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ON SUMMING SEQUENCE SPACES

SANDEEP GUPTA, MANOJ KUMAR AND RITU ∗

Abstract. In this paper, keeping in view the idea of difference sequence space E() of Kızmaz
[20], we availed an opportunity to introduce new kind of summing squence spaces E() ,
E ∈ {�,c,c0} by exploring the sum of two consecutive terms. In addition to this we com-
puted the continuous as well Köthe-Toeplitz duals of these spaces. Like E() (the difference
sequence spaces of Kızmaz) new sequence spaces E() turned out to be much wider than E .

1. Introduction

We denote the set of all sequences with complex terms by  which is a linear
space w.r.t. the coordinate wise addition and scalar multiplication. Any subspace of 
is termed as sequence space. The classical sequence spaces � , c and c0 denote the
spaces of all bounded, convergent and null sequences of complex numbers respectively
which are normed spaces w.r.t. norm ‖x‖ = supk |xk| . By �p (0 < p < ) we de-
note the space of absolutely p -summable sequences of scalars, i.e., complex numbers

normed by ‖x‖p = ‖(xk)‖p = (k |xk|p)
1
p .

We recall some definitions and notations which can be easily found in [3, 11, 17,
21, 22, 26].

A sequence space  is said to be

(i) Normal (solid) if

 = {(yk) ∈  : ∃ (xk) ∈  s.t. |yk| � |xk| for allk ∈ N} ⊆  .

(ii) Monotone if  contains the canonical preimage of all its step spaces. For any
subsequence J of N and a sequence space  ,

J =
{
x = (xk) : ∃ (yk) ∈  with xk = ynk for nk ∈ J

}
is called J -stepspace or the J -sectional subspace of  . If xJ ∈ J , then the
canonical pre image of xJ is the sequence xJ which agrees with xJ on the indices
in J and is zero elsewhere.

(iii) perfect if  =  .
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(iv) Convergence free if (xk) ∈  and yk = 0 whenever xk = 0 implies (yk) ∈  .

A sequence space  with a linear topology is called a K -space provided each of
the projection maps pi :  → C defined by pi(x) = xi is continuous for all i ∈ N . A
K -space  is called an FK-space provided  is a complete linear metric space and an
FK-space whose topology is normable is called a BK space.

Given an FK-space  , we denote the nth section of a sequence x = (xk) ∈  by
x[n] = (x1,x2, . . . ,xn,0,0, . . .) and we say  has AK property if x[n] → x as n →  .

DEFINITION 1. A sequence (xk) in normed linear space (X ,‖.‖) is called a Schau-
der basis for X iff for each x∈ X , ∃ scalars’ sequence (tk) such that x =

k=1 tkxk , that
is, ‖x−n

k=1 tkxk‖→ 0 (n →) . The idea of this basis was introduced by J. Schauder
in 1927 and termed as Schauder basis.

It is a fundamental fact that the study of sequence space is generally associated
with the computation of its duals which is required in the matrix transformations.

For a sequence space  ,

 =

{
(ak) ∈ w :




k=1

|akxk| <  for all x = (xk) ∈ 

}

and

 =

{
(ak) ∈ w :




k=1

akxk <  for all x = (xk) ∈ 

}

are called  -dual and  -dual spaces of  , referred as Köthe-Toeplitz and generalized
Köthe-Toeplitz duals. One can easily observe that for sequence spaces  ,  with  ⊂ 
we have  ⊂  ,  ∈ {,} .

The continuous dual  ∗ of a sequence space  is defined as the set of all bounded
linear functionals on the space  .

A large amount of research work to enrich the theory of sequence spaces is due to
the notion of difference spaces, the credit of introduction of which goes to H. Kızmaz
[20]. He introduced

�() = {x = (xk) ∈ w : x = (xk) ∈ �}
c() = {x = (xk) ∈ w : x = (xk) ∈ c}

c0() = {x = (xk) ∈ w : x = (xk) ∈ c0}

where x = (xk) = (xk − xk+1) . In other words

 () = {x = (xk) ∈ w : x = (xk) = (xk − xk+1) ∈ } for  ∈ {�,c,c0}.

It was shown that  () are BK-spaces w.r.t. norm ‖x‖ = |x1|+ ‖x‖ for x =
(xk) ∈  () .

