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A NOTE ON CAUCHY–TYPE CLASS OF FUNCTIONS
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AND DEWI KARTIKA SARI

Abstract. In the paper of Jachymski et al., a general Cauchy-type class of functions, AM(X ,Y ) ,
has been defined. Assuming M to be non-decreasing, the class is in some sense equivalent to the
class of continuous functions or Baire-1 functions. In this paper, we provide an equivalent defi-
nition of the class and use it to obtain several results without assuming M to be non-decreasing.
In particular, by assuming the limit of M at (0,0) exists, we show that the class contains all
continuous functions or it can only contain uniformly locally constant functions.

1. Introduction

Continuous functions and Baire-1 functions are two highly significant types of
functions when it comes to understanding the properties of functions and solving more
complex problems across various fields, both in mathematics and its applications. In
mathematics, a continuous function f from a metric space (X ,d) to another metric
space (Y,ρ) is defined in the form of ε − δ formulation as follows: for every x ∈ X
and ε > 0, there exists δ > 0 such that for every y ∈ X with d(x,y) < δ , it holds that
ρ( f (x), f (y)) < ε . Baire-1 functions, on the other hand, are functions expressible as
pointwise limits of sequences of continuous functions. The concept of Baire-1 functions
was first introduced by René-Louis Baire in 1899 ([2]). To this day, research related
to Baire-1 functions remains highly active, particularly concerning the characterization
of these types of functions. One significant outcome related to the characterization of
Baire-1 functions is the characterization into the ε − δ version obtained by Lee et al.
([5]) in 2000, as presented in Theorem 1 below. The characterization serves as the
foundation for many developments in the realm of Baire functions, as evident in the
works of Alikhani-Koopaei ([1]), Balcerzak, Karlova, and Szuca ([3]), and Orge and
Benitez ([6]).

THEOREM 1. (Lee, Tang, and Zhao [5]) Let (X ,d) and (Y,ρ) be complete and
separable metric spaces. A function f : X → Y is a Baire-1 function on X if and only
if for every ε > 0 , there exists a function δ : X → (0,∞) such that for every x,y ∈ X
with d(x,y) < min{δ (x),δ (y)} , we have ρ( f (x), f (y)) < ε .
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This characterization was motivated by the fact that continuous functions them-
selves can be characterized in a similar manner by replacing the function min{·, ·}
with the function max{·, ·} . Based on this fact, it is natural to ask the following ques-
tion: what kind of class of functions can be obtained, which has a similar formulation as
continuous or Baire-1 functions where the functions min{·, ·} or max{·, ·} are replaced
by other functions? Addressing this question, in 2004, Jachymski et al. ([4]) defined
the class of functions AM(X ,Y ) , which is a class of functions that share a formulation
similar to that in Theorem 1, with the generalization of the function min{·, ·} into a
function M : (0,∞)2 → (0,∞) . Assuming M to be non-decreasing, they successfully
obtained results indicating that this class would essentially be equivalent to the class of
constant functions, continuous functions, or Baire-1 functions. So far, without assum-
ing the monotonicity of M , it remains unknown whether there are other new classes
that can be obtained, as explicitly stated in their paper.

In this paper, we provided an equivalent definition of the class and several results
related to the class without assuming M to be non-decreasing. Particularly, under the
assumption that lim

(s,t)→(0,0)
M(s,t) exists, we show that either AM(X ,Y ) contains all

continuous functions or AM(X ,Y ) can only contain uniformly locally constant func-
tions.

2. Results

Throughout this section, unless stated otherwise, we always assume (X ,d) and
(Y,ρ) to be metric spaces. We start this section by providing an equivalent definition
of continuous and Baire-1 functions that plays an important role in proving the main
results, i.e., Theorem 5 and Theorem 6. The proof is obvious by changing δ into
min{δ ,r} .

LEMMA 1. Let f be a function from X to Y .

(a) f is continuous on X if and only if for every ε > 0 and r > 0 , there exists a function
δ : X → (0,r) such that for every x,y∈X with d(x,y) < max{δ (x),δ (y)} , we have

ρ( f (x), f (y)) < ε.

