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DUALITY AND STABILITY OF OPERATOR VALUED

FRAMES FOR QUATERNIONIC HILBERT SPACES

RUCHI BHARDWAJ AND S. K. SHARMA ∗

Abstract. This paper aims to prove some significant properties and relations between operator
valued frames (OV-frames) in quaternionic Hilbert spaces. Various properties concerning the
dual of an OV-frame are proved and the precise form of the family of duals of an OV-frame is
given. Moreover, we try to construct OV-frames with the help of some partial isometries and
finally, the stability of OV-frames under some perturbation conditions is established in quater-
nionic Hilbert spaces.

1. Introduction and preliminaries

The notion of frames and their generalizations like fusion frames, g -frames etc.
have been studied and developed rapidly in the past decade mainly due to its significant
applications in signal processing and coding theory [1, 4, 5, 13, 14, 15]. Further, a
generalization of the concept of vector-valued frame, that enables us to deal with the
operators in a Hilbert space instead of its elements, was introduced by L. Gǎvruta [6].
The notion of OV-frames, provides a more general way of series expansion of elements
that is very similar to frame decomposition and have immense applications in quantum
computing, packets encoding and many more. For more details on OV-frames, readers
can refer [7, 9, 10, 11].

OV-frames in quaternionic Hilbert spaces are defined in [2]. This paper aims to
provide a few more results on OV-frames in a right-quaternionic Hilbert space and is
structured as follows: With the aim of making this paper self-contained, we recall some
basic definitions and results concerning OV-frames and quaternions in the remaining
part of this section. In Section 2, we prove some properties and relations between OV-
frames. Section 3 concerns mainly about the properties of the duals of an OV-frame.
In Section 4, construction of some OV-frames with the help of some partial isometries
is given and finally, the stability of OV-frames under some perturbation conditions is
established in Section 5.

All through the paper, H denotes a right quaternionic Hilbert space and K a two
sided quaternionic Hilbert space, H the set of all real quaternions, N the set of all
natural numbers and I an index set. The set of all the bounded operators from H
to K is denoted by B(H,K) and the identity operator on H is denoted by IH . The
set of all the quaternionic valued square summable sequences is given by the set �2

H
=
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{
{qn}n∈N ⊆ H : ∑

n∈N

|qn|2 < ∞
}

. Moreover, the term “operator valued frames (OV-

frames)” refers to quaternionic operator valued frames (quaternionic OV-frames).
Quaternions are a non-commutative extension of the complex numbers to four

dimensions, defined over the real numbers R . The quaternionic algebra H is given by
the set

H := {q = q0 + iq1 + jq2 + kq3 : q0,q1,q2,q3 ∈ R and i2 = j2 = k2 = i jk = −1}.

For any q = q0 + iq1 + jq2 + kq3 ∈ H , q0 is called the scalar or real part and iq1 +
jq2 + kq3 is called the imaginary or vector part of q . Moreover, it can be expressed as
q = s+ v , where s is the scalar part and v is the imaginary part of q and its conjugate
q is given by

q = q0− iq1− jq2− kq3.

This leads to a norm of q ∈ H defined as

|q| =
√

qq =
√

q2
0 + q2

1 + q2
2 + q2

3.

For basic definitions and information about quaternionic Hilbert spaces and two-sided
quaternionic Hilbert spaces and related terms, one may refer [8, 12] and references
therein. We recall the definition of a quaternionic OV-frame as follows:

DEFINITION 1. A sequence {Fn}n∈N ⊆B(H,K) is termed as a quaternionic op-
erator valued frame (or OV-frame) of H having range contained in K if there exist two
real constants A , B > 0 such that

AIH � ∑
n∈N

F ∗
n Fn � BIH,

or equivalently

A‖h‖2 � ∑
n∈N

‖Fn(h)‖2 � B‖h‖2, h ∈ H. (1)

The real constants A and B are known as lower and upper frame bounds of {Fn}n∈N

respectively and inequality (1) is known as the quaternionic OV-frame inequality. The
sequence {Fn}n∈N is called as quaternionic Bessel OV-sequence of H having range
contained in K if the right hand side of the OV-frame inequality holds. Also, {Fn}n∈N

is said to be a quaternionic Parseval OV-frame if A = B = 1 or ∑
n∈N

F ∗
n Fn = IH .

Let {en}n∈N denotes the standard orthonormal basis of �2
H

. For each n∈N , define
the partial isometry |en〉�2

H

: K → �2
H
⊗K such that

|en〉�2
H

(k) = en⊗ k, k ∈ K,
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and its adjoint |en〉∗�2
H

:= �2
H

〈en| : �2
H
⊗K → K is given by

�2
H

〈en|(q⊗ k) = qnk, k ∈ K, q = {qn}n∈N ∈ �2
H.

Moreover, the analysis operator of a quaternionic OV-frame {Fn}n∈N of H having
range contained in K is given by TF : H → �2

H
⊗K such that

TF (h) = ∑
n∈N

en⊗Fn(h), h ∈ H,

and its adjoint T ∗
F , the synthesis operator is given by T ∗

F : �2
H
⊗K → K such that

T ∗
F (q⊗ k) = ∑

n∈N

F ∗
n (qnk), k ∈ K, q = {qn}n∈N ∈ �2

H.

Consequently, the frame operator of {Fn}n∈N is given by SF : H → H such that
SF = T ∗

F TF = ∑
n∈N

F ∗
n Fn . Frame operator of a quaternionic OV-frame is a bounded

right-linear, self-adjoint, positive invertible operator. For more details, one may refer
[2].

Quaternionic OV-frames are further classified as follows:

DEFINITION 2. A quaternionic OV-frame {Fn}n∈N of H having range contained
in K is known as

(i) a quaternionic Riesz OV-frame if the analysis operator TF is surjective, i.e.,
TF (H) = �2

H
⊗K .

