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A SERIES OF RAMANUJAN, TWO–TERM

DILOGARITHM IDENTITIES AND SOME LUCAS SERIES

KUNLE ADEGOKE AND ROBERT FRONTCZAK ∗

Abstract. We study an elementary series that can be considered a relative of a series studied by
Ramanujan in Part 1 of his Lost Notebooks. We derive a closed form for this series in terms of
the inverse hyperbolic arctangent and the polylogarithm. Special cases will follow in terms of
the Riemann zeta and the alternating Riemann zeta function. In addition, some trigonometric
series will be expressed in terms of the Clausen functions. Finally, a range of new two-term
dilogarithm identities will be proved and some difficult series involving Lucas numbers will be
evaluated in closed form.

1. Introduction

In Part 1 of Ramanujan’s Lost Notebooks [2], Ramanujan studied the function

(a,n) = 1+2
n


k=1

1
(ak)3 −ak

, (a) = lim
n→

(a,n).

Among other things Ramanujan proved the identities

ln(2) =
1
2
(2) =

1
2

+



k=1

1
(2k−1)(2k)(2k+1)

(1)

and
3
2

ln(2) = (4) = 1+



k=1

2
(4k−1)(4k)(4k+1)

. (2)

Ramanujan also considered the alternating variant of (a) , i.e., the function

̃(a) = 1+2



k=1

(−1)k

(ak)3 −ak
.

He obtained [2, p. 40/41]

ln(2) = ̃(2) and
4
3

ln(2) = ̃(3). (3)
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The function (a,n) has also been studied recently. It appears in an article by
Berndt and Huber from 2008 [3] who derive a new formula for the Euler-Mascheroni
constant  . In addition, we mention the article by Ravichandran from 2004 [13] where
the function (a) has been analyzed (under the notation An ).

In this article, we study a relative of Ramanujan’s function (a) , namely the series

F(z, p) =



k=1

z2k

(2k−1)(2k)p(2k+1)
, z ∈ C, p � 0. (4)

We express the series in closed form using the inverse hyperbolic arctangent, arctanh(z) ,
and the polylogarithm of order n , Lin(z) , the later being defined by [11]

Lin(z) =



k=1

zk

kn , |z| < 1.

At z = 1 we evaluate the series in terms of the Riemann zeta function given by

 (s) =



k=1

1
ks , (s) > 1.

We also show that at z = i , i =
√−1, F(z, p) can be expressed in terms of alternating

zeta, or Dirichlet’s eta, or Euler’s eta function, (s) , defined by

(s) =



k=1

(−1)k+1

ks , (s) > 0.

Other difficult series will follow as particular cases. One such series is




k=1

1
2k+3(2k−1)k3(2k+1)

=
3

2
√

2
ln(1+

√
2)+

2 ln(2)
96

− 1
2
− ln(2)

2
− ln3(2)

48
− 7

64
 (3).

In addition, as corollaries to our main theorem, we will express some trigonometric
series in terms of the Clausen functions. Finally, we prove a range of new two-term
dilogarithm identities and evaluate some difficult series involving Lucas numbers Ln.

2. The main result

Our approach is completely elementary and builds mainly on properties of the
inverse hyperbolic arctangent arctanh(z) . For complex arguments z , arctanh(z) is de-
fined by [1]

arctanh(z) =
∫ z

0

dt
1− t2

.

It is a multivalued function with a branch cut in the complex plane. It is an odd function
related to the inverse tangent via

arctanh(z) = −iarctan(iz), i =
√−1.
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The logarithmic representation of the inverse hyperbolic arctangent is given by

arctanh(z) =
1
2

ln
(1+ z

1− z

)
, |z| < 1. (5)

It is also well known that it possesses a Maclaurin series expansion of the form

arctanh(z) =



k=1

z2k−1

2k−1
, |z| < 1. (6)

Recent articles on the function include [7, 8, 16].
Now, we present our first main result.

THEOREM 1. For any integer p � 0 and |z| < 1 we have

F(z, p) =

⎧⎨⎩
1
2

((
z− 1

z

)
arctanh(z)+1−p/2

j=1 2−(2 j−1) Li2 j(z2)
)

, p even;

1
2

((
z+ 1

z

)
arctanh(z)−1+ ln(1−z2)−(p−1)/2

j=1 2−2 j Li2 j+1(z2)
)

, p odd.

(7)

Proof. We prove the identities using induction on the parameter p . We start with
the base cases p = 0 and p = 1, respectively. Employing (6) we get(

z− 1
z

)
arctanh(z) =




k=1

z2k

2k−1
−




k=1

z2k−2

2k−1

=



k=1

z2k

2k−1
−1−




k=1

z2k

2k+1

= −1+2



k=1

z2k

(2k−1)(2k+1)
.

This proves the base case p = 0. Next, we have




k=1

z2k

(2k−1)(2k)(2k+1)
=




k=1

∫ z

0

t2k−1 dt
(2k−1)(2k+1)

=
∫ z

0

1
2t

(
1+
(
t− 1

t

)
arctanh(t)

)
dt.