Following Kızmaz [20], various mathematicians mainly Altay and Başar [1], Başar
and Braha [5], Bhardwaj and Gupta [7], Çolak [10], Et and Esi [13], Gnanaseelan
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and Srivastva [14], Mursaleen and Baliarsingh [25], Tripathy and Dutta [30] and many
more extended this notion of difference sequence spaces to have various extensions/
generalizations. One may refer to [2, 4, 6–9, 12, 16–19, 23, 24, 27–29, 31–33] and much
more references can be found therein.

Motivating from the work of Kızmaz, who observed the differences of two succes-
sive terms of a sequence, we get an opportunity to observe the behaviour of sequence
by adding two successive terms of sequence with division by corresponding positional

indices which we demonstrate with an operator symbol  , where xk =
xk + xk+1

k+ k+1
and

introduced the following:

�() = {x = (xk) ∈ w : x = (xk) ∈ �}
c() = {x = (xk) ∈ w : x = (xk) ∈ c}

c0() = {x = (xk) ∈ w : x = (xk) ∈ c0}
which will be referred as summing bounded, summing convergent and summing null
sequence spaces respectively.

2. Main results

THEOREM 1. E() are Banach spaces w.r.t. norm ‖x‖ = |x1|+supk

∣∣∣ xk+xk+1
k+k+1

∣∣∣=
|x1|+‖x‖ for x = (xk) ∈ E() ; E ∈ {�,c,c0} .

Proof. It is a routine verification that E() are linear spaces w.r.t. coordinatewise
addition and coordinatewise scalar multiplication and these turn out to be normed linear
spaces with respect to the norm

‖x‖ = |x1|+ sup
k

∣∣∣∣xk + xk+1

k+ k+1

∣∣∣∣, x = (xk) ∈ E().

Here we prove that �() is a Banach space. Let
(
x(n)
)

be a Cauchy sequence in

�() where x(n) = (x(n)
1 ,x(n)

2 , . . .)∈ �() , n∈N . Then ‖x(n)−x(m)‖→ 0 as m,n→
 , i.e.,

∣∣∣x(n)
1 − x(m)

1

∣∣∣+ sup
k

∣∣∣∣∣x
(n)
k − x(m)

k + x(n)
k+1− x(m)

k+1

k+ k+1

∣∣∣∣∣→ 0 as n,m → .

Therefore we have
∣∣∣x(n)

1 − x(m)
1

∣∣∣→ 0 and

∣∣∣∣∣x
(n)
k − x(m)

k + x(n)
k+1− x(m)

k+1

k+ k+1

∣∣∣∣∣→ 0 as n,m → 

for each k ∈ N, i.e.,

∣∣∣x(n)
1 − x(m)

1

∣∣∣→ 0 and

∣∣∣∣∣x
(n)
k + x(n)

k+1

k+ k+1
− x(m)

k + x(m)
k+1

k+ k+1

∣∣∣∣∣→ 0 as n,m →  for each k ∈ N.

(1)
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This implies
(
x(n)
1

)
n∈N

and

(
x(n)
k + x(n)

k+1

k+ k+1

)
n∈N

are Cauchy sequence of scalars. Due

to completeness of C , ∃ 1 and k+1 ∈ C such that lim
n→

x(n)
1 = 1 and lim

n→

x(n)
k +x(n)

k+1
k+k+1 =

k+1 for each k ∈N . For k = 1, lim
n→

x
(n)
1 +x

(n)
2

3 = 2 and so we have lim
n→

x(n)
2 = 32−1 .

Similarly for k = 2, lim
n→

x
(n)
2 +x

(n)
3

5 = 3 implies lim
n→

x(n)
3 = 53−32 +1 . Inductively,

for each k∈N , lim
n→

x(n)
k = (2k−1)k−(2k−3)k−1+(2k−5)k−2− . . .+(−1)k−11 .

Setting 1 = 1 , 2 = 32 − 1 , 3 = 53 − 32 + 1 and k = (2k− 1)k − (2k−
3)k−1 + (2k− 5)k−2 − . . . + (−1)k−11 , for k � 2. Setting  = (1,2,3, . . .) .
Clearly 1+2

3 = 1 , 2+3
5 = 3, . . . ,

k+k+1
2k+1 = k+1 , k ∈ N . Letting m →  in 1, we

get

∣∣∣∣∣x
(n)
k + x(n)

k+1

k+ k+1
−k+1

∣∣∣∣∣→ 0 as n →  for each k ∈ N , i.e.,

∣∣∣∣∣x
(n)
k + x(n)

k+1

k+ k+1
− k + k+1

k+ k+1

∣∣∣∣∣→ 0 as n → 

which leads us

sup
k�1

∣∣∣∣∣x
(n)
k − k + x(n)

k+1− k+1

k+ k+1

∣∣∣∣∣→ 0 as n → .