(ii) a quaternionic orthonormal OV-frame if it is both Parseval and Riesz OV-frame.

REMARK 1. A more general characterization of Riesz and orthonormalOV-frames
is given in [2] in the form of a theorem which states that an OV-frame {Fn}n∈N forms
a Riesz OV-frame if and only if FnS

−1
F F ∗

m = δm,nIK , where SF is the frame operator
of {Fn}n∈N .

2. Properties of quaternionic operator valued frames

In the following result, it is shown that a quaternionic orthonormal OV-frame com-
posed with a bounded invertible operator turns out to be a Riesz OV-frame.

THEOREM 1. For a given orthonormal OV-frame {Fn}n∈N of H having range
contained in K and a bounded invertible operator U on H , the system {FnU }n∈N

forms a Riesz OV-frame of H having range contained in K .

Proof. Since U is given to be a bounded and invertible operator, there exist two
real constants C1 , C2 > 0 such that

C1‖h‖2 � ‖U (h)‖2 � C2‖h‖2, h ∈ H. (2)
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For n ∈ N , let Gn := FnU . Then, we have

∑
n∈N

G ∗
n Gn = ∑

n∈N

U ∗F ∗
n FnU = U ∗

(
∑
n∈N

F ∗
n Fn

)
U = U ∗U . (3)

From (2) and (3), we get

C1IH � ∑
n∈N

G ∗
n Gn = U ∗U � C2IH.

Let SG := U ∗U . Then for n , m ∈ N ,

GnS
−1
G G ∗

m = FnU U −1(U ∗)−1U ∗F ∗
m = FnF

∗
m = δm,nIK,

which implies that {Gn}n∈N forms a Riesz OV-frame of H having range contained in
K with frame operator SG . �

The following result illustrates that the converse of the above theorem also holds
good.

THEOREM 2. For a given Riesz OV-frame {Gn}n∈N of H having range contained
in K , there always exists a bounded invertible operator U on H and an orthonormal
OV-frame {Fn}n∈N such that for each n ∈ N , Gn = FnU .

Proof. Let SG be the frame operator of {Gn}n∈N and take Fn := GnS
−1/2

G , n ∈
N . We have

∑
n∈N

F ∗
n Fn = S

−1/2

G

(
∑
n∈N

G ∗
n Gn

)
S

−1/2

G = S
−1/2

G SG S
−1/2

G = IH.

Also, since {Gn}n∈N forms a Riesz OV-frame, therefore, for m , n ∈ N , we have

FnF
∗
m = GnS

−1/2

G S
−1/2

G G ∗
m = GnS

−1
G G ∗

m = δm,nIK.

Thus {Fn}n∈N forms an orthonormal OV-frame of H having range contained in K

such that Gn = FnU , where U := S
1/2

G . �

REMARK 2. One may observe that, Theorem 1 and 2 together give the precise
form of the Riesz OV-frames of H having range contained in K in terms of orthonormal
OV-frames.

EXAMPLE 1. Let H := �2
H

, K := H and {en}n∈N be the standard orthonormal
basis for �2

H
. For each n ∈ N , define Fn : �2

H
→ H such that

Fn(q) = 〈en|q〉, q = {qn}n∈N ∈ �2
H
.

It is easy to verify that

∑
n∈N

‖Fn(q)‖2 = ‖q‖2, q = {qn}n∈N ∈ �2
H.
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Thus {Fn}n∈N forms a Parseval OV-frame for �2
H

with range in H . This gives that the
synthesis operator TF of {Fn}n∈N is a surjective bounded operator on �2

H
⊗H (by [2]

Theorem 3.4).
Also, let T ∗

F (q⊗ k) = 0 for some q⊗ k ∈ �2
H
⊗H . This gives that qk = 0 and

therefore q⊗k = 0. Thus, T ∗
F is injective and by ([2] Observation I), {Fn}n∈N forms

an orthonormal OV-frame. Now, let λ 
= 0 be a given real number and U : �2
H
→ �2

H

be defined as

U (q) = λq, q = {qn}n∈N ∈ �2
H.

Clearly, U is a bounded invertible operator on �2
H

. Therefore, by Theorem 1,
{FnU }n∈N forms a Riesz OV-frame for �2

H
having range contained in H . Note that

FnU (q) = λ 〈en|q〉 = λqn , where q = {qn}n∈N ∈ �2
H

.

We now give a relation between two Riesz OV-frames.

COROLLARY 1. For two given Riesz OV-frames {Fn}n∈N and {Gn}n∈N of H
having range contained in K , there always exists a bounded invertible operator T on
H such that Fn = GnT or Gn = FnT .

Proof. From Theorem 1 and 2, there exist two bounded invertible operators U1

and U2 on H and an orthonormal OV-frame {En}n∈N of H having range contained in
K such that for each n ∈ N , Fn = EnU1 and Gn = EnU2 . Then we have

Fn = EnU2U
−1

2 U1 = GnT, n ∈ N

where T := U −1
2 U1 . �

Following that, the next result demonstrates that a Riesz OV-frame composed with
a bounded invertible operator again turns out to be a Riesz OV-frame.

THEOREM 3. For a given Riesz OV-frame {Fn}n∈N of H having range contained
in K and a bounded invertible operator U on H , the system {FnU }n∈N also forms
a Riesz OV-frame of H having range contained in K .

Proof. Let SF be the frame operator of {Fn}n∈N . For n ∈ N , let Gn := FnU .
Then

∑
n∈N

G ∗
n Gn = ∑

n∈N

U ∗F ∗
n FnU = U ∗SF U .