Using∫
1
z

(
1+
(

z− 1
z

)
arctanh(z)

)
dz = ln(1− z2)+

(
z+

1
z

)
arctanh(z)+ c,

in conjunction with

lim
z→0

(
z+

1
z

)
arctanh(z) = 1,
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we get




k=1

z2k

(2k−1)(2k)(2k+1)
=

1
2

((
z+

1
z

)
arctanh(z)−1+ ln(1− z2)

)
as desired. Now let p � 2 be arbitrary and even. Then p + 1 is odd and keeping in
mind that ∫

Lin(z2)
z

dz =
1
2

Lin+1(z2)+ c,

we get




k=1

z2k

(2k−1)(2k)p+1(2k+1)

=
∫ z

0

1
2t

(
1+
(
t− 1

t

)
arctanh(t)−

p/2


j=1

1
22 j−1 Li2 j(t2)

)
dt

=
1
2

((
z+

1
z

)
arctanh(z)−1+ ln(1− z2)−

p/2


j=1

1
22 j Li2 j+1(z2)

)
,

which proves the statement. The case p is odd is very similar and omitted. �

In particular, for |z| < 1, we have

F(z,1) =



k=1

z2k

(2k−1)(2k)(2k+1)
=

1
2

ln(1− z2)+
1
2

(
z+

1
z

)
arctanh(z)− 1

2
, (8)

F(z,2) =



k=1

z2k

(2k−1)(2k)2(2k+1)
=−1

4
Li2(z2)− 1

2

(
1− z2

z2

)
zarctanh(z)+

1
2
, (9)

and

F(z,3) =



k=1

z2k

(2k−1)(2k)3(2k+1)
= −1

4
(1− z)2

z
ln(1− z)+

1
4

(1+ z)2

z
ln(1+ z)

− 1
8

Li3(z2)− 1
2
.

(10)

COROLLARY 1. We have for p � 0

F(1, p) =



k=1

1
(2k−1)(2k)p(2k+1)

=

⎧⎨⎩
1
2 −p/2

j=1 2−2 j (2 j), p even;

− 1
2 + ln(2)−(p−1)/2

j=1 2−(2 j+1) (2 j +1), p odd.
(11)
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Proof. Take the limit z → 1 and make use of the results Lin(1) =  (n) as well as

lim
z→1

(
z− 1

z

)
arctanh(z) = 0

and

lim
z→1

((
z+

1
z

)
arctanh(z)+ ln(1− z2)

)
= 2ln(2). �

COROLLARY 2. We have for p � 0

F(i, p) =



k=1

(−1)k

(2k−1)(2k)p(2k+1)

=

⎧⎨⎩
1
2 − 

4 +p/2
j=1 2−2 j(2 j), p even;

− 1
2 + ln(2)

2 +(p−1)/2
j=1 2−(2 j+1)(2 j +1), p odd,

(12)

where (s) denotes the Dirichlet eta function.

Proof. Take the limit z→ i and make use of the results Lin(−1) = −(n) [11] as
well as

lim
z→i

(
z− 1

z

)
arctanh(z) = −

2

and

lim
z→i

((
z+

1
z

)
arctanh(z)+ ln(1− z2)

)
= ln(2). �

Some particular cases of the previous results are stated below:




k=1

1
(2k−1)(2k)(2k+1)

= ln(2)− 1
2
,




k=1

(−1)k

(2k−1)(2k)(2k+1)
=

1
2
(ln(2)−1),




k=1

1
(2k−1)(2k)2(2k+1)

=
1
2
− 2

24
,




k=1

(−1)k

(2k−1)(2k)2(2k+1)
=

1
2
− 

4
+
2

48
.

The first identity is a rediscovery of Ramanujan’s identity (1) while the second
recovers his first result in (3).
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COROLLARY 3. We have



k=1

1
2k+1(2k−1)k(2k+1)

=
3

2
√

2
ln(1+

√
2)− 1

2
(ln(2)+1), (13)




k=1

1
2k+2(2k−1)k2(2k+1)

=
1
2

+
1
8

ln2(2)− 2

48
− 1

2
√

2
ln(1+

√
2), (14)




k=1

1
2k+3(2k−1)k3(2k+1)

=
3

2
√

2
ln(1+

√
2)+

2 ln(2)
96

− 1
2
(ln(2)+1)− ln3(2)

48
− 7

64
 (3). (15)

Proof. Set z = 1/
√

2 in (7), use

Li2

(
1
2

)
=

1
2

(
 (2)− ln2(2)

)
and

Li3

(
1
2

)
=

7
8
 (3)− 1

2
ln(2) (2)+

1
6

ln3(2),

and simplify. �

COROLLARY 4. With  = (1+
√

5)/2 being the golden section we have




k=1

1
5k(2k−1)(2k)(2k+1)

=
1
2

ln

(
4
5

)
+

3√
5

ln()− 1
2
, (16)




k=1

4k

5k(2k−1)(2k)(2k+1)
= −1

2
ln(5)+

27

4
√

5
ln()− 1

2
, (17)




k=1

5k

9k(2k−1)(2k)(2k+1)
= ln

(
2
3

)
+

14

3
√

5
ln()− 1

2
. (18)

Proof. Evaluate (8) at z = 1/
√

5, z = 2/
√

5 and z =
√

5/3. �

COROLLARY 5. If p is a non-negative integer and 0 < x < 2 , then




k=1

cos(kx)
(2k−1)(2k)p(2k+1)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 − 

4 sin
(

x
2

)− p/2


j=1

Gl2 j(x)
22 j , p even;

− 1
2 − 1

2 cos
(

x
2

)
ln
(
tan
(

x
4

))
+ 1

2 ln
(
2sin

(
x
2

))− (p−1)/2


j=1

Cl2 j+1(x)
22 j+1 , p odd;

(19)
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and



k=1

sin(kx)
(2k−1)(2k)p(2k+1)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

2 sin
(

x
2

)
ln
(
tan
(

x
4

))− p/2


j=1

Cl2 j(x)
22 j , p even;


4 cos

(
x
2

)− 1
4(− x)−

(p−1)/2


j=1

Gl2 j+1(x)
22 j+1 , p odd;

(20)

where Cln(y) and Gln(y) are the Clausen functions [11] defined through

Li2n(eix) = Gl2n(x)+ iCl2n(x),

Li2n+1(eix) = Cl2n+1(x)+ iGl2n+1(x);

so that

Cl2n(x) =



k=1

sin(kx)
k2n , Cl2n+1(x) =




k=1

cos(kx)
k2n+1 ,

Gl2n(x) =



k=1

cos(kx)
k2n , Gl2n+1(x) =




k=1

sin(kx)
k2n+1 .