Thus
∣∣∣x(n)

1 − x1

∣∣∣+ supk�1

∣∣∣∣∣x
(n)
k − k + x(n)

k+1− k+1

k+ k+1

∣∣∣∣∣→ 0 as n→ , i.e.,
∥∥∥x(n)− x

∥∥∥

→

0 as n → implying x(n) →  as n→ . For sufficiently large N as xN − ∈ �() ,
so  ∈ �() . This proves that �() is a Banach space. �

THEOREM 2. E() are BK spaces, E ∈ {�,c,c0} .

Proof. Let
(
x(n)
)

be a sequence in E() such that x(n) → x as n →  where

x(n) =
(
x(n)
k

)
k∈N

and x = (xk) ∈ E() . As
∥∥∥x(n) − x

∥∥∥

→ 0 so we have

∣∣∣x(n)
1 − x1

∣∣∣+ sup
k

∣∣∣∣∣ (x
(n)
k − xk)+ (x(n)

k+1− xk+1)
k+ k+1

∣∣∣∣∣→ 0 as n → 

which in turn implies for each k ∈N ,
∣∣∣x(n)

k − xk + x(n)
k+1− xk+1

∣∣∣→ 0 and
∣∣∣x(n)

1 − x1

∣∣∣→ 0

as n →  . Inductively assume
∣∣∣x(n)

k − xk

∣∣∣→ 0 as n →  . The result now follows from

the inequality
∣∣∣x(n)

k+1− xk+1

∣∣∣� ∣∣∣x(n)
k+1− xk+1 + x(n)

k − xk

∣∣∣+ ∣∣∣x(n)
k − xk

∣∣∣ . �



ON SUMMING SEQUENCE SPACES 131

THEOREM 3. c() has Schauder basis namely {e,e1,e2, . . .} where e = (1,2,
3, . . .) and ek = (0,0, . . . ,1,0, . . .) with 1 in kth place and zero elsewhere, k ∈ N .

Proof. Let x = (xk) ∈ c() with limk→
xk+xk+1
k+k+1 = l . Now

∥∥∥∥∥x− l e−
n


k=1

(xk − lk)ek

∥∥∥∥∥


= sup
k>n

∣∣∣∣xk + xk+1

k+ k+1
− l

∣∣∣∣→ 0 as n → 

which implies that x = l e +k(xk − lk)ek . �

COROLLARY 1. c() and c0() are separable spaces.

Proof. The result follows from the fact that if a normed linear space has Schauder
basis, then it is separable. �

COROLLARY 2. c0() has Schauder basis as {e1,e2, . . . ,ek, . . .} .

THEOREM 4. The continuous dual of c() is �1 .

Proof. By Theorem 3, {e,e1,e2, . . .} is a Schauder basis for c() and every x =
(xk)∈ c() has a unique representation x = l e+k(xk− lk)ek , where l = limk→

xk+xk+1
k+k+1 .

We define a map T : c∗() −→ �1 as follow:
Let f ∈ c∗() . Then f (x) = l f (e)+k(xk − lk) f (ek) for any x = (xk) ∈ c()

with limk→
xk+xk+1
k+k+1 = l . Setting

xk =

⎧⎨
⎩

k sgn f (ek) 3 < k � r
0 k > r or k = 1
k if 1 < k � 3

for any r > 3.

Then x = (xk) ∈ c0 ⊆ c() and ‖x‖ = 1. For this particular choice of x = (xk) , we
have f (x) = 0 f (e)+k xk f (ek) = 2 f (e2)+3 f (e3)+r

k>3 k| f (ek)| . As f is bounded so
| f (x)|� ‖ f‖‖x‖ on c() . From this we get

∣∣2 f (e2)+3 f (e3)+r
k>3 k| f (ek)|

∣∣� ‖ f‖
for any r > 3. Since r > 3 is arbitrary, so k k| f (ek)| <  . Now rewriting f (x) as we
have

f (x) = l

[
f (e)−

k

k f (ek)

]
+

k

xk f (ek) = la+
k

akxk

where a = f (e)−k f (ek)k ; ak = f (ek) where the sequence (kak) is in �1 . We are
now in a position to define T ( f ) = (a,a1,2a2,3a3, . . .) , where a, an appears in the rep-
resentation of f . It is easy to show T is surjective linear map and ‖T ( f )‖ = ‖ f‖ . �
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THEOREM 5. c() does not have AK property.