(b) f is a Baire-1 function if and only if for every ε > 0 and r > 0 , there exists a
function δ : X → (0,r) such that for every x,y∈X with d(x,y) < min{δ (x),δ (y)} ,
we have

ρ( f (x), f (y)) < ε.

Motivated by the above lemma, we provide an equivalent definition of the class of
functions AM(X ,Y ) given in [4].

DEFINITION 1. Let M : (0,∞)2 → (0,∞) . A function f : X → Y is said to be of
class AM(X ,Y ) if for every ε > 0 and r > 0, there exists a function δ : X → (0,r)
such that for every x,y ∈ X with d(x,y) < M(δ (x),δ (y)) , we have

ρ( f (x), f (y)) < ε.
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REMARK 1. Below are several known or trivial results regarding the class AM(X ,Y ) .

• Any constant function is of class AM(X ,Y ) .

• If M(s, t) = max{s,t} , then AM(X ,Y ) = C(X ,Y ) , the class of all continuous
functions from X to Y .

• If M(s, t) = min{s,t} , then AM(X ,Y ) = B1(X ,Y ) , the class of all Baire-1 func-
tions from X to Y .

• The characterizations of AM(X ,Y ) when M is non-decreasing have been ob-
tained in [4]. In particular, they showed that when M is the arithmetic mean or
geometric mean, then AM(X ,Y ) = C(X ,Y ) or B1(X ,Y ) , respectively.

The following question was explicitly asked in [4] which is the main motivation
of this paper.

QUESTION 1. What can we get if M is not always assumed to be non-decreasing?

First, we provide a slight modification of [4, Proposition 1] that can be proved
similarly by making use of Definition 1.

PROPOSITION 1. Let M,N : (0,∞)2 → (0,∞) . If for every r > 0 and δ : X →
(0,r) , the functional inequality

M(μ(x),μ(y)) � N(δ (x),δ (y))

has a solution μ0 : X → (0,r) , then AN(X ,Y ) ⊆ AM(X ,Y ) .

Using Proposition 1, we can obtain a direct proof for the fact that AM(X ,Y ) =
B1(X ,Y ) , where M is the geometric mean.

THEOREM 2. Let M : (0,∞)2 → (0,∞) and both X and Y be complete and sep-
arable metric spaces. If

min{s,t} � M(s,t) �
√

st

for all s, t ∈ (0,∞) , then AM(X ,Y ) = B1(X ,Y ) .

Proof. Let M2(s,t) =
√

st for all s,t ∈ (0,∞) . Clearly, by Proposition 1,

AM2(X ,Y ) ⊆ AM(X ,Y ) ⊆ B1(X ,Y ).

It remains to show B1(X ,Y ) ⊆ AM2(X ,Y ) . Fix r > 0. Observe that for every s, t ∈
(0,r) , we have

M2(s,t) � min{√sr,
√

tr}
and hence,

M2

(
s2

r
,
t2

r

)
� min{s,t}.

Again, by Proposition 1, B1(X ,Y ) ⊆ AM2(X ,Y ) . �
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EXAMPLE 1. Let M : (0,∞)2 → (0,∞) be the harmonicmean function, i.e., M(s,t)
= 2

1
s + 1

t
for all s, t > 0. By GM-HM inequality, we have

min{s,t} � M(s,t) �
√

st.

By Theorem 2, we deduce that AM(X ,Y ) = B1(X ,Y ) where X and Y are complete and
separable metric spaces.

We may also use Proposition 1 to have an alternative proof for the fact that AM(X ,Y )
= C(X ,Y ) when M is the arithmetic mean. First, we show that when M is a homo-
genenous function, both M and αM (α > 0) give us the same class of functions.
Recall that a function M : (0,∞)2 → (0,∞) is homogeneous of degree p ( p > 0) if
M(αs,αt) = α pM(s,t) for every s,t > 0.

PROPOSITION 2. Let M,N : (0,∞)2 → (0,∞) and α > 1 .