Proof. Set z = exp(ix/2) in Theorem 1 and take real and imaginary parts. �

COROLLARY 6. If p is a non-negative integer, then




k=1

cos(kx)
(2k−1)(2k)2p(2k+1)

=
1
2
− 

4
sin
( x

2

)
− 1

2

p


j=1

(−1) j+12 j

(2 j)!
B2 j

( x
2

)
, (21)




k=1

sin(kx)
(2k−1)(2k)2p+1(2k+1)

=

4

cos
( x

2

)
− 1

4
(− x)− 1

2

p


j=1

(−1) j+12 j+1

(2 j +1)!
B2 j+1

( x
2

)
, (22)

where Bn(y) are the Bernoulli polynomials defined by

text

et −1
=




k=0

Bk(x)tk

k!
.

Proof. Use the identity [11]

Gln(x) = (−1)1+�n/2�2n−1n Bn(x/2)
n!

in Corollary 5. �
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THEOREM 2. If p is a non-negative integer, then




k=1

(−1)k−1

(4k−1)(4k)2p+1(4k+1)

=
1
2

+
√

2
4

ln(
√

2−1)− 1
4

ln(2)− 1
4

p


j=1

(1−2−2 j)
24 j  (2 j +1),

(23)




k=1

(−1)k−1

(4k−3)(4k−2)2p+1(4k−1)
=


8

(
√

2−1)− 1
2

p


j=1

(−1) j+12 j+1

(2 j +1)!
B2 j+1(1/4).

(24)

Proof. Write 2p+1 for p in (19), set x = /2 and use the identity [11]

Cl2n+1(/2) = −2−(2n+1)(1−2−2n) (2n+1)

to obtain



k=1

cos(k/2)
(2k−1)(2k)2p+1(2k+1)

= −1
2
−

√
2

4
ln(

√
2−1)+

1
4

ln(2)+
1
4

p


j=1

(1−2−2 j)
24 j  (2 j +1),

from which (23) follows. Identity (24) is proved by setting x = /2 in (22). �

THEOREM 3. If p is a non-negative integer, then




k=1

1
(6k−1)(6k)2p+1(6k+1)

− 1
2

( 


k=1

1
(6k+1)(6k+2)2p+1(6k+3)

+



k=1

1
(6k+3)(6k+4)2p+1(6k+5)

)
=

1
3

1
22p+2 +

1
15

1
24p+3 −

1
2

+
3
8

ln(3)+
1
4

p


j=1

(1−3−2 j)
22 j  (2 j +1)

(25)

and



k=0

1
(6k+1)(6k+2)2p+1(6k+3)

−



k=0

1
(6k+3)(6k+4)2p+1(6k+5)

=
√

3
36

−
√

3
3

p


j=1

(−1) j+12 j+1

(2 j +1)!
B2 j+1(1/3).

(26)

Proof. Again, write 2p+1 for p in (19), set x = 2/3 and use the identity [11]

Cl2n+1(2/3) = −1
2
(1−3−2n) (2n+1)
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to obtain




k=1

cos(2k/3)
(2k−1)(2k)2p+1(2k+1)

= −1
2

+
3
8

ln(3)+
1
4

p


j=1

(1−3−2 j)
22 j  (2 j +1),

from which (25) follows upon noting that

cos(2k/3) =

{
1, k ≡ 0 mod 3;

−1/2, k ≡ 1,2 mod 3;

and simplifying. Identity (26) is proved by setting x = 2/3 in (22) in conjunction with

sin(2k/3) =

⎧⎪⎨⎪⎩
0, k ≡ 0 mod 3;√

3/2, k ≡ 1 mod 3;

−√
3/2, k ≡ 2 mod 3. �

Additional interesting results can be obtained from Corollaries 5 and 6, which we
leave for a private study.

3. Another approach to evaluate F(1, p) and F(i, p)
and a restatement of Theorem 1

There is another direct approach to evaluate the series F(1, p) and F(i, p) , re-
spectively. As F(1,0) and F(i,0) follow easily be telescoping we assume that p � 1.
From the partial fraction decomposition

1
(2k−1)kp(2k+1)

= − 1
kp +

1
kp−1(2k+1)

+
1

kp−1(2k−1)

in conjunction with

1
kp(2k+1)

=
1
kp − 2

kp−1(2k+1)
,

1
kp(2k−1)

= − 1
kp +

2
kp−1(2k−1)

,

we get for p � 1

1
(2k−1)kp(2k+1)

= − 1
kp +

p−2


j=0

2 j((−1) j −1)
kp−1− j +2p−1

((−1)p−1

2k+1
+

1
2k−1

)
. (27)

This produces

F(1, p) = −2−p (p)+
p−2


j=0

(−1) j −1
2p− j  (p−1− j)+

1
2




k=1

( 1
2k−1

+
(−1)p−1

2k+1

)
.

