + \phi(t_{j-1,x}, t_{k-1,y})||R_{j,m}||R'_{k,n}|$$

$$\ll \sum_{j=1}^{m-1} \sum_{k=1}^{n-1} \frac{1}{jk} \operatorname{osc}_{2}(\phi, I_{j-1,x}, I_{k-1,y}).$$
(25)

Therefore, from (15), (18), (22), (24), and (25), we have

$$\begin{split} \mathbf{A}_{1} \ll & \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \frac{\sqrt{mn}}{(j+1)(k+1)(m-j)^{1/2}(n-k)^{1/2}} \operatorname{osc}_{2}(\phi, I_{j,x}, I_{k,y}) \\ \ll & \left[\sum_{j=0}^{[m/2]} \frac{1}{j+1} + \sum_{j=[m/2]+1}^{m-1} \frac{\sqrt{m}}{(j+1)(m-j)^{1/2}} \right] \\ & \times \left[\sum_{k=0}^{[n/2]} \frac{1}{k+1} + \sum_{k=[n/2]+1}^{n-1} \frac{\sqrt{n}}{(k+1)(n-k)^{1/2}} \right] \operatorname{osc}_{2}(\phi, I_{j,x}, I_{k,y}) \\ & = \left[\sum_{j=0}^{[m/2]} \sum_{k=0}^{[n/2]} \frac{1}{(j+1)(k+1)} + \sum_{j=[m/2]+1}^{m-1} \sum_{k=0}^{[n/2]} \frac{\sqrt{m}}{(j+1)(k+1)(m-j)^{1/2}} \right] \\ & + \sum_{j=0}^{[m/2]} \sum_{k=[n/2]+1}^{n-1} \frac{\sqrt{n}}{(j+1)(k+1)(n-k)^{1/2}} \end{split}$$

$$+\sum_{j=[m/2]+1}^{m-1}\sum_{k=[n/2]+1}^{n-1}\frac{\sqrt{mn}}{(j+1)(k+1)(m-j)^{1/2}(n-k)^{1/2}}\Bigg]\operatorname{osc}_{2}(\phi, I_{j,x}, I_{k,y})$$

= A + B + C + D, say. (26)

Now, applying Hölder's inequality with given p, q and taking r, s such that 1/p + 1/r = 1, 1/q + 1/s = 1, we have

$$\begin{split} \mathbf{A} &= \sum_{j=0}^{[m/2]} \frac{1}{(j+1)} \left(\sum_{k=0}^{[n/2]} \frac{1}{(k+1)^{1-1/q^2+1/q^2}} \operatorname{osc}_2(\phi, I_{j,x}, I_{k,y}) \right) \\ &\leqslant \sum_{j=0}^{[m/2]} \frac{1}{(j+1)} \left(\sum_{k=0}^{[n/2]} \frac{1}{(k+1)^{1/q}} \left(\operatorname{osc}_2(\phi, I_{j,x}, I_{k,y}) \right)^q \right)^{1/q} \left(\sum_{k=0}^{[n/2]} \frac{1}{(k+1)^{s-s/q^2}} \right)^{1/s} \\ &= \sum_{j=0}^{[m/2]} \frac{1}{(j+1)} \left(\sum_{k=0}^{[n/2]} \frac{1}{(k+1)^{1/q}} \left(\operatorname{osc}_2(\phi, I_{j,x}, I_{k,y}) \right)^q \right)^{1/q} \left(\sum_{k=0}^{[n/2]} \frac{1}{(k+1)^{1+1/q}} \right)^{1/s} \\ &\ll \sum_{j=0}^m \frac{1}{(j+1)^{1-1/p^2+1/p^2}} \left(\sum_{k=0}^n \frac{1}{(k+1)^{1/q}} \left(\operatorname{osc}_2(\phi, I_{j,x}, I_{k,y}) \right)^q \right)^{1/q} \\ &\ll \left(\sum_{j=0}^m \frac{1}{(j+1)^{1/p}} \left(\sum_{k=0}^n \frac{1}{(k+1)^{1/q}} \left(\operatorname{osc}_2(\phi, I_{j,x}, I_{k,y}) \right)^q \right)^{p/q} \right)^{1/p} \\ &\times \left(\sum_{j=0}^m \frac{1}{(j+1)^{r-r/p^2}} \right)^{1/r} \\ &\ll \left(\sum_{j=0}^m \frac{1}{(j+1)^{1/p}} \left(\sum_{k=0}^n \frac{1}{(k+1)^{1/q}} \left(\operatorname{osc}_2(\phi, I_{j,x}, I_{k,y}) \right)^q \right)^{p/q} \right)^{1/p} . \end{split}$$