(a) AαM(X ,Y ) ⊆ AM(X ,Y ) ⊆ A 1
α M(X ,Y ) .

Furthermore, if M is homogeneous, then all are equal.

(b) If both M and N are homogeneous, then AN+M(X ,Y ) = Amax{N,M}(X ,Y ) .

Proof.

(a) The inclusions are clear by using Proposition 1 or [4, Proposition 1] and the fact
that 1

α M(s, t) � M(s,t) � αM(s,t) . Now, if M is homogeneous of degree p , we
have

M(α2/ps,α2/pt) = α2M(s,t), and hence
1
α

M(α2/ps,α2/pt) � αM(s,t).

By Proposition 1, A 1
α M(X ,Y )⊆AαM(X ,Y ) , and hence A 1

α M(X ,Y )= AαM(X ,Y ) .

(b) As M and N are homogeneous, so is max{M,N} . Furthermore, we have

max{M,N} � M +N � 2max{M,N}.
The conclusion follows from part (a) . �

THEOREM 3. Let M : (0,∞)2 → (0,∞) . If

s+ t
2

� M(s,t) � max{s,t}

for all s, t ∈ (0,∞) , then AM(X ,Y ) = C(X ,Y ) .

Proof. Let M1(s,t) = s and M2(s,t) = t for all s,t ∈ (0,∞) . Note that max{M1,
M2}(s, t) = max{s, t} and hence Amax{M1,M2} =C(X ,Y ). The conclusion follows from
Proposition 2 and the fact that both M1 and M2 are homogeneous. �
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EXAMPLE 2. Let M : (0,∞)2 → (0,∞) be the quadratic mean function, i.e., M(s, t)

=
√

s2+t2
2 for all s, t > 0. By QM-AM inequality, we have

s+ t
2

� M(s,t) � max{s,t}.

By Theorem 3, we deduce that AM(X ,Y ) =C(X ,Y ) . Note that the result remains hold
if we replace M by any power mean function.

Note that by AM-GM inequality, the geometric mean is always less than or equal
to the arithmetic mean, i.e.,

√
st � s+ t

2
∀s,t > 0.

It is natural to ask whether AM(X ,Y ) will be equal to C(X ,Y ) or B1(X ,Y ) if M lies
between the geometric mean and arithmetic mean. The answer in general remains
unknown. However, if M is a convex combination of the arithmetic mean and the
geometric mean, we have AM(X ,Y ) = C(X ,Y ) . In fact, we have a more general result
as follows.

THEOREM 4. If M : (0,∞)2 → (0,∞) is a positive linear combination of the arith-
metic mean and the geometric mean, then AM(X ,Y ) = C(X ,Y ) .

Proof. Let M = aM1 + bM2 where M1 and M2 are the arithmetic mean and the
geometric mean, respectively, and a,b > 0. Note that both M1 and M2 are homoge-
nous. Since min{a,b}(M1 + M2) � M � max{a,b}(M1 + M2) , by Proposition 2, we
have

AM(X ,Y ) = AM1+M2(X ,Y ) = Amax{M1,M2}(X ,Y ) = AM2(X ,Y ) = C(X ,Y ). �

In the next theorem, we show that under the assumption that lim
(s,t)→(0,0)

M(s,t) ex-

ists, either AM(X ,Y ) contains C(X ,Y ) or AM(X ,Y ) can only contain uniformly lo-
cally constant functions. We say a function f : X → Y is uniformly locally constant if
there is λ > 0 such that f (x) = f (y) for every x,y ∈ X with d(x,y) < λ . Note that
any constant function is uniformly locally constant and any uniformly locally constant
function is continuous.

THEOREM 5. Let M : (0,∞)2 → (0,∞) .

(1) If lim
(s,t)→(0,0)

M(s,t) = 0 , then C(X ,Y ) ⊆ AM(X ,Y ) .

(2) If lim
(s,t)→(0,0)

M(s,t) > 0 , then AM(X ,Y ) can only contain uniformly locally con-

stant functions.
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Proof.