If p is even, then by telescoping




k=1

( 1
2k−1

− 1
2k+1

)
= 1



10 K. ADEGOKE AND R. FRONTCZAK

and

F(1, p) =
1
2
−2−p (p)−

(p−2)/2


j=1

1
2p−2 j  (p−2 j).

This is the identity for p even as stated in (11). Similarly if p is odd, then




k=1

( 1
2k−1

+
1

2k+1

)
= 1+2




k=1

1
2k+1

and after some calculations

F(1, p) = −1
2

+ ln(2)−2−p (p)−
(p−3)/2


j=1

2−(p−2 j) (p−2 j).

The last expression is equivalent to the second part in (11). The derivation of F(i, p)
based on a partial fraction decomposition is done in the same way making use of the
results




k=1

(−1)k

(2k−1)(2k+1)
=

2−
4

and



k=1

(−1)kk
(2k−1)(2k+1)

= −1
4
.

The remaining steps are omitted.
Surprisingly, the above analysis allows to prove Theorem 1 directly, without re-

quiring to distinguish between p odd and p even, respectively. Note that (27) is equiv-
alent to

1
(2k−1)kp(2k+1)

= − 1
kp +

	p/2
−1


j=1

22 j

kp−2 j +2p−1
(

(−1)p−1

2k+1
+

1
2k−1

)
,

which, multiplying through by zk , gives

zk

(2k−1)kp(2k+1)
= − zk

kp +
	p/2
−1


j=0

22 jzk

kp−2 j +2p−1zk
(

(−1)p−1

2k+1
+

1
2k−1

)
.

Hence we obtain




k=1

zk

(2k−1)kp(2k+1)
= −




k=1

zk

kp +
	p/2
−1


j=0

22 j



k=1

zk

kp−2 j

+2p−1



k=1

zk
(

(−1)p−1

2k+1
+

1
2k−1

)
. (28)

To evaluate the last term in (28), by (6), let

f (z) =



k=1

zk

2k−1
=
√

zarctanh(
√

z) =
√

z
2

ln

(
1+

√
z

1−√
z

)
, |z| < 1.
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Then



k=1

zk
(

(−1)p−1

2k+1
+

1
2k−1

)
= (−1)p−1




k=1

zk

2k+1
+ f (z)

= (−1)p−1



k=2

zk−1

2k−1
+ f (z)

=
(−1)p−1

z

(



k=1

zk

2k−1
− z

)
+ f (z)

=
(−1)p−1

z
f (z)+ (−1)p + f (z).

Thus,




k=1

zk
(

(−1)p−1

2k+1
+

1
2k−1

)
=
(

1+
(−1)p−1

2

)√
z

2
ln

(
1+

√
z

1−√
z

)
+(−1)p. (29)

Using (29) in (28) and invoking the definition of the polylogarithm to write the first two
terms of (28) gives for p a non-negative integer and |z| < 1 the identity




k=1

zk

(2k−1)kp(2k+1)
= −Lip(z)−

	p/2
−1


j=1

22 j Lip−2 j(z)

+2p−2
(

1+
(−1)p−1

z

)√
z ln

(
1+

√
z

1−√
z

)
+2p−1(−1)p.

(30)

This is an equivalent form of Theorem 1.

4. New two- and three-term dilogarithm identities and the evaluations
of some related series

It is obvious that from Theorem 1 for suitable choices of the parameter z additional
interesting series can be evaluated in closed form. In this section, we focus on series
involving the golden section  and Lucas numbers Ln .

Recall that the Fibonacci numbers Fn and the Lucas numbers Ln are defined, for
n ∈ Z , through the recurrence relations Fn = Fn−1 +Fn−2 , n � 2, with initial values
F0 = 0, F1 = 1 and Ln = Ln−1 +Ln−2 with L0 = 2, L1 = 1. For negative subscripts we
have F−n = (−1)n−1Fn and L−n = (−1)nLn . They possess the explicit formulas (Binet
forms)

Fn =
n − n

−
, Ln = n + n, n ∈ Z, (31)

where  = (1+
√

5)/2 and  = −1/ = (1−√
5)/2. The number  is the famous

golden section. The relation Ln = F2n/Fn follows directly from (31). Excellent refer-
ences concerning Fibonacci and Lucas numbers are the books by Koshy [10] and Vajda
[15].
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At this point we can extend the identities in Corollary 4 to Fibonacci and Lucas
numbers.

THEOREM 4. If n is a positive even integer, then




k=1

5kF2k
n

L2k
n (2k−1)(2k)(2k+1)

= ln(2)− ln(Ln)+
n√
5

L2n

F2n
ln()− 1

2
. (32)

Proof. Set z = Fn
√

5/Ln in (8). When simplifying use the Binet formulas and the
basic identities

L2
n = 5F2

n +(−1)n4, 5F2
n = L2n +(−1)n+12, L2

n = L2n +(−1)n2. �

THEOREM 5. If n is an odd integer, then




k=1

L2k
n

F2k
n 5k(2k−1)(2k)(2k+1)

= ln(2)− 1
2

ln(5)− ln(Fn)+
n√
5

L2n

F2n
ln()− 1

2
. (33)

Proof. Set z = Ln/Fn
√

5 in (8). �

THEOREM 6. If r is an even integer and s is any integer, then




k=1

L2rk+s

L2k
r (2k−1)(2k)(2k+1)

=
1
4
Fs

√
5ln

(
 rLr +1
rLr +1

)
+

1
4
Ls ln

(
2L2

r +1
L4

r

)
− Ls

2

+
1
8
L2

rFs

√
5ln

((
Lr +r

Lr + r

)
2r
)