$$(27)$$

Now, first fixing j, we define

$$a_{j,0} = 0$$
, for $t \in [0,1)$ and $a_{j,t} = \sum_{l=0}^{[t]-1} \frac{1}{(l+1)^{\beta}} (\operatorname{osc}_2(\phi, I_{j,x}, I_{l,y}))^q$, for $t \in [1, n+1]$.
(28)

Now, as $1 - \beta q \ge 0 \implies \frac{1}{q} \ge \beta$, and using partial summation formula (see (11) of Lemma 4), we have

$$\sum_{k=0}^{n} \frac{1}{(k+1)^{1/q-\beta}} \frac{(\operatorname{osc}_{2}(\phi, I_{j,x}, I_{k,y}))^{q}}{(k+1)^{\beta}} = \sum_{k=0}^{n} \frac{1}{(k+1)^{1/q-\beta}} (a_{j,k+1} - a_{j,k})$$
$$= \sum_{k=0}^{n-1} \left(\frac{1}{(k+1)^{1/q-\beta}} - \frac{1}{(k+2)^{1/q-\beta}} \right) a_{j,k+1}$$
$$+ \frac{1}{(n+1)^{1/q-\beta}} a_{j,n+1}.$$
(29)

Since $a_{j,t}$ is non-decreasing on $t \in [k+1, k+2]$ for fixed j and $k \in [0, n-1]$, we have

$$\frac{1}{(1/q-\beta)} \sum_{k=0}^{n-1} \left(\frac{1}{(k+1)^{1/q-\beta}} - \frac{1}{(k+2)^{1/q-\beta}} \right) a_{j,k+1} = \sum_{k=0}^{n-1} a_{j,k+1} \int_{k+1}^{k+2} \frac{1}{t^{1+1/q-\beta}} dt$$
$$\leqslant \int_{1}^{n+1} \frac{a_{j,t}}{t^{1+1/q-\beta}} dt. \tag{30}$$

Now, changing variable t by $\frac{n+1}{s}$, we have $t \to 1 \iff s \to n+1$, $t \to n+1 \iff s \to 1$, and $\frac{dt}{ds} = (-1)\frac{n+1}{s^2}$. Therefore

$$\int_{1}^{n+1} \frac{a_{j,t}}{t^{1+1/q-\beta}} dt = \int_{1}^{n+1} a_{j,\left[\frac{n+1}{s}\right]} \left(\frac{s}{n+1}\right)^{1+1/q-\beta} \left(\frac{n+1}{s^2}\right) ds$$
$$= \frac{1}{(n+1)^{1/q-\beta}} \sum_{k=0}^{n-1} \int_{k+1}^{k+2} a_{j,\left[\frac{n+1}{s}\right]} \left(\frac{1}{s^{1-1/q+\beta}}\right) ds$$
$$\leqslant \frac{1}{n^{1/q-\beta}} \sum_{k=0}^{n-1} \frac{a_{j,\left[\frac{n+1}{k+1}\right]}}{(k+1)^{1/s+\beta}} \ll a_{j,n+1}.$$
(31)

Therefore, from (29), (30), and (31), we have

$$\sum_{k=0}^{n} \frac{1}{(k+1)^{1/q}} (\operatorname{osc}_2(\phi, I_{j,x}, I_{k,y}))^q \ll a_{j,n+1}.$$
(32)