Therefore, {Gn}n∈N forms an OV-frame of H having range contained in K , since
U ∗SF U is a bounded invertible operator with frame operator SG := U ∗SFU .
Then, for n , m ∈ N , consider

GnS
−1
G G ∗

m = FnU S −1
G U ∗F ∗

m

= FnU U −1S −1
F (U ∗)−1U ∗F ∗

m

= FnS
−1
F F ∗

m

= δm,nIK.
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Thus {Gn}n∈N forms a Riesz OV-frame of H having range contained in K . �

REMARK 3. Theorem 3 and Corollary 1 implies that given a Riesz OV-frame, one
can obtain the whole class of Riesz OV-frames using bounded invertible operators.

In the forthcoming result, it is shown that an orthonormal OV-frame composed
with a unitary operator again turns out to be an orthonormal OV-frame.

THEOREM 4. For a given orthonormal OV-frame {Fn}n∈N of H having range
contained in K and a unitary operator U on H , the system {FnU }n∈N also forms an
orthonormal OV-frame of H having range contained in K .

Proof. For n ∈ N , let Gn := FnU . Then, we have

∑
n∈N

G ∗
n Gn = U ∗

(
∑
n∈N

F ∗
n Fn

)
U = U ∗U = IH.

Also for m , n ∈ N ,

GnG
∗
m = FnU U ∗F ∗

m = FnF
∗
m = δm,nIH.

Thus, {Gn}n∈N forms an orthonormalOV-frame of H having range contained in K . �

EXAMPLE 2. Let {Fn}n∈N be as defined in Example 1 and U : �2
H
→ �2

H
be such

that

U (q) = q, q = {qn}n∈N ∈ �2
H

where, q = {qn}n ∈ N . It is easy to verify that U is a unitary operator on �2
H

. Note
that

FnU (q) = 〈en|q〉 = qn.

Thus by Theorem 4, {FnU }n∈N forms an orthonormal OV-frame for �2
H

having range
contained in H .

We now give a relation between two orthonormal OV-frames.

THEOREM 5. For two given orthonormal OV-frames {Fn}n∈N and {Gn}n∈N of
H having range contained in K , there always exists a unitary operator U on H such
that Fn = GnU and TF = TG U where TF and TG are analysis operators of
{Fn}n∈N and {Gn}n∈N respectively.

Proof. Since {Fn}n∈N and {Gn}n∈N are orthonormal OV-frames, we have

T ∗
F TF = IH, TF T ∗

F = I�2
H
⊗K,

T ∗
G TG = IH, TG T ∗

G = I�2
H
⊗K.
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Also for n ∈ N ,

Fn = �2
H

〈en|TF = �2
H

〈en|TG T ∗
G TF = GnT

∗
G TF .

This implies that Fn = GnU , where U := T ∗
G TF is a unitary operator. Moreover,

TF = TG T ∗
G TF = TG U . �

REMARK 4. Note that Theorem 4 and 5 together gives the precise form of the
orthonormal OV-frames of H having range contained in K .

In the next result, it is proved that an OV-frame composed with a bounded invert-
ible operator again turns out to be an OV-frame.

THEOREM 6. For a given OV-frame {Fn}n∈N of H having range contained in
K and a bounded invertible operator U on H , the system {FnU }n∈N also forms an
OV-frame of H having range contained in K .

Proof. Let SF be the frame operator of {Fn}n∈N . For n ∈ N , let Gn := FnU .
Then, we have

∑
n∈N

G ∗
n Gn = ∑

n∈N

U ∗F ∗
n FnU = U ∗

(
∑
n∈N

F ∗
n Fn

)
U = U ∗SFU .

Since U ∗SF U is a bounded invertible operator, thus {Gn}n∈N forms an OV-frame of
H having range contained in K with frame operator SG := U ∗SF U . �

EXAMPLE 3. Let H = K = �2
H

. For each n ∈ N , define Fn : �2
H
→ �2

H
as

Fn(q) =
q

n
, q = {qn}n∈N ∈ �2

H
.

One can easily verify that

∑
n∈N

‖Fn(q)‖2 = ∑
n∈N

∑
i∈N

∣∣∣qi

n

∣∣∣2

=

(
∑
n∈N

1
n2

)(
∑
i∈N

|qi|2
)

=
π2

6
‖q‖2.

Therefore, {Fn}n∈N forms an OV-frame for �2
H

having range contained in �2
H

. Now
for any bounded invertible operator U on �2

H
, the sequence {FnU }n∈N also forms an

OV-frame.
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REMARK 5. Note that, if instead of OV-frames, we consider {Fn}n∈N as a Par-
seval OV-frame in Theorem 6, then also the sequence {FnU }n∈N forms an OV-frame.

Indeed, the frame operator SF of a Parseval OV-frame is an identity operator and
as above we get that ∑

n∈N

G ∗
n Gn = U ∗U is a bounded invertible operator which further

gives that {FnU }n∈N forms an OV-frame for H with range in K with frame operator
U ∗U .

REMARK 6. In Theorem 6, let A and B be the lower and upper frame bounds for
{Fn}n∈N respectively. In particular for U = S −1

F , {Gn}n∈N := {FnS
−1
F }n∈N forms

an OV-frame of H having range contained in K with lower and upper frame bounds B−1

and A−1 respectively and frame operator SG := S −1
F . Indeed since AIH � SF � BIH ,

we have

B−1‖h‖2 � 〈S −1
F (h)|h〉 � A−1‖h‖2, h ∈ H.

Also

〈S −1
F (h)|h〉 =

〈
∑
n∈N

G ∗
n Gn(h)

∣∣∣h〉= ∑
n∈N

‖Gn(h)‖2, h ∈ H.