+
1
8
L2

r Ls ln(2L2
r +1)

− (L2
r −1)
8Lr

Fr+s

√
5ln

((
Lr +r

Lr + r

)
2r
)
− (L2

r −1)
8Lr

Lr+s ln(2L2
r +1),

(34)




k=1

F2rk+s

L2k
r (2k−1)(2k)(2k+1)

=
1
4

Ls√
5

ln

(
 rLr +1
rLr +1

)
+

1
4
Fs ln

(
2L2

r +1
L4

r

)
− Fs

2

+
1
8
L2

r
Ls√
5

ln

((
Lr +r

Lr + r

)
2r
)

+
1
8
L2

rFs ln(2L2
r +1)

− (L2
r −1)
8Lr

Lr+s√
5

ln

((
Lr +r

Lr + r

)
2r
)
− (L2

r −1)
8Lr

Fr+s ln(2L2
r +1).

(35)

Proof. Set z = r/Lr and z =  r/Lr , in turn, in (8); add and subtract the resulting
identities to obtain (34) and (35). �
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THEOREM 7. If s is any integer, then




k=1

L2k+s

4k(2k−1)(2k)(2k+1)
= −Ls ln(2)+

5
16

Ls+1 ln(5)

+
√

5
8

(15Fs−1−Fs) ln()− Ls

2
, (36)




k=1

F2k+s

4k(2k−1)(2k)(2k+1)
= −Fs ln(2)+

5
16

Fs+1 ln(5)

+
1

8
√

5
(15Ls−1−Ls) ln()− Fs

2
. (37)

Proof. Set z = /2 and z = /2, in turn, in (8); add and subtract the resulting
identities to obtain (36) and (37). �

To prove the main results of this section we will need the following nontrivial
identities for the dilogarithm [11]:

Li2(−1) = −2

12
, (38)

Li2(−) = −2

10
− ln2(), (39)

Li2(− ) = Li2
( 1


)
=

2

10
− ln2(), (40)

Li2( 2) = Li2
( 1
2

)
=

2

15
− ln2(). (41)

Inserting z = 1/ and z = 1/
√
 in (8) and (9), respectively, using trivial proper-

ties of the golden section, and (40) and (41) we get, for instance, the evaluations




k=1

1
2k(2k−1)(2k)2(2k+1)

=
1
2
− 2

60
− 3

4
ln()+

1
4

ln2(),

as well as




k=1

1
k(2k−1)(2k)2(2k+1)

=
1
2
− 2

40
− 1

2
√


arctanh
( 1√



)
+

1
4

ln2().

A series involving k3 in the denominator comes from combining (10) with the
identity (consult [11] for a derivation)

Li3
( 1
2

)
=

4
5
 (3)+

2
3

ln3()− 2
15

2 ln(). (42)
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The result is




k=1

1
2k(2k−1)(2k)3(2k+1)

=
(2

60
+1+

3
43

)
ln()− 1

12
ln3()

− 1
10

 (3)− 1
2
.

Recently, Campbell published two papers about dilogarithm identities [5, 6]. The
paper [5] is about extending the work of Lima [12] via Fourier-Legendre theory (poly-
nomial expansion). It contains five two-term dilogarithm identities which are rediscov-
eries of previously known dilogarithm identities. All five results are well-documented
in the book by Lewin [11]. One such identity is [5, Eq. (9)]

Li2

(
1
3

)
−Li2( 3) =

3(2−18ln2())
3(6−1)

, (43)

which in view of
6 −1 = (3−1)(3 +1) = 43,

can be nicely simplified resulting in

Li2

(
1
3

)
−Li2( 3) =

2

12
− 3

2
ln2(). (44)

Identity (44) is identity (1.70) of Lewin. Also Lima’s main result from 2012 [12]
is Lewin’s equation (1.68). Campbell’s paper [6] is an addendum to his first publica-
tion [5], where he references Lewin’s work, discusses his results from [5], and gives a
historical survey. We also recommend the papers by Boyadzhiev and Manns [4] and
Stewart [14]. Boyadzhiev and Manns discuss several topics related to polylogarithms
with special focus on dilogarithms. Stewart offers a number of proofs for “Lima’s iden-
tity” while making use of known functional relations for the dilogarithm function.

In what follows, we present presumably new nontrivial two-term dilogarithm iden-
tities involving the golden section based on Lewin’s book [11]. Such relations can be
derived in a fairly straightforward manner using certain transformations.

THEOREM 8. We have the following relations:

Li2
(

2

)
+Li2

(

2

)
=

2

12
+2ln2()− ln2(2), (45)

Li2

(
3

5

)
+Li2

(
 3

5

)
=

2

12
+6ln2()−2ln2(2)+2ln(2) ln(5)

− ln2(5)−Li2
(
− 1

4

)
, (46)

Li2

(
r

Lr

)
+Li2

(
 r

Lr

)
=

2

6
+ r2 ln2()− ln2(Lr), r � 0 , r even, (47)
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in particular

Li2

(
2

3

)
+Li2

(
 2

3

)
=

2

6
+4ln2()− ln2(3), (48)

Li2

(
r

√
5Fr

)
+Li2

( − r
√

5Fr

)
=

2

6
+ r2 ln2()− 1

4
ln2(5)− ln(5) ln(Fr)− ln2(Fr),

r � 1, r odd, (49)

in particular

Li2

(
√
5

)
+Li2

(−√
5

)
=

2

6
+ ln2()− 1

4
ln2(5), (50)