Similarly, for fixed n, defining

$$b_{0,n} = 0$$
 for $t \in [0,1)$ and $b_{t,n} = \sum_{j=0}^{\lfloor t \rfloor - 1} \frac{1}{(j+1)^{\alpha}} (a_{j,n+1})^{p/q}$ for $t \in [1, m+1]$,

we can prove the following inequality

$$\sum_{j=0}^{m} \frac{1}{(j+1)^{1/p}} \left(\sum_{k=0}^{n} \frac{1}{(k+1)^{1/q}} (\operatorname{osc}_{2}(\phi, I_{j,x}, I_{k,y}))^{q} \right)^{p/q} \\ \ll \sum_{j=0}^{m} \frac{1}{(j+1)^{1/p}} \left(a_{j,n+1} \right)^{p/q} \ll \frac{1}{m^{1/p-\alpha}} \sum_{j=1}^{m} \frac{1}{j^{1/r+\alpha}} b_{\left[\frac{m+1}{j}\right],n}.$$
(33)

Now, by definition of $a_{j,n+1}$ and $b_{t,n}$, we have

$$b_{\left[\frac{m+1}{j}\right],n} = \sum_{j'=0}^{\left[\frac{m+1}{j}\right]-1} \frac{1}{(j'+1)^{\alpha}} (a_{j',n+1})^{p/q}$$

$$= \sum_{j'=0}^{\left[\frac{m+1}{j}\right]-1} \frac{1}{(j'+1)^{\alpha}} \left(\sum_{l=0}^{n} \frac{1}{(l+1)^{\beta}} (\operatorname{osc}_{2}(\phi, I_{j',x}, I_{l,y}))^{q}\right)^{p/q}$$

$$\leq \operatorname{V}_{pm^{\alpha},qn^{\beta}}^{p} \left(\phi, \left[x - \frac{(1+x)}{j}, x\right], [-1,y]\right).$$
(34)

Therefore, from (27), (33), and (34), we have

$$A \ll \left(\frac{1}{m^{1/p-\alpha}} \sum_{j=1}^{m} \frac{1}{j^{1/r+\alpha}} \mathbf{V}_{pm^{\alpha},qn^{\beta}}^{p} \left(\phi, \left[x - \frac{(1+x)}{j}, x\right], [-1,y]\right)\right)^{1/p}$$

= $o(1)$ as $m \to \infty$. (35)

Also, we have the following inequality

$$\sum_{j=[m/2]+1}^{m-1} \frac{\sqrt{m}}{(j+1)(m-j)^{1/2}} \ll \frac{1}{m} \sum_{j=1}^{m-1} \left(\frac{m-j}{m}\right)^{-1/2}$$
$$= \sum_{j=1}^{m-1} \left(\frac{m-j}{m}\right)^{-1/2} \left[\frac{m-j}{m} - \frac{m-j-1}{m}\right]$$
$$\ll \sum_{j=1}^{m-1} \int_{\frac{m-j-1}{m}}^{\frac{m-j}{m}} x^{-1/2} dx \ll \int_{0}^{1} x^{-1/2} dx = 2.$$
(36)

Using (36) and Hölder's inequality with 1/q + 1/s = 1, we have

$$B = \sum_{j=[m/2]+1}^{m-1} \frac{\sqrt{m}}{(j+1)(m-j)^{1/2}} \sum_{k=0}^{[n/2]} \frac{1}{(k+1)} \operatorname{osc}_{2}(\phi, I_{j,x}, I_{k,y})$$

$$\ll \sum_{k=0}^{n} \frac{1}{(k+1)^{1-1/q^{2}+1/q^{2}}} \operatorname{osc}_{2}(\phi, [-1,x], I_{k,y}))^{q} \int^{1/q} \left(\sum_{k=0}^{n} \frac{1}{(k+1)^{s-s/q^{2}}}\right)^{1/s}$$

$$\ll \left(\sum_{k=0}^{n} \frac{1}{(k+1)^{1/q}} (\operatorname{osc}_{2}(\phi, [-1,x], I_{k,y}))^{q}\right)^{1/q}$$

$$\ll \left(\frac{1}{n^{1/q-\beta}} \sum_{k=0}^{n-1} \frac{1}{(k+1)^{1/s+\beta}} \sum_{l=0}^{[\frac{n+1}{l}-1]} \frac{1}{(l+1)^{\beta}} (\operatorname{osc}_{2}(\phi, [-1,x], I_{l,y}))^{q}\right)^{1/q}$$

$$\ll \left(\frac{1}{n^{1/q-\beta}} \sum_{k=0}^{n-1} \frac{1}{(k+1)^{1/s+\beta}} \operatorname{V}_{pm^{\alpha},qn^{\beta}}^{q} \left(\phi, [-1,x], \left[y - \frac{(1+y)}{k+1}, y\right]\right)\right)^{1/q}$$

$$= o(1) \text{ as } n \to \infty.$$
(37)