Thus

B−1‖h‖2 � ∑
n∈N

‖Gn(h)‖2 � A−1‖h‖2, h ∈ H.

3. Dual operator valued frames

In this section, we will explore the duals of a quaternionic OV-frame and examine
their various properties. The definition of the dual of an quaternionic OV-frame is stated
as follows:

DEFINITION 3. Let {Fn}n∈N be a quaternionic OV-frame of H having range
contained in K with the frame operator SF . Then,

(i) the sequence {FnS
−1
F }n∈N is known as the canonical dual OV-frame of {Fn}n∈N .

(ii) a sequence {Gn}n∈N ⊆B(H,K) is known as an alternate of the OV-frame {Fn}n∈N

if ∑
n∈N

F ∗
n Gn = IH .

The dual of an OV-frame {Fn}n∈N that forms an OV-frame in itself is known as a dual
OV-frame of {Fn}n∈N .

REMARK 7. Note that, the canonical dual of the OV-frame {Fn}n∈N is also an
alternate dual OV-frame of {Fn}n∈N and it is already shown in Remark 6 that
{FnS

−1
F }n∈N forms an OV-frame of H having range contained in K .
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EXAMPLE 4. The following examples give the existence of the alternate duals of
some OV-frame as follows:

(i) Let {en}n∈N be the orthonormal basis for H := �2
H

and K := H . For n ∈ N ,
define Fn : �2

H
→ H such that Fn(q) = 〈en|q〉 . This gives F ∗

n (p) = enp , p ∈H .
Note that ∑

n∈N

F ∗
n Fn = I�2

H

. Thus {Fn}n∈N forms an alternate dual of itself.

(ii) Define Fn : �2
H
→ �2

H
as Fn(q) = q

n . Let Gn : �2
H
→ �2

H
be defined as Gn(q) =

6q
π2n

, q ∈ �2
H

. Then ∑
n∈N

F ∗
n Gn(q) = ∑

n∈N

Gn(q)
n = q . Thus {Gn}n∈N forms an alter-

nate dual of {Fn}n∈N .

LEMMA 1. Let {Gn}n∈N be a dual OV-frame of the OV-frame {Fn}n∈N and TF ,
TG be the analysis operators of {Fn}n∈N and {Gn}n∈N respectively. Then,

(i) T ∗
G TF = IH if and only if T ∗

FTG = IH .

(ii) ∑
n∈N

G ∗
n Fn = IH if and only if ∑

n∈N

F ∗
n Gn = IH .

Proof. (i) T ∗
G TF = IH if and only if (T ∗

G TF )∗ = T ∗
FTG = IH . (ii) Follows on

the same lines. �
Now, we give a relation between the analysis operators of an OV-frame and its

dual.

LEMMA 2. Let {Gn}n∈N be a dual OV-frame of the OV-frame {Fn}n∈N and TF ,
TG be the analysis operators of {Fn}n∈N and {Gn}n∈N respectively. Then, T ∗

G TF =
IH .

Proof. Since ∑
n∈N

G ∗
n Fn = IH , we have

T ∗
G TF (h) = T ∗

G

(
∑
n∈N

en ⊗Fn(h)
)

= ∑
n∈N

G ∗
n Fn(h) = h, h ∈ H.

Thus T ∗
G TF = IH . �

The following result gives the precise form of the family of duals of an OV-frame.

LEMMA 3. Let {Fn}n∈N be an OV-frame of H having range contained in K with
analysis operator TF . Then, the dual OV-frames of {Fn}n∈N are precisely of the form
{�2

H

〈en|V }n∈N , where V : H → �2
H
⊗K is a bounded operator with V ∗TF = IH .

Proof. Let V : H → �2
H
⊗K be a given bounded operator such that V ∗TF = IH .

For n ∈ N , let Gn := �2
H

〈en|V . Now for h ∈ H , we have

∑
n∈N

G ∗
n Fn(h) = ∑

n∈N

V ∗|en〉�2
H

Fn(h) = V ∗
(

∑
n∈N

en ⊗Fn(h)
)

= V ∗TF (h) = h.
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Thus, {�2
H

〈en|V }n∈N forms a dual OV-frame of {Fn}n∈N for any bounded operator V .

Conversely, let {Gn}n∈N be a dual OV-frame of {Fn}n∈N and TG be its analysis
operator. Then Gn = �2

H

〈en|TG and Lemma 2 gives that T ∗
G TF = IH . �

Now, we give the precise form of the left-inverses of the analysis operator of an
OV-frame, which will be used in the next result.

LEMMA 4. Let {Fn}n∈N be an OV-frame of H having range contained in K with
analysis and frame operators TF and SF respectively. Then, every left-inverse of
TF is given to be of the form S −1

F T ∗
F +V (I�2

H
⊗K −TFS −1

F T ∗
F ) , where V : �2

H
⊗

K → H is a bounded operator.

Proof. For a given bounded operator V : �2
H
⊗K → H consider(

S −1
F T ∗

F +V (I�2
H
⊗K − TFS −1

F T ∗
F )
)
TF

= S −1
F T ∗

FTF +V TF −V TF S −1
F T ∗

F TF

= IH.

Conversely, let U be a left-inverse of TF i.e., U TF = IH . Then,

U = S −1
F T ∗

F +U (I�2
H
⊗K −TFS −1

F T ∗
F )

and we get the desired result. �
Next we give another form of the duals of an OV-frame in terms of a family of

Bessel OV-sequences in the following result.

THEOREM 7. Let {Fn}n∈N be an OV-frame of H having range contained in K
with analysis and frame operators TF and SF respectively. Then, the dual OV-
frames of {Fn}n∈N are precisely of the form {FnS

−1
F +En − ∑

i∈N

FnS
−1
F F ∗

i Ei}n∈N

where {En}n∈N is a Bessel OV-sequence of H having range contained in K .