Li2

(
2

4

)
+Li2

(
 2

4

)
=

2

6
+2ln2()− 1

2
ln2(5)+2ln(2) ln(5)

−4ln2(2)−Li2
(1

5

)
(51)

and

Li2
(

3

)
+Li2

(

3

)
= ln2()− 1

4
ln2(5)+ ln(3) ln(5)− ln2(3)

+
3
2

Li2
(1

5

)
− 1

2
Li2
( 1

25

)
. (52)

Proof. Many relations of this kind follow from the two-term identity [11]

Li2
( x

1− x
y

1− y

)
= Li2

( x
1− y

)
+Li2

( y
1− x

)
−Li2(x)−Li2(y)− ln(1− x) ln(1− y). (53)

To prove (45) set x = /2 and y = /2 in (53), respectively. We have

x
1− x

y
1− y

= −1,
x

1− y
= − ,

y
1− x

= −.

Hence, we get

Li2
(

2

)
+Li2

(

2

)
= Li2(− )+Li2(−)−Li2(−1)− ln(1/(22)) ln(2/2).

Equation (45) follows upon using (38)–(40) and simplifying. For (46) insert x = 3/5
and y =  3/5 in (53), respectively. This gives

Li2

(
3

5

)
+Li2

(
 3

5

)
= Li2

(
2

)
+Li2

(

2

)
−Li2

(
− 1

4

)
− ln(1−3/5) ln(1− 3/5).
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Now, use (45) and simplify. To prove (47) we use the dilogarithm reflection formula

Li2(x)+Li2(1− x) =
2

6
− ln(x) ln(1− x), (54)

with x = r/Lr , r even, and simplify. Identity (48) is the case r = 2 in (47). Identity
(49) follows from the reflection formula (54) with x = r/

√
5Fr , r odd, after some

steps of simplifications. Identity (50) is the case r = 1 in (49). Next, insert x = 2/4
and y =  2/4 in (53) and calculate

x
1− x

y
1− y

=
1
5
,

x
1− y

=
√
5
,

y
1− x

= − √
5
.

Hence,

Li2

(
2

4

)
+Li2

(
 2

4

)
= Li2

(
√
5

)
+Li2

(−√
5

)
−Li2

(1
5

)
− ln(

√
5/(4)) ln(

√
5/4).

Using identity (50) the identity is proved after some steps of simplifications. Finally,
the choices x = /3 and y = /3 in (53) yield

Li2
(

3

)
+Li2

(

3

)
= Li2

(
1√
5

)
+Li2

(
− 1√

5

)
−Li2

(
−1

5

)
− ln(1−/3) ln(1−/3).

Form here apply the dilogarithm identity

Li2(x)+Li2(−x) =
1
2

Li2(x2)

twice and simplify. �

REMARK 1. We observe that (50) can also be proved using (53) with x = /
√

5
and y = −/

√
5, respectively. Since

x
1− x

y
1− y

=
x

1− y
=

y
1− x

= 1,

we get the striking simple relation

Li2

(
√
5

)
+Li2

(−√
5

)
= Li2(1)+ ln(/

√
5) ln(

√
5).

As Li2(1) =  (2) the proof is completed.

It is also worth noting that each of the equations (45)–(52) can be stated equiva-
lently as an infinite sum involving Lucas and Fibonacci numbers. In particular, we state
the following three examples:




k=1

Lk

2kk2 =
2

12
+2ln2()− ln2(2), (55)
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


k=1

L3k

5kk2 =
2

12
+6ln2()−2ln2(2)+2ln(2) ln(5)− ln2(5)−




k=1

(−1)k

4kk2 , (56)




k=1

Lrk

Lk
rk2 =

2

6
+ r2 ln2()− ln2(Lr), r � 0, r even. (57)

THEOREM 9. The following series involving Lucas numbers Ln allow a closed
form evaluation



k=1

Lk

2k+2(2k−1)k2(2k+1)
= 1− 2

48
+

1
4

ln2(2)− 1
2

ln2()

− 1

22
√

2
arctanh

(√

2

)
− 2√

2
√

2
arctan

(√
1

2

)
,

(58)




k=1

L3k

5k(2k−1)(2k)2(2k+1)
= 1− 2

48
+

1
2

ln2(2)− 3
2

ln2()− 1
2

ln(2) ln(5)+
1
4

ln2(5)

+
1
4

Li2
(
− 1

4

)
− 1

3
√

5
arctanh

(√√
5

)
−3√√

5
arctan

( 1


√

5

)
, (59)




k=1

Lrk

Lk
r(2k−1)(2k)2(2k+1)

= 1− 2

24
− 1

4
r2 ln2()+

1
4

ln2(Lr)

− 1
2

√
1

3rLr
arctanh

(√
r

Lr

)

− 1
2

√
3r

Lr
arctanh

(√
1

rLr

)
, r ∈ N0, r even,

(60)




k=1

L2k

5k(4k−1)(4k)2(4k+1)
+




k=1

F2k−1

5k−1(4k−3)(4k−2)2(4k−1)

= 1− 2

24
+

1
16

ln2(5)− 1
4

ln2()

− 1

2
√√

5

(
1


√


arctanh

(√
√
5

)
+

√
 arctanh

(√
1√
5

))
, (61)

and



k=1

L2k

4k+1(2k−1)k2(2k+1)
= 1− 2

24
− 1

2
ln2()− 9

√
5

8
ln()+

5
16

ln(5)

+
1
8

ln2(5)− 1
2

ln(2) ln(5)+ ln2(2)+
1
4

Li2
(1

5

)
. (62)
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Proof. To prove (58) set z =
√
/2 and z = i

√−/2 in (7), respectively, com-
bine according to the Binet form, simplify and make use of (45). To prove (59) set
z =

√
3/5 and z = i

√
− 3/5 in (7), respectively, combine according to the Binet

form, simplify and make use of (46). Identity (60) comes from setting z =
√
r/Lr

and z =
√
 r/Lr , in turn, in (9) and making use of (47). To prove (61) set z =

√
/

√
5

and z =
√
−/

√
5 in (7), respectively, combine according to the Binet form, simplify

and make use of (50). Finally, proceed as before with z = /2 and z = /2 in (7),
respectively. When simplifying apply the relation (51). �

Using the identities of Hoggatt et al. (Lemma 1) we will extend the identity (47).