Since C is symmetric to B, we can prove

$$\mathbf{C} = o(1) \text{ as } m \to \infty. \tag{38}$$

Also, for $j \in [[\frac{m}{2}] + 1, m - 1]$ and $k \in [[\frac{n}{2}] + 1, n - 1]$, $osc_2(\phi, I_{j,x}, I_{k,y}) \to 0$ as $m, n \to 0$

 ∞ , we have

$$D = \sum_{j=[m/2]+1}^{m-1} \sum_{k=[n/2]+1}^{n-1} \frac{\sqrt{mn}}{(j+1)(k+1)(m-j)^{1/2}(n-k)^{1/2}} \operatorname{osc}_{2}(\phi, I_{j,x}, I_{k,y})$$

$$\ll \sum_{j=[m/2]+1}^{m-1} \sum_{k=[n/2]+1}^{n-1} \frac{1}{m^{1/2}n^{1/2}(m-j)^{1/2}(n-k)^{1/2}} \operatorname{osc}_{2}(\phi, I_{j,x}, I_{k,y})$$

$$= o(1) \sum_{j=[m/2]+1}^{m-1} \sum_{k=[n/2]+1}^{n-1} \frac{1}{m^{1/2}n^{1/2}(m-j)^{1/2}(n-k)^{1/2}} = o(1) \text{ as } m, n \to \infty.$$
(39)

Therefore, from (26), (35), (37), (38), and (39), we have

$$A_1 \ll A + B + C + D = o(1) \text{ as } m, n \to \infty.$$

$$(40)$$

Similar way, we can prove

$$A_{2} = \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \int_{J_{j,x}} \int_{I_{k,y}} g(u,v) X_{m}(u) Y_{n}(v) du dv = o(1) \text{ as } m, n \to \infty,$$

$$A_{3} = \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \int_{I_{j,x}} \int_{J_{k,y}} g(u,v) X_{m}(u) Y_{n}(v) du dv = o(1) \text{ as } m, n \to \infty,$$
(41)

and

$$A_{4} = \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \int_{J_{j,x}} \int_{J_{k,y}} g(u,v) X_{m}(u) Y_{n}(v) du dv = o(1) \text{ as } m, n \to \infty.$$
(42)

Now, as $\int_{-1}^{1} Y_n(v) dv = 1$ by (12), and decomposing the integral on A₅, we have

$$\begin{aligned} A_{5} &= \int_{-1}^{1} \int_{-1}^{1} \phi(u, y) X_{m}(u) Y_{n}(v) du dv \\ &= \int_{-1}^{1} \phi(u, y) X_{m}(u) du \\ &= \sum_{j=0}^{m-1} \int_{t_{j+1,x}}^{t_{j,x}} (\phi(u, y) - \phi(t_{j,x}, y)) X_{m}(u) du + \sum_{j=1}^{m-1} \int_{t_{j+1,x}}^{t_{j,x}} \phi(t_{j,x}, y) X_{m}(u) du \\ &+ \int_{x}^{1} \phi(u, y) X_{m}(u) du \\ &= A_{51} + A_{52} + A_{53}, \text{ say.} \end{aligned}$$
(43)