Proof. Let {En}n∈N be a Bessel OV-sequence of H having range contained in K .
For n ∈ N , let Gn := FnS

−1
F +En−∑i∈N FnS

−1
F F ∗

i Ei . Now consider

∑
n∈N

F ∗
n Gn = ∑

n∈N

(
F ∗

n FnS
−1
F +F ∗

n En− ∑
i∈N

F ∗
n FnS

−1
F F ∗

i Ei

)
= IH.

Conversely, let {Gn}n∈N be a dual OV-frame of {Fn}n∈N . Then Lemma 3 implies
that, there exists some bounded operator V : H → �2

H
⊗K such that for each n ∈ N ,

Gn = �2
H

〈en|V and V ∗TF = IH . This implies that V ∗ is a left-inverse of TF and

hence by Lemma 4, there exists some bounded operator W : �2
H
⊗K → H such that

V ∗ = S −1
F T ∗

F +W −W TF S −1
F T ∗

F .
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For each n ∈ N , let En = �2
H

〈en|W ∗ . Then

∑
n∈N

E ∗
n En = W

(
∑
n∈N

|en〉�2
H

�2
H

〈en|
)
W ∗ = W W ∗.

Thus, {En}n∈N forms a Bessel OV-sequence of H having range contained in K . Now
for n ∈ N , consider

Gn = �2
H

〈en|V
= �2

H

〈en|(TFS −1
F +W ∗ −TFS −1

F T ∗
F W ∗)

= FnS
−1
F +En−FnS

−1
F T ∗

FW ∗. (4)

Also

T ∗
FW ∗(h) = T ∗

F

(
∑
n∈N

en ⊗En(h)
)

= ∑
n∈N

F ∗
n En(h), h ∈ H.

Thus, from (4), we get

Gn = FnS
−1
F +En− ∑

i∈N

FnS
−1
F F ∗

i Ei, n ∈ N. �

We now prove that for every Riesz OV-frame, there exists a unique Riesz OV-frame
as its alternate dual.

THEOREM 8. Given a Riesz OV-frame {Fn}n∈N of H having range contained in
K , there exists a unique Riesz OV-frame {Gn}n∈N such that ∑

n∈N

G ∗
n Fn = IH .

Proof. Since {Fn}n∈N is a Riesz OV-frame, there exists a bounded invertible op-
erator U on H and an orthonormal OV-frame {En}n∈N such that for each n ∈ N ,
Fn = EnU . Now consider,

IH = U −1U = U −1
(

∑
n∈N

E ∗
n En

)
U = ∑

n∈N

U −1E ∗
n Fn = ∑

n∈N

(En(U −1)∗)∗Fn.

For each n ∈ N , let Gn := En(U −1)∗ and consider

∑
n∈N

G ∗
n Gn = U −1

(
∑
n∈N

E ∗
n En

)
(U −1)∗ = U −1(U −1)∗.

Then SG := U −1(U −1)∗ is a bounded invertible operator and for m , n ∈ N , we have

GnS
−1
G G ∗

m = En(U −1)∗(U ∗U )U −1E ∗
m = EnE

∗
m = δm,nIK.

Hence {Gn}n∈N forms a Riesz OV-frame of H having range contained in K such that
∑

n∈N

G ∗
n Fn = IH . �
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4. Construction of operator valued frames

This section deals with the construction of OV-frames with the help of the partial
isometries {|en〉�2

H

}n∈N and some given operators.

THEOREM 9. Let U : H → �2
H
⊗ K be a given operator. Then, the system

{�2
H

〈en|U }n∈N forms

(i) an OV-Bessel sequence of H having range contained in K , if U is a bounded
operator.

(ii) an OV-frame of H having range contained in K , if U is a bounded injective
operator with closed range.

(iii) a Riesz OV-frame of H having range contained in K , if U is a bounded invertible
operator.

(iv) an orthonormal OV-frame of H having range contained in K , if U is a unitary
operator.

Proof. For n ∈ N , let Fn := �2
H

〈en|U . Then,

∑
n∈N

F ∗
n Fn = U ∗

(
∑
n∈N

|en〉�2
H

�2
H

〈en|
)
U = U ∗U . (5)

(i) Let U be a bounded operator with bound C (say). Using (5), we have

∑
n∈N

‖Fn(h)‖2 = ‖U (h)‖2 � C‖h‖2, h ∈ H.

Thus, {Fn}n∈N forms an OV-Bessel sequence of H having range contained in K .
(ii) Since U is given to be a bounded injective operator with closed range, there-

fore there exists two positive constants C1 and C2 satisfying,

C1‖h‖2 � ∑
n∈N

‖Fn(h)‖2 = ‖U (h)‖2 � C2‖h‖2, h ∈ H.

Thus, {Fn}n∈N forms an OV-frame of H having range contained in K .
(iii) From (ii) , {Fn}n∈N forms an OV-frames for H having range contained in

K . Moreover for n , m ∈ N ,

FnU
∗U F ∗

m = �2
H

〈en|U U −1(U ∗)−1U ∗|em〉�2
H

= �2
H

〈en||em〉�2
H

= δm,nIK.

Thus, {Fn}n∈N forms a Riesz OV-frame of H having range contained in K .
(iv) Since, U is unitary, U ∗U = IH . For, m , n ∈ N , we have

∑
n∈N

F ∗
n Fn = IH and FnF

∗
m = �2

H

〈en|U U ∗|em〉�2
H

= δm,nIK.