LEMMA 1. (Hoggatt et al. [9]) For p and q integers,

Fp+q−Fpq =  pFq, (63)

Fp+q−Fp q =  pFq, (64)

Lp+q−Lpq = − pFq

√
5, (65)

Lp+q−Lp q =  pFq

√
5. (66)

LEMMA 2. For integers p and q,

Li2

(
Fp

Fp+q
q
)

+Li2

(
Fq

Fp+q
 p
)

=
2

6
− ln

(
Fp

Fp+q
q
)

ln

(
Fq

Fp+q
 p
)

, p+q �= 0,

(67)

Li2

(
Fq

Fp+q
 p
)

+Li2

(
Fp

Fp+q
 q
)

=
2

6
− ln

(
Fq

Fp+q
 p
)

ln

(
Fp

Fp+q
 q
)

, p+q �= 0,

(68)

Li2

(
Lp

Lp+q
q
)

+Li2

(
−Fq

√
5

Lp+q
 p

)
=

2

6
− ln

(
Lp

Lp+q
q
)

ln

(
−Fq

√
5

Lp+q
 p

)
, (69)

Li2

(
Lp

Lp+q
 q
)

+Li2

(
Fq
√

5
Lp+q

 p

)
=

2

6
− ln

(
Lp

Lp+q
 q
)

ln

(
Fq
√

5
Lp+q

 p

)
. (70)

Proof. Use the dilogarithm reflection formula (54). �

As usual, identities (67)–(70) can be stated as Fibonacci and Lucas series, namely,
that if p and q are positive integers, then




k=1

Fk
pLqk +Fk

q Lpk

Fk
p+qk2

=
2

3
− ln

(
Fp

Fp+q
q
)

ln

(
Fq

Fp+q
 p
)

− ln

(
Fq

Fp+q
 p
)

ln

(
Fp

Fp+q
 q
)

, p even, q even,

(71)
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and




k=1

Lk
pLkq

Lk
p+qk2

+



k=1

F2k
q 5kL2kp

L2k
p+q(2k)2

+



k=1

F2k−1
q 5kF(2k−1)p

L2k−1
p+q (2k−1)2

=
2

3
− ln

(
Lp

Lp+q
q
)

ln

(
−Fq

√
5

Lp+q
 p

)
− ln

(
Lp

Lp+q
 q
)

ln

(
Fq
√

5
Lp+q

 p

)
,

p odd, q even.

(72)

When p = q = 2 then (71) gives




k=1

L2k

3kk2 =
2

6
+4ln2()− ln2(3),

which confirms (57) with r = 2. When p = 1 and q = 2 then (72) produces




k=1

L2k

4kk2 +



k=1

5kL2k

42k(2k)2 +



k=1

5kF2k−1

42k−1(2k−1)2 =
2

3
+4ln2()+2ln(2) ln(5)−8ln2(2).

Identities (71) and (72) also lead to Ramanujan type sums as presented in Theorem
9. We state the result corresponding to (71) in the next theorem and leave the other sum
as an exercise.

THEOREM 10. Let p and q be even integers. Then




k=1

Fk
pLqk +Fk

q Lpk

Fk
p+q(2k−1)(2k)2(2k+1)

= 2− 2

12
− 1

4
ln

(
Fp

Fp+q
q
)

ln

(
Fq

Fp+q
 p
)
− 1

4
ln

(
Fq

Fp+q
 p
)

ln

(
Fp

Fp+q
 q
)

−1
2

Fq p√
Fp+qFpq

arctanh

(√
Fpq

Fp+q

)
− 1

2
Fpq√

Fp+qFq p
arctanh

(√
Fq p

Fp+q

)

−1
2

Fp q√
Fp+qFq p

arctanh

(√
Fq p

Fp+q

)
− 1

2
Fq p√

Fp+qFp q
arctanh

(√
Fp q

Fp+q

)
. (73)

5. Additional series

In the next couple of theorems we state identities involving binomial coefficients.

LEMMA 3. Let m ∈ Z+ , m � 2 . Let z be any real or complex variable such that
|z| < 1 . Then
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


k=1

(2k
m

)
z2k

(2k−1)(2k)(2k+1)

=
1
4z

m−1


j=0

1
m− j

(
(−1)m−1

(
z

1+ z

)m− j

+(−1) j
(

z
1− z

)m− j
)

+
1

2m

(
(−1)m−1

(
1+

z
2

)( z
1+ z

)m

−
(
1− z

2

)( z
1− z

)m)
+

1
4(m−1)

(
(−1)m(1+ z)

(
z

1+ z

)m

+(1− z)
(

z
1− z

)m)
+

(−1)m

4z
ln

(
1+ z
1− z

)
.