Now, from (16), (17), (36) and using Hölder's inequality, we first have

$$|\mathbf{A}_{51}| \leqslant \sum_{j=0}^{m-1} \int_{t_{j+1,x}}^{t_{j,x}} |\phi(u,y) - \phi(t_{j,x},y)| |X_m(u)| du$$
$$\leqslant \sum_{j=0}^{m-1} \frac{\sqrt{m}}{(j+1)\sqrt{m-j}} \operatorname{osc}_1(\phi(\cdot,y), [t_{j+1,x}, t_{j,x}])$$

$$\ll \sum_{j=0}^{[m/2]} \frac{1}{(j+1)^{1-1/p^2+1/p^2}} \operatorname{osc}_1(\phi(\cdot, y), [t_{j+1,x}, t_{j,x}]) \\ + \sum_{j=[m/2]+1}^{m-1} \frac{1}{\sqrt{m(m-j)}} \operatorname{osc}_1(\phi(\cdot, y), [t_{j+1,x}, t_{j,x}]) \\ \ll \left(\sum_{j=0}^{[m/2]} \frac{1}{(j+1)^{1/p}} (\operatorname{osc}_1(\phi(\cdot, y), [t_{j+1,x}, t_{j,x}]))^p\right)^{1/p} \\ + \sum_{j=[m/2]+1}^{m-1} \frac{1}{\sqrt{m(m-j)}} \operatorname{osc}_1(\phi(\cdot, y), [t_{j+1,x}, t_{j,x}]).$$
(44)

Now, defining

$$a'_t = 0$$
 for $t \in [0,1)$ and $a'_t = \sum_{i=0}^{[t]-1} \frac{1}{(i+1)^{\alpha}} (\operatorname{osc}_1(\phi(\cdot, y), I_{i,x}))^p$ for $t \in [1, m+1]$.

Then, proceeding as in (28) to (31), we have

$$\sum_{j=0}^{m-1} \frac{1}{(j+1)^{1/p}} (\operatorname{osc}_1(\phi(\cdot, y), [t_{j+1,x}, t_{j,x}]))^p \\ \leqslant \frac{1+1/p - \alpha}{(m+1)^{1/p - \alpha}} \sum_{j=0}^m \frac{1}{(j+1)^{1-1/p + \alpha}} a'_{\left\lfloor \frac{m+1}{j+1} \right\rfloor} \\ = o(1) \text{ as } m \to \infty.$$
(45)

Also,

$$\sum_{j=[m/2]+1}^{m-1} \frac{1}{m^{1/2}(m-j)^{1/2}} \operatorname{osc}_1(\phi(\cdot, y), [t_{j+1,x}, t_{j,x}]) = o(1) \text{ as } m \to \infty.$$
 (46)

Now, using partial summation formula (see (10) of Lemma 4) with $a_j = \phi(t_{j,x}, y)$, $b_j = \int_{t_{j+1,x}}^{t_{j,x}} X_m(u) du$ and as $a_0 = 0$, we have

$$A_{52} = \sum_{j=1}^{m-1} \phi(t_{j,x}, y) \int_{t_{j+1,x}}^{t_{j,x}} X_m(u) du$$

=
$$\sum_{j=1}^{m-1} \int_{-1}^{t_{j,x}} \left(\phi(t_{j,x}, y) - \phi(t_{j-1,x}, y) \right) X_m(u) du$$

Now, using Hölder's inequality and in view of (21), we have

$$\begin{aligned} \mathbf{A}_{52} &| \leqslant \sum_{j=1}^{m-1} \left| \phi(t_{j,x}, y) - \phi(t_{j-1,x}, y) \right| \left| \int_{-1}^{x - \frac{j(1+x)}{m}} X_m(u) du \right| \\ &\leqslant \sum_{j=1}^{m-1} \frac{1}{j} \operatorname{osc}_1(\phi(\cdot, y), [t_{j,x}, t_{j-1,x}]) \\ &\leqslant \sum_{j=0}^{m-1} \frac{1}{(j+1)^{1-1/p^2 + 1/p^2}} \operatorname{osc}_1(\phi(\cdot, y), [t_{j+1,x}, t_{j,x}]) \\ &\ll \left(\sum_{j=0}^{m-1} \frac{1}{(j+1)^{1/p}} (\operatorname{osc}_1(\phi(\cdot, y), [t_{j+1,x}, t_{j,x}]))^p \right)^{1/p}. \end{aligned}$$
(47)