Proof. Let x = (xk) = (k) ∈ c() . Consider nth section of the sequence x = (k)
as x[n] = (1,2,3, . . . ,n,0,0,0, . . .) . Then∥∥∥x− x[n]

∥∥∥


= ‖(0,0, . . . ,n+1,n+2, . . .)‖

= sup
k>n

∣∣∣∣k+ k+1
k+ k+1

∣∣∣∣= 1 � 0 as n → . �

THEOREM 6. c0() has AK property.

Proof. Let x = (xk) ∈ c() and its nth section is

x[n] = (x1,x2,x3, . . . ,xn,0,0,0, . . .).

Now ∥∥∥x− x[n]
∥∥∥


= ‖(0,0, . . . ,xn+1,xn+2, . . .)‖

= sup
k>n

∣∣∣∣xk + xk+1

k+ k+1

∣∣∣∣→ 0 as n → . �

THEOREM 7. c() is not monotone.

Proof. For (xk) = (k)∈ �() , take yk = (1,0,0,0,5,0,0,0,9,0,0,0,13,0,0, . . .) .
Clearly y4k+1 = 4k+1+0

(4k+1)+(4k+2) = 4k+1
8k+3 → 1

2 	= 0 and y4k+2 = 0+0
(4k+2)+(4k+3) = 0 �

1
2

as k →  , i.e., subsequences (y4k+1) and (y4k+2) of (yk) does not converge to
same limit, hence (yk) /∈ c() . �

COROLLARY 3. c() is neither normal nor convergence free space.

Proof. The proof follows from the fact that for a sequence space X , convergence
free ⇒ normal ⇒ monotone. �

COROLLARY 4. c() is neither perfect.

Proof. The proof follows from fact that every perfect space is normal. �

THEOREM 8. c0() is not a monotone space.

Proof. Let (xk) = (1,−2,3,−4,5,−6,7,−8, . . .) ∈ c0() but (yk) = (1,0,0,0,5,
0,0,0,9, . . .) /∈ c0() . �

In view of Corollary 3 and Corollary 4, c0() possess none of the property of
normality, convergence free and perfectness.
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THEOREM 9. �() is not monotone.

Proof. Let (xk) = (12,−22,32,−42, . . .) ∈ �() .
Then (yk) = (1,0,32,0,52,0,72, . . .) /∈ �() . �

THEOREM 10.

(i) c ⊂ c()

(ii) c0 ⊂ c0()

(iii) � ⊂ �()

Proof.

(i) Let (xk) ∈ c with limk xk = l . As lim
k→

xk + xk+1

k+ k+1
= 0 so (xk) ∈ c() .

(ii) The proof is similar to (i).

(iii) Let (xk) ∈ � . Then, there exists M > 0 such that |xk| � M for all k � 1. Now,∣∣∣∣xk + xk+1

k+ k+1

∣∣∣∣� 2M
2k+1

� M for all k � 1

and hence (xk) ∈ �() . �

REMARK 1. Inclusion in (i) and (iii) is proper in view of sequence (xk) = (1,2,
3, . . .) and inclusion in (ii) is proper in view of the sequence (xk) =

(
(−1)k

)
.

In view of Theorem 10, we have the following inclusion figure

c0() ⊂ c() ⊂ �()
∪ ∪ ∪
c0 ⊂ c ⊂ �

REMARK 2. By definition of summing sequence spaces E() , it is clear that
c0()⊂ c() ⊂ �() . For the first proper inclusion, we consider the sequence (xk) =
(k) and for the second proper inclusion, we have (xk) =

(
(−1)kk2

)
.

THEOREM 11. Let E be a Banach sequence space and F is a closed subspace of
E . Then (F) is closed in (E) .