(74)

Proof. Differentiate (8) with respect to z , m times. �

THEOREM 11. If m is a positive integer greater than or equal to 2 , then




k=1

(2k
m

)
5k(2k−1)(2k)(2k+1)

=
5
4

�(m−1)/2�

j=0

Fm−2 j

m−2 j
1

2m−2 j −
5
4

	(m−1)/2


j=1

Fm−2 j+1

m−2 j +1
1

2m−2 j+1

− Lm

m
1

2m+1 +
Fm

m
1

2m+2 +
Fm−1

m−1
1

2m+1 +
(−1)m

2

√
5 ln(),

(75)




k=1

4k
(2k

m

)
5k(2k−1)(2k)(2k+1)

=
5
8

�(m−1)/2�

j=0

F3(m−2 j)

m−2 j
2m−2 j − 5

8

	(m−1)/2


j=1

F3(m−2 j+1)

m−2 j +1
2m−2 j+1

− L3m

m
2m−1 +

F3m

m
2m−1 +

F3(m−1)

m−1
2m−2 +

(−1)m3
4

√
5ln(),

(76)

and




k=1

5k
(2k

m

)
9k(2k−1)(2k)(2k+1)

=
3

4
√

5

m−1


j=0

A(m, j)
m− j

+
1

m2m+1

⎧⎨⎩5m/2
(
− 5

2L2m +L2m−1

)
, m even;

5(m+1)/2
(
− 5

2F2m +F2m−1

)
, m odd;

+
1

3(m−1)2m+1

{
5m/2L2m−2, m even;

5(m+1)/2F2m−2, m odd;

(77)
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with

A(m, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− 5(m− j)/2

2m− j L2(m− j), m even, j odd;

5(m− j)/2

2m− j L2(m− j), m odd, j even;

5(m− j+1)/2

2m− j F2(m− j), m even, j even;

− 5(m− j+1)/2

2m− j F2(m− j), m odd, j odd.

Proof. Setting z = 1/
√

5 in (74) gives (75) while z = 2/
√

5 gives (76) and z =√
5/3 gives (77). �

THEOREM 12. If n is a positive even integer and m is a positive integer, then




k=1

F2k
n 5k

(2k
2m

)
L2k

n (2k−1)(2k)(2k+1)

=
Ln

4Fn

m−1


j=0

5m− j

2m−2 j
F2m−2 j

n

22m−2 j Fn(2m−2 j)

− Ln

4Fn

m


j=1

5m− j

2m−2 j +1
F2m−2 j+1

n

22m−2 j+1 Ln(2m−2 j+1)

− 5m

m
F2m

n

22m+2 L2nm +
1
Ln

5m+1

m
F2m+1

n

22m+3 F2nm

+
1
Ln

5m

(2m−1)
F2m

n

22m+1 Ln(2m−1) +
nLn

2Fn
√

5
ln(),

(78)




k=1

F2k
n 5k

( 2k
2m+1

)
L2k

n (2k−1)(2k)(2k+1)

=
Ln

4Fn

m


j=0

5m− j

2m−2 j +1
F2m−2 j+1

n

22m−2 j+1 Ln(2m−2 j+1)

− Ln

4Fn

m


j=1

5m− j+1

2m−2 j +2
F2m−2 j+2

n

22m−2 j+2 Fn(2m−2 j+2)

− 5m+1

(2m+1)
F2m+1

n

22m+2 Fn(2m+1) +
1
Ln

5m+1

(2m+1)
F2m+2

n

22m+3 Ln(2m+1)

+
1
Ln

5m+1

m
F2m+1

n

22m+3 F2mn− nLn

2Fn
√

5
ln().

(79)

Proof. Set z = Fn
√

5/Ln in (74), consider the parity of m and use the Binet for-
mulas. �
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LEMMA 4. Let m ∈ Z+ , m � 2 . Let z be any real or complex variable such that
|z| < 1 . Then




k=1

(2k
m

)
z2k

(2k−1)k2(2k+1)

= 2
(−1)m−1

m
ln(1− z2)+

(−1)m

z
ln

(
1− z
1+ z

)
+

1
m−1

(
(−1)m(1+ z)

(
z

1+ z

)m

+(1− z)
(

z
1− z

)m)
− 1

m

(
(−1)mz

(
z

1+ z

)m

− z

(
z

1− z

)m)
+

2
m

m−1


j=1

1
m− j

(
(−1)m

(
z

1+ z

)m− j

+(−1) j
(

z
1− z

)m− j
)

+
m−1


j=0

1
m− j

(
(−1)m 1

z

(
z

1+ z

)m− j

− (−1) j 1
z

(
z

1− z

)m− j
)

.

(80)

Proof. Differentiate 4F(z,2) given in (9) m times with respect to z . �

THEOREM 13. If m is a positive integer greater than or equal to 2 , then




k=1

(2k
m

)
5k(2k−1)k2(2k+1)

= 2
(−1)m

m
ln

(
5
4

)
− (−1)m2

√
5ln()+

Fm−1

m−1
1

2m−1 +
Fm

m
1
2m

+
2
m

�(m−1)/2�

j=1

Lm−2 j

m−2 j
1

2m−2 j −
2
m

	(m−1)/2


j=1

Lm−2 j+1

m−2 j +1
1

2m−2 j+1

−5
�(m−1)/2�

j=0

Fm−2 j

m−2 j
1

2m−2 j +5
	(m−1)/2


j=1

Fm−2 j+1

m−2 j +1
1

2m−2 j+1 .

(81)

Proof. Set z = 1/
√

5 in (80). �
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