Thus, {Fn}n∈N forms an orthonormal OV-frame for H having range contained in
K . �



DUALITY AND STABILITY OF OV-FRAMES 145

EXAMPLE 5. Let H = K := �2
H

and U : �2
H
→ �2

H
⊗ �2

H
be such that

U (q) = q⊗ q, q = {qn}n∈N ∈ �2
H
.

Then U is a bounded injective operator with closed range. Also, for each n ∈ N

(
�2
H

〈en|U
)

(q) = �2
H

〈en|(q⊗ q)

= 〈en|q〉q
= qnq, q = {qn}n∈N ∈ �2

H.

Therefore by Theorem 9, {�2
H

〈en|U }n∈N forms an OV-frame for �2
H

with range in �2
H

.

5. Perturbation of operator valued frames

In this section, the stability of OV-frames under some perturbation conditions is
established. First of all, we prove a result on perturbation of OV-frames, inspired by
the most fundamental form of the Paley-Wiener perturbation theorem given by Casazza
and Christensen [3], as follows:

THEOREM 10. Let {Fn}n∈N be an OV-frame of H having range contained in K
with lower and upper frame bounds A and B respectively. Let {Gn}n∈N ⊆ B(H,K) be
given and there exist α,β , and γ > 0 such that for all finite subset I ⊂ N and for
each k ∈ K∥∥∥ ∑

i∈I

(
F ∗

i (cik)−G ∗
i (cik)

)∥∥∥� α
∥∥∥ ∑

i∈I

F ∗
i (cik)

∥∥∥+ β
∥∥∥ ∑

i∈I

G ∗
i (cik)

∥∥∥
+ γ‖k‖

(
∑
i∈I

|ci|2
)1/2

(6)

where, c = {cn}n∈N ∈ �2
H

and 0 � max{α + γ
√

BA−1,β} < 1 . Then, {Gn}n∈N also
forms an OV-frame of H having range contained in K with lower and upper frame

bounds

(
1−(α+γ

√
BA−1)

)2
A2

(1+β )2B and

(
(1+α)

√
B+γ
)2

(1−β )2 respectively.

Proof. Let TF and SF be the analysis and frame operators of {Fn}n∈N respec-
tively. Then, from the given condition (6), for k ∈ K and c = {cn}n∈N ∈ �2

H
, we have

∥∥∥ ∑
i∈I

G ∗
i (cik)

∥∥∥ �
∥∥∥ ∑

i∈I

(
F ∗

i (cik)−G ∗
i (cik)

)∥∥∥+
∥∥∥ ∑

i∈I

F ∗
i (cik)

∥∥∥
� (1+ α)

∥∥∥ ∑
i∈I

F ∗
i (cik)

∥∥∥+ β
∥∥∥ ∑

i∈I

G ∗
i (cik)

∥∥∥+ γ‖k‖‖c‖,
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which implies that∥∥∥ ∑
i∈I

G ∗
i (cik)

∥∥∥ �
(1+ α)

∥∥∑i∈I F ∗
i (cik)

∥∥+ γ‖k‖‖c‖
1−β

�
(1+ α)

∥∥T ∗
F (c⊗ k)

∥∥+ γ‖c⊗ k‖
1−β

�
(

(1+ α)
∥∥T ∗

F

∥∥+ γ
1−β

)
‖c⊗ k‖

�
(

(1+ α)
√

B+ γ
1−β

)
‖c⊗ k‖.

Now define UG : �2
H
⊗K → H as

UG (c⊗ k) = ∑
n∈N

G ∗
n (cnk), k ∈ K, c = {cn} ∈ �2

H
.

It is easy to verify that UG is a well-defined bounded operator with ‖UG ‖� (1+α)
√

B+γ
(1−β ) .

Then, TG := U ∗
G : H → �2

H
⊗K is defined as

TG (h) = ∑
n∈N

en⊗Gn(h), h ∈ H.

Also for h ∈ H ,

∑
n∈N

‖Gn(h)‖2 = ‖TG (h)‖2 �
(

(1+ α)
√

B+ γ
1−β

)2

‖h‖2. (7)

Let W := T ∗
G TFS −1

F . Then, we have

‖h−W (h)‖ = ‖T ∗
FTFS −1

F (h)−T ∗
G TF S −1

F (h)‖
� α‖h‖+ β‖W (h)‖+ γ‖TFS −1

F (h)‖
� α‖h‖+ β‖W (h)‖+ γ‖TF‖‖S −1

F ‖‖h‖
� (α + γ

√
BA−1)‖h‖+ β‖W (h)‖

< ‖h‖+‖W (h)‖, h ∈ H.

This further gives that W is an invertible operator. Moreover,

‖W (h)‖ = ‖h− (h−W (h))‖
� ‖h‖−‖h−W (h)‖
� ‖h‖− (α + γ

√
BA−1)‖h‖−β‖W (h)‖.

=⇒ ‖h‖
(

1− (α + γ
√

BA−1)
1+ β

)
� ‖W (h)‖.

=⇒ ‖W −1‖ � 1+ β
1− (α + γ

√
BA−1)

.
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Also for h ∈ H , we have

‖h‖2 = ‖(W ∗)−1W ∗(h)‖2

� ‖(W ∗)−1‖2‖S −1
F T ∗

FTG (h)‖2

� ‖(W ∗)−1‖2‖S −1
F ‖2‖T ∗

F‖2‖TG (h)‖2

�
(

1+ β
1− (α + γ

√
BA−1)

)2

(
√

BA−1)2 ∑
n∈N

‖Gn(h)‖2.