Proof. As F ⊆E so (F)⊆(E) . Let a= (a1,a2, . . .)∈(F) . Then there exists

a sequence
(
a(n)
)

in (F) such that
∥∥∥a(n)−a

∥∥∥


→ 0 as n →  where

a(n) =
(
a(n)

1 ,a(n)
2 , . . .

)
for all n ∈ N , i.e.,

∣∣∣a(n)
1 −a1

∣∣∣+ ∥∥∥a(n)−a
∥∥∥

→ 0 as n → 

and so
∥∥∥a(n)−a

∥∥∥

→ 0 as n →  . As

(
a(n)

)
is a sequence in F so, a ∈ F .

This implies a ∈(F) . Hence (F) ⊂ (F) .
Conversely, following similar lines we have F ⊂ (F) . Therefore, (F) =

(F) and since F is closed, (F) = (F) . �
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COROLLARY 5. If E is a separable Banach space, then so is (E) .

Proof. Let E be a separable Banach space. Then E has a countable dense sub-
set say F , i.e., F = E and F is countable. By Theorem 11, (F) = (F) and so
(F) = (E) . Thus (F) is dense in (E) . Define a map  : (F) −→ F by
(((xk)) = (xk) for all (xk) ∈ (F) . Then it is clear that  is bijective. There-
fore (F) is countable as F is countable. Thus (F) is countable dense subset of
(E) . �

COROLLARY 6. c0() and c() are separable spaces.

Proof. The proof follows in view of Corollary 5. �

THEOREM 12. Let E be a sequence space. If F is convex subset of E , then (F)
is a convex set in (E) .

Proof. Let (xk), (yk) ∈ (F) , then (xk), (yk) ∈ F . Now

xk +yk = (xk +yk) for ,  � 0,  + = 1.

As F is convex, (xk +yk)∈ F and so ((xk +yk)) , i.e., (xk +yk)∈(F)
for ,  � 0,  + = 1. �

THEOREM 13. �∩(c) = �∩(c0) .

Proof. Trivially � ∩(c0) ⊆ � ∩(c) . For reverse inclusion, let x = (xk) ∈
�∩(c) . Then x = (xk) ∈ � and

xk + xk+1

k+ k+1
→ l for some l as k →  . Since (xk) is

a bounded sequence so lim
k→

xk + xk+1

k+ k+1
= 0. This implies l = 0 and x ∈ �∩(c0) . �

The following theorem characterizes the structure of �() .

THEOREM 14. 〈xk〉 ∈ �() iff

(i) supk k−2|xk| < 

(ii) supk k−2|kxk+1 +(k+1)xk| <  .

Proof. Let (xk) ∈ �() . Then there exists M > 0 such that

|xk + xk+1| � M(2k+1) for all k ∈ N.

Now

|xk + x1|

=
{ |(xk + xk−1)− (xk−1 + xk−2)+ (xk−2 + xk−3)+ . . .− (x2 + x1)+2x1| if kodd

|(xk + xk−1)− (xk−1 + xk−2)+ (xk−2 + xk−3)+ . . .+(x2 + x1)| if k is even

�
{

M[(2k−1)+ (2k−3)+ (2k−5)+ . . .+3]+2|x1| if kodd
M[(2k−1)+ (2k−3)+ (2k−5)+ . . .+3] if k is even,
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i.e., |xk + x1| � M[(k − 1)(k + 1)] + 2|x1| for all k ∈ N . Now for k ∈ N , |xk| �
|xk +x1|+ |x1| � M(k2 −1)+3|x1| which implies supk k−2|xk|< . On the other hand

|k(xk+1)+ (k+1)xk| � k|xk + xk+1|+ |xk|
� Mk(2k+1)+O(k2) by (i).

This implies supk k−2|kxk+1 +(k+1)xk| <  .
Conversely, |kxk+1 +(k+1)xk| � k|xk + xk+1|− |xk| for all k ∈ N . This yields

|xk + xk+1| � 1
k
|kxk+1 +(k+1)xk|+ 1

k
|xk|

� 1
k
O(k2)+

1
k
O(k2)

this implies supk

∣∣∣ xk+xk+1
k+k+1

∣∣∣<  where (xk) ∈ �() . �

Before proceeding to have dual spaces of E() , E ∈ {�,c,c0} , we observe the
following points by defining a map

(I) s : �() −→ �() as s(x) = (0,x2,x3, . . .) for all x = (xk) ∈ �() .