Therefore, from (43)–(47), we have

$$A_{51} + A_{52} = o(1) \text{ as } m \to \infty,$$
 (48)

similarly, we can have

$$A_{53} = \sum_{j=0}^{m-1} \int_{s_{j,x}}^{s_{j+1,x}} \phi(u, y) X_m(u) du = o(1) \text{ as } m \to \infty.$$
(49)

Therefore, from (48) and (49), we have

$$\mathbf{A}_5 = o(1) \quad \text{as} \quad m \to \infty, \tag{50}$$

and proceeding similarly as in A₅, we can have

$$\mathbf{A}_6 = o(1) \text{ as } n \to \infty. \tag{51}$$

Also, using an inequality (see [4, Lemma 1])

$$|P_m(x)| \leq \left(\frac{2}{\pi}\right)^{1/2} (1-x^2)^{-1/2} m^{-1/2}, \ x \in (-1,1),$$

last three terms on the right-hand side of the equation (13) tend to zero as $m, n \rightarrow \infty$. Therefore, from (13), (14), (40), (41), (50), and (51), we have

$$S_{m,n}(f,x,y) \rightarrow s(f,x,y)$$
 as $m,n \rightarrow \infty$.

Acknowledgements. The authors are thankful to the referee(s) for his/her valuable remarks and suggestions for the present form of the paper.

Funding. The first author would like to thank Council of Scientific and Industrial Research (CSIR) for financial support through SRF (File No. 09/114(0233)/2019-EMR-I).

REFERENCES

- [1] N. K. BARY, A treatise on trigonometric series, Vol. I, New York: Pergamon, Academic Press, 1964.
- [2] R. K. BERA AND B. L. GHODADRA, Rate of convergence of double Fourier series of functions of generalized bounded variation, Acta Sci. Math., 88, 3–4 (2022), 723–737.
- [3] R. K. BERA AND B. L. GHODADRA, Rate of convergence of Fourier-Legendre series of functions of generalized bounded variation, to be appear in Mathematical Notes, 2024.
- [4] R. BOJANIĆ AND M. VUILLEUMIER, On the rate of convergence of the Fourier-Legendre series of functions of bounded variation, Journal of Approximation Theory, 31, (1981), 67–79.
- [5] U. GOGINAVA, Uniform convergence of double Fourier-Legendre series of functions of bounded generalized variation, Bulletin of TICMI, 16, 2 (2012), 1–20.
- [6] E. W. HOBSON, On a general convergence theorem, and the theory of the representation of a function by series of normal functions, Proc. london Math. Soc., 6, (1909), 349–395.
- [7] M. HORMOZI, A. LEDARI, AND F. PRUS-WISNIOWSKI, On p-Λ-bounded variation, Bull. of the Iran. Math. Soc., 37, 4 (2011), 35–49.
- [8] C. JORDAN, Sur la series de Fourier, C. R. Acad. Sci. Paris. 92, (1881), 228-230.
- [9] B. V. LIMAYE AND S. R. GHORPADE, A course in multivariable calculus and analysis, Springer, New York, Dordrecht Heidelberg, London, 2010.
- [10] P. PAULINA, On the rate of pointwise convergence of the double Fourier-Legendre series, Fasc. Math., no. 19 (1990), 207–213.
- [11] A. L. RABENSTEIN, *Introduction to ordinary differential equations*, Academic Press, New York and London, 1969.
- [12] M. SHIBA, On absolute convergence of Fourier series of function of class ABV^p, Sci. Rep. Fukushima Univ., 30 (1980), 7–10.
- [13] R. G. VYAS, Properties of functions of generalized variation, Math. Anal., Approx. Theory and Their Appl., (2016), 715–741.
- [14] A. ZYGMUND, Trigonometric series, Vol. I, Cambridge university press, 1959.

(Received February 6, 2024)

Rameshbhai Karshanbhai Bera Department of Mathematics, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara-390 002 (Gujarat), India e-mail: rameshkbera8080@gmail.com

Bhikha Lila Ghodadra Department of Mathematics, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara-390 002 (Gujarat), India e-mail: bhikhu_ghodadra@yahoo.com