Thus (
1− (α + γ

√
BA−1)

)2
A2

(1+ β )2B
‖h‖2 � ∑

n∈N

‖Gn(h)‖2, h ∈ H. (8)

Thus from (7) and (8), we conclude that {Gn}n∈N forms an OV-frame of H having

range contained in K with lower and upper frame bounds

(
1−(α+γ

√
BA−1)

)2
A2

(1+β )2B and(
(1+α)

√
B+γ
)2

(1−β )2 respectively. �

THEOREM 11. Let {Fn}n∈N be an OV-frame of H having range contained in K
with lower and upper frame bounds A and B respectively. Let {Gn}n∈N ⊆ B(H,K) be
given and there exist α,β , and γ > 0 such that for all finite subset I ⊂ N and for
each h ∈ H∥∥∥ ∑

i∈I

ei ⊗
(
Fi(h)−Gi(h)

)∥∥∥� α
∥∥∥ ∑

i∈I

ei ⊗Fi(h)
∥∥∥+ β

∥∥∥ ∑
i∈I

ei ⊗Gi(h)
∥∥∥+ γ‖h‖ (9)

where, β 
= 1 . Then, {Gn}n∈N also forms an OV-frame of H having range contained in

K with lower and upper frame bounds

(
(1−α)A(

√
B)−1−γ

)2

(1+β )2 and

(
(1+α)

√
B+γ
)2

(1−β )2 respec-

tively.

Proof. Let TF and SF be the analysis and frame operators of {Fn}n∈N respec-
tively. From the given condition (9), for h ∈ H ,∥∥∥ ∑

i∈I

ei ⊗Gi(h)
∥∥∥ �

∥∥∥ ∑
i∈I

ei ⊗
(
Fi(h)−Gi(h)

)∥∥∥+
∥∥∥ ∑

i∈I

ei ⊗Fi(h)
∥∥∥

� (1+ α)
∥∥∥ ∑

i∈I

ei ⊗Fi(h)
∥∥∥+ β

∥∥∥ ∑
i∈I

ei ⊗Gi(h)
∥∥∥+ γ‖h‖,

which implies that ∥∥∥ ∑
i∈I

ei ⊗Gi(h)
∥∥∥ � (1+ α)‖TF (h)‖+ γ‖h‖

1−β

�
(

(1+ α)
√

B+ γ
1−β

)
‖h‖.
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Now, define TG : H → �2
H
⊗K as

TG (h) = ∑
n∈N

en⊗Gn(h), h ∈ H.

Clearly, TG is a well-defined bounded operator with ‖TG ‖ � (1+α)
√

B+γ
1−β . Also,

∑
n∈N

‖Gn(h)‖2 = ‖TG (h)‖2 �
(

(1+ α)
√

B+ γ
1−β

)2

‖h‖2, h ∈ H. (10)

Moreover, by the given condition,

‖TF (h)−TG (h)‖ � α‖TF (h)‖+ β‖TG (h)‖+ γ‖h‖,

which gives that

‖TG (h)‖ � (1−α)‖TF (h)‖− γ‖h‖
1+ β

, h ∈ H. (11)

Also for h ∈ H ,

‖h‖ = ‖S −1
F SF (h)‖

� ‖S −1
F ‖‖T ∗

F‖‖TF (h)‖
� A−1

√
B‖TF (h)‖. (12)

From (11) and (12), we get

∑
n∈N

‖Gn(h)‖2 = ‖TG (h)‖2 �
(

(1−α)A(
√

B)−1− γ
1+ β

)2

‖h‖2, h ∈ H. (13)

Thus, from (10) and (13), we conclude that {Gn}n∈N forms an OV-frame of H hav-

ing range contained in K with lower and upper frame bounds

(
(1−α)A(

√
B)−1−γ

)2

(1+β )2 and(
(1+α)

√
B+γ
)2

(1−β )2 respectively. �

THEOREM 12. Let {Fn}n∈N be an OV-frame of H having range contained in K
with lower and upper frame bounds A and B respectively. Let {Gn}n∈N ⊆ B(H,K) be
given and there exist α,β , and γ > 0 such that for all finite subset I ⊂ N and for
each h ∈ H∥∥∥ ∑

i∈I

(
F ∗

i Fi(h)−G ∗
i Gi(h)

)∥∥∥� α
∥∥∥ ∑

i∈I

F ∗
i Fi(h)

∥∥∥+ β
∥∥∥ ∑

i∈I

G ∗
i Gi(h)

∥∥∥
+ γ
(

∑
i∈I

‖Fi(h)‖2
)1/2

(14)
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where, 0 � max{α + γ
√

BA−1,β} < 1 . Then, {Gn}n∈N also forms an OV-frame of

H having range contained in K with lower and upper frame bounds

(
1−(α+γ

√
BA−1)

)
A

1+β

and (1+α)B+γ
√

B
1−β respectively.

Proof. Let SF be the frame operator of {Fn}n∈N . From the given condition
(14), for h ∈ H , we have∥∥∥ ∑

i∈I

G ∗
i Gi(h)

∥∥∥ �
∥∥∥ ∑

i∈I

(
F ∗

i Fi(h)−G ∗
i Gi(h)

)∥∥∥+
∥∥∥ ∑

i∈I

F ∗
i Fi(h)

∥∥∥
� (1+ α)

∥∥∥ ∑
i∈I

F ∗
i Fi(h)

∥∥∥+ β
∥∥∥ ∑

i∈I

G ∗
i Gi(h)

∥∥∥+ γ
(

∑
i∈I

‖Fi(h)‖2
)1/2

,

that gives

∥∥∥ ∑
i∈I

G ∗
i Gi(h)

∥∥∥ �
(1+ α)

∥∥∥ ∑
i∈I

F ∗
i Fi(h)

∥∥∥+ γ
(

∑
i∈I

‖Fi(h)‖2
)1/2

1−β
.