It is easy to verify s is a linear operator and for all x ∈ �() ,

‖s(x)‖ = sup
k�1

∣∣∣∣xk + xk+1

k+ k+1

∣∣∣∣� |x1|+
∥∥∥∥xk + xk+1

k+ k+1

∥∥∥∥


= 1.‖x‖

i.e., ‖s(x)‖ � 1.‖x‖ for all x ∈ �() which implies ‖s‖ � 1. As

‖sx‖ = ‖(0,2,3, . . .)‖ for x = (k) ∈ �()

= 1 = ‖x‖
implies that ‖s‖ = 1. Here range space of s is

s(�()) = {(x1,x2, . . .) : (xk) ∈ �() with x1 = 0} ⊆ �()

is a subspace of �() . For x ∈ s(�()) , ‖x‖ = ‖x‖ .

(II) Here we prove that s(�()) and � are topologically equivalent. Let us define
a linear operator T : s(�()) −→ � as

T (x) = x for all x = (xk) ∈ s(�())

=
(

xk + xk+1

k+ k+1

)
which is one-one.

In order to to prove T is onto, let y =(yk)∈ � then there exists x = (0,x2,x3, . . .)
∈ s(�()) where x2 = 3y1 , x3 = 5y2 − 3y1 , x4 = 7y3 − 5y2 + 3y1, . . . ,xk =
(2k−1)yk−1−(2k−3)yk−2+(2k−5)yk−3− . . .+(−1)k3y1, . . . such that Tx = y .
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T is bounded: for x ∈ s[�()] we have (x) ∈ � with x1 = 0

‖Tx‖ = ‖x‖ = |x1|+‖x‖ = ‖x‖
i.e., ‖Tx‖ = 1.‖x‖ implies T is bounded, hence a continuous linear operator.
As T is one-one and onto, so T−1 : � −→ s(�()) defined as

T−1(y1,y2, . . .) =

(
0,3y1,5y2−3y1, . . . ,

k


j=1

(2 j−1)y j−1(−1)k− j, . . .

)

and

∥∥T−1y
∥∥
 = |0|+ sup

k�1

∣∣∣∣∣
k
j=1(2 j−1)y j−1(−1)k− j +k+1

j=1(2 j−1)y j−1(−1)k− j+1

k+ k+1

∣∣∣∣∣
= sup

k�1
|yk| = ‖y‖ for all y ∈ �

which yields boundedness of T−1 . Thus T : s(�()) −→ � is a homeomor-
phism, i.e., s[�()] ∼= � .

(III) Similarly, we may have sc() ∼= c , sc0() ∼= c0 and so

[sc()]∗ = [sc0()]∗ = [s�()]∗ = �1.

THEOREM 15. [s�()] =
{
(ak) : k2|ak| < 

}
= D.

Proof. Let (ak) ∈ D so k k2|ak| <  . Now for all x = (xk) ∈ [s�()] ,

sup
k

∣∣∣∣xk + xk+1

k+ k+1

∣∣∣∣< 

and so we have supk k−2|xk| <  (in view of Theorem 14). Say k−2|xk| � M for all
k � 1. The result follows from the fact


k

|akxk| =
k

(k2|ak|)(k−2|xk|).

Conversely, let (ak) ∈ [s�()] so k |akxk| <  for all x = (xk) ∈ �() .
Take xk = (k−1)2(−1)2 k � 1, i.e., x = (xk) = (0,12,−22,32,−42, . . .) . Then

sup
k

∣∣∣∣xk + xk+1

k+ k+1

∣∣∣∣= sup
k

∣∣∣∣(k−1)2(−1)k + k2(−1)k+1

2k+1

∣∣∣∣
= 1 and so (xk) ∈ s�().

⇒ k(k−1)2|ak| <  , i.e., k k2|ak| <  . �

REMARK 3. It is an open problem to have  -dual spaces of s[c()] and s[c0()] .
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3. Conclusion

The present paper mainly concerns with the introduction of some new kind of
sequence spaces along with the determination of their continuous as well as Köthe-
Toeplitz duals. In our opinion this is just a start of peep into theory of sequence space via
this work. One may steped into further for higher 2 , m and various generalizations
as for the case of difference sequence spaces and can be achived a lot.

Acknowledgement. The authors thank to the referee for valuable comments and
fruitful suggestions which enhanced the readability of the paper.
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