(1) Let δ : X → (0,∞) . Since lim
(s,t)→(0,0)

M(s,t) = 0, for a given x ∈ X , there exists

λ (x) such that M(s,t) < δ (x) for all ‖(s,t)‖< 2λ (x) . Then for every x,y∈ X , we
have

M(λ (x),λ (y)) � max{δ (x),δ (y)}.
By Proposition 1 or [4, Proposition 1], we deduce that C(X ,Y ) ⊆ AM(X ,Y ) .

(2) Since 2λ := lim
(s,t)→(0,0)

M(s,t) > 0, one can find r0 > 0 such that M(s, t) > λ for

every s, t < r0 .

Let f ∈ AM(X ,Y ) . Then for every ε > 0 and the above r0 , there exists δ : X →
(0,r0) such that ρ( f (x), f (y)) < ε for every x,y∈X with d(x,y) � M(δ (x),δ (y)) .
Note that for every x,y ∈ X with d(x,y) < λ , we have

d(x,y) < λ < M(δ (x),δ (y))

and hence, ρ( f (x), f (y)) < ε . Since this holds for any ε > 0, we conclude that
f (x) = f (y) for any x,y ∈ X with d(x,y) < λ . Thus, f is uniformly locally con-
stant. �

Note that when X is connected, any uniformly locally constant function is a con-
stant function. Consequently, by Theorem 5 (2), if lim

(s,t)→(0,0)
M(s,t) > 0 and X is con-

nected, then AM(X ,Y ) contains only constant functions.
Recall that any constant function is contained in any class of AM(X ,Y ) . Hence, it

is natural to ask whether the same is true for uniformly locally constant functions. The
question remains open in general, but under the assumption of M to be homogeneous
or lim

(s,t)→(0,0)
M(s, t) = 0, we obtain an affirmative answer.

PROPOSITION 3. Let M : (0,∞)2 → (0,∞) . If M is homogeneous or lim
(s,t)→(0,0)

M(s,t)

= 0 , then any uniformly locally constant function on X is contained in AM(X ,Y ) .

Proof. We only need to prove for the case M is homogeneous, the other case is a
consequence of Theorem 5 part (1).

Let f be a uniformly locally constant function. Then there is λ > 0 such that
f (x) = f (y) for every x,y ∈ X with d(x,y) < λ .

Let ε > 0 and r > 0 be arbitrary. Since M is homogeneous, by Proposition 2,
AM = AαM for any α > 0. Therefore, without loss of generality, we may assume that
M

(
r
2 , r

2

)
= λ . Now, define δ : X → (0,r) by δ (x) = r

2 for every x∈ X . Then for every
x,y ∈ X with d(x,y) < M(δ (x),δ (y)) , we have d(x,y) < λ . Hence, f (x) = f (y) and
therefore, ρ( f (x), f (y)) = 0 < ε . Thus, f ∈ AM(X ,Y ). �
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We end our paper by providing a general result of Theorem 5 (1) as follows.

THEOREM 6. Let M : (0,∞)2 → (0,∞) . Suppose that lim
(s,t)→(0,0)

M(s,t) exists. The

following are equivalent:

(1) lim
(s,t)→(0,0)

M(s, t) = 0 .

(2) C(X ,Y ) ⊆ AM(X ,Y ) for all metric spaces X and Y .

Proof. (1) ⇒ (2) is clear from Theorem 5.
(2) ⇒ (1) By taking X =Y = R in (2) , we have C(R,R) ⊆ AM(R,R) . Suppose

that α := lim
(s,t)→(0,0)

M(s,t) > 0. Then there is λ > 0 such that

α
2

� M(s,t)

for all s, t < λ .
Take a,b∈R with 0 < |a−b|< α

2 . Since R is normal, by Urysohn’s lemma there
exists f ∈C(R,R) such that f (a) = 0 and f (b) = 1. We show that f /∈AM(R,R) and
hence we get a contradiction.

Let ε = 1 and r = λ
2 . For every δ : R → (0,r) , we have

|a−b|< α
2

� M(δ (a),δ (b)).

However,

| f (a)− f (b)| = 1 � ε. �
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