Also, we have∥∥∥ ∑
i∈I

F ∗
i Fi(h)

∥∥∥ = sup
‖f‖=1

∣∣∣〈 ∑
i∈I

F ∗
i Fi(h)

∣∣∣f〉∣∣∣
�
(

∑
i∈I

‖Fi(h)‖2
)1/2

sup
‖f‖=1

(
∑
i∈I

‖Fi(f)‖2
)1/2

�
√

B
(

∑
i∈I

‖Fi(h)‖2
)1/2

.

This further gives

∥∥∥ ∑
i∈I

G ∗
i Gi(h)

∥∥∥ �
(

(1+ α)
√

B+ γ
1−β

)(
∑
i∈I

‖Fi(h)‖2
)1/2

�
(

(1+ α)
√

B+ γ
1−β

)√
B‖h‖

�
(

(1+ α)B+ γ
√

B
1−β

)
‖h‖.

Now, define SG : H → H as

SG (h) = ∑
n∈N

G ∗
n Gn(h), h ∈ H.

One may easily observe that SG is a well-defined bounded operator with ‖SG ‖ �
(1+α)B+γ

√
B

1−β . Moreover, for h ∈ H
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∑
n∈N

‖Gn(h)‖2 = 〈SG (h)|h〉

� ‖SG ‖‖h‖2

�
(

(1+ α)B+ γ
√

B
1−β

)
‖h‖2. (15)

Also by (14), for h ∈ H , we have

‖SF (h)−SG (h)‖ � α‖SF (h)‖+ β‖SG (h)‖+ γ
(

∑
n∈N

‖Fn(h)‖2
)1/2

,

which further gives

‖h−SG S −1
F (h)‖ � α‖h‖+ β‖SG S −1

F (h)‖+ γ
(

∑
n∈N

‖FnS
−1
F (h)‖2

)1/2

� α‖h‖+ β‖SG S −1
F (h)‖+ γ

(
B‖S −1

F (h)‖2
)1/2

� α‖h‖+ β‖SG S −1
F (h)‖+ γ

(
B‖S −1

F ‖2‖h‖2
)1/2

� α‖h‖+ β‖SG S −1
F (h)‖+ γ

(
BA−2‖h‖2

)1/2

� (α + γ
√

BA−1)‖h‖+ β‖SGS −1
F (h)‖

< ‖h‖+‖SGS −1
F (h)‖.

Thus, SG S −1
F is invertible and hence SG is invertible. Moreover,

‖SG S −1
F (h)‖ = ‖h− (h−SGS −1

F (h))‖
� ‖h‖−‖h−SGS −1

F (h)‖
� ‖h‖− (α + γ

√
BA−1)‖h‖−β‖SGS −1

F (h)‖.

=⇒ ‖SG S −1
F (h)‖ �

(
1− (α + γ

√
BA−1)

1+ β

)
‖h‖.

=⇒ ‖SFS −1
G ‖ � 1+ β

1− (α + γ
√

BA−1)
.

Thus

‖S −1
G ‖ = ‖S −1

F SFS −1
G ‖ � 1+ β

A(1− (α + γ
√

BA−1))
.

=⇒ S −1
G �

(
1+ β

(1− (α + γ
√

BA−1))A

)
IH.

=⇒
(

(1− (α + γ
√

BA−1))A
1+ β

)
IH � SG .
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Therefore

(
(1− (α + γ

√
BA−1))A

1+ β

)
‖h‖2 � ∑

n∈N

‖Gn(h)‖2, h ∈ H. (16)

Thus, from (15) and (16), we get that {Gn}n∈N forms an OV-frame of H having range

contained in K with lower and upper frame bounds

(
1−(α+γ

√
BA−1)

)
A

1+β and (1+α)B+γ
√

B
1−β

respectively. �
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[7] L. GĂVRUŢA AND P. GĂVRUŢA, Some properties of operator-valued frames, Acta Math. Sci. Ser. B
(Engl. Ed.), 36, 2 (2016), 469–476.

[8] R. GHILONI, V. MORETTI AND A. PEROTTI, Continuous slice functional calculus in quaternionic
Hilbert spaces, Rev. Math. Phys., 25, 4 (2013), 1350006, 83.

[9] D. HAN, P. LI, B. MENG AND W. TANG, Operator valued frames and structured quantum channels,
Sci. China Math., 54, 11 (2011), 2361–2372.

[10] G. HONG AND P. LI, Some Properties of Operator Valued Frames in Quaternionic Hilbert Spaces,
Mathematics, 11, 1 (2023), 188.

[11] V. KAFTAL, D. R. LARSON AND S. ZHANG, Operator-valued frames, Trans. Amer. Math. Soc., 361,
12 (2009), 6349–6385.

[12] C. K. NG, On quaternionic functional analysis, Mathematical Proceedings of the Cambridge Philo-
sophical Society, 143, 2, Cambridge University Press, 2007.

[13] K. T. POUMAI, N. KHANNA AND S. K. KAUSHIK, Finite Gabor systems and uncertainty principle
for block sliding discrete Fourier transform, Filomat, 37, 8 (2023), 2361–2376.



152 R. BHARDWAJ AND S. K. SHARMA

[14] F. A. SHAH, O. AHMAD AND N. A. SHEIKH, Some new inequalities for wavelet frames on local
fields, Anal. Theory Appl., 33, 2 (2017), 134–148.

[15] W. SUN, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322, 1 (2006), 437–452.

(Received April 1, 2024) Ruchi Bhardwaj
Department of Mathematics

University of Delhi
Delhi 110 007, India

e-mail: ruchibhardwaj94@gmail.com

S. K. Sharma
Department of Mathematics

Kirori Mal College
University of Delhi

Delhi 110 007, India
e-mail: sumitkumarsharma@gmail.com

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


