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I –CONVERGENCE OF PARTIAL MAPS

PRASANTA MALIK ∗ AND ARGHA GHOSH

Abstract. By a partial function or a partial map from a metric space (X ,d) to a metric space
(Y,μ) , we mean a pair (A,u) , where A is a non-empty closed subset of X and u : A → Y is a
function. In this paper, using the notion of an ideal I on a directed set, we generalize the notion
of bornological convergence of nets to the notion of bornological I -convergence of nets and the
notion of convergence of nets of partial maps to the notion of I -convergence of nets of partial
maps. Some basic properties of this notions are investigated including their interrelationship.
We also introduce the notion of bornological I ∗ -convergence of nets as well as the notion
of I ∗ -convergence of nets of partial maps and study their relationship with bornological I -
convergence of nets and I -convergence of nets of partial maps respectively.

1. Introduction

Partial maps play a central role in mathematical economics. A partial map or a
partial function from a metric space (X ,d) to a metric space (Y,μ) , is a pair (F,γ) ,
where F is a closed non-empty subset of X and γ is a function from F to Y . The space
of all partial maps from X to Y is denoted by P[X ,Y ] . Tastes of agents on a space
X are usually represented by a preference relation on X , i.e., a subset A of X ×X ,
where (x,y) ∈ A means that the agent prefers alternative x to y . In this scenario, utility
functions are considered as more appropriate mathematical tools to represent agents’
preferences and partial maps are considered as utility functions for agents. One may
use the notion of convergence or topology on partial maps to describe similarities of
agents (for more details see Debreu [4]).

In [1], Beer et al. introduced a new notion of convergence, namely P(B)-
convergence of nets of partial maps, in the metric setting, via the notion of bornology.
They showed that their notion of convergence of nets of partial maps is bornological
convergence of the associated nets of graphs. Here we extend this notion of P(B)-
convergence of nets of partial maps via the notion of ideals.

Using the concept of natural density, the usual notion of convergence of real se-
quences was first generalized to the notion of statistical convergence independently by
Fast [5] and Schoenberg [12]. For more works in this line one can see ([2, 6, 11] etc.).
Then using the notion of an ideal I of subsets of N , the notion of statistical conver-
gence of sequences was generalized to I -convergence in a metric space by Kostyrko
et al. [7]. The notion of I - convergence of sequences has further been extended from
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a metric space to a topological space [8]. Recently in [9], Lahiri et al. have introduced
the notion of I -convergence for nets in a topological space by using the concept of an
ideal I of a directed set.

To broaden the ideas of bornological convergence [10] and convergence of partial
maps [1, 3], in section 3 of this paper using the notion of an ideal I on a directed
set, we first, generalize the notion of bornological convergence of nets to bornological
I -convergence of nets and then we generalize the concept of convergence of nets of
partial maps to the notion of I -convergence of nets of partial maps. We examine some
basic properties of the notion of I -convergence of nets of partial maps and examine its
relationship with bornological I -convergence. Further, in section 4 of this paper, we
introduce the concept of bornological I ∗ -convergence of nets as well as the concept of
I ∗ -convergence of nets of partial maps and study their relationship with bornological
I -convergence of nets and I -convergence of nets of partial maps respectively.

2. Basic definitions and notation

In this section, we discuss some basic definitions and ideas, which will be needed
in the successive sections.

DEFINITION 1. [7] If X is a non-empty set, then a family I ⊂ 2X is called an
ideal of X , if

(i) /0 ∈ I ,
(ii) A,B ∈ I implies A∪B ∈ I , and
(iii) A ∈ I ; B ⊂ A implies B ∈ I .
The ideal I is called non-trivial, if I �= { /0} and X /∈ I .

DEFINITION 2. [7] A non empty family F of subsets of a non-empty set X is
called a filter of X , if

(i) /0 /∈ F ,
(ii) A,B ∈ F implies A∩B ∈ F and
(iii) A ∈ F ; A ⊂ B implies B ∈ F .
Clearly, if I ⊂ 2X is a non-trivial ideal of X , then

F (I ) = {A ⊂ X : X \A ∈ I }
is a filter on X , called the filter associated with I .

A non-trivial ideal I of X(�= /0) is called admissible, if {y} ∈ I for each y ∈ X .
We now recall the definitions of directed sets and nets.

DEFINITION 3. Let G be a non-empty set and � be a binary relation on G such
that � is reflexive, transitive and for any two elements α,β ∈ G , there is an element
γ ∈ G such that γ � α and γ � β . Then the pair (G ,�) is called a directed set.

DEFINITION 4. Let (G ,�) be a directed set and let X be a non-void set. A
mapping f : G → X is called a net in X and is denoted by

{
fγ : γ ∈ G

}
or { fγ}γ∈G .
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Throughout the paper, X = (X ,d) , Y = (Y,μ) will denote metric spaces, P[X ,Y ]
will denote the space of all partial maps from the metric space X to the metric space Y ,
G will denote a directed set (G ,�) and I will denote a non-trivial ideal of G , unless
otherwise mentioned.

An ideal I of G will be written sometimes as IG to indicate the directed set G
of which I is an ideal.

Let Mγ = {α ∈ G : α � γ} , γ ∈ G . Then the collection

F0 =
{
A ⊂ G : A ⊃ Mγ for some γ ∈ G

}

forms a filter in G . Let I0 = {A ⊂ G : G \A ∈ F0} . Then I0 is a non-trivial ideal in
G .

DEFINITION 5. [9] A non-trivial ideal I of G is called G -admissible , if Mn ∈
F (I ) for all n ∈ G .

DEFINITION 6. [9] A net {xγ}γ∈G in a metric space (X ,d) is said to be I -
convergent to x ∈ X , if for every ε > 0, {γ ∈ G : d(xγ ,x) � ε} ∈ I . In this case, we
write I − lim xγ = x .

The above definition of I -convergence can be written as follows: a net {xγ}γ∈G

in a metric space (X ,d) is said to be I -convergent to x ∈ X , if for every ε > 0,

{
γ ∈ G : d(xγ ,x) < ε

} ∈ F (I ) .

We now discuss the concept of bornology and the notion of bornological conver-
gence on a metric space (for more details see [1, 10]).

If a ∈ X and ε > 0, then B(a,ε) denotes the open ε -ball with center at a and
radius ε . If G is a nonempty subset of X , we write d(a,G) to denote the distance
from a to G and Gε to denote the ε -enlargement of the set G , i.e.,

Gε = {x : d(x,G) < ε} =
⋃

x∈G
B(x,ε) .

DEFINITION 7. If X is a non-empty set, then a family B of non-empty subsets
of X is called a bornology on X , if the following conditions are satisfied:

(i) B covers X ,
(ii) A,B ∈ B implies A∪B ∈ B and
(iii) A ∈ B ; B ⊂ A implies B ∈ B .

The family F of all non-empty finite subsets of X is the smallest bornology
on X and the family P0(X) of all non-empty subsets of X is the largest bornology
on X . Other important bornologies are: the family Bd of the nonempty d -bounded
subsets, the family Btb of the nonempty d -totally bounded subsets and the family K
of nonempty subsets of X whose closures are compact.
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DEFINITION 8. [10] Let B be a bornology on a metric space (X ,d) . A subfam-
ily B′ of B , which is cofinal in B with respect to inclusion, is called a base for the
bornology B . A bornology is called local, if it contains a small ball around each point
of X . Also, a bornology is said to be stable under small enlargements, if for every
B ∈ B there is ε > 0 such that Bε ∈ B .

DEFINITION 9. [1] Let (X ,d) be a metric space and B be a bornology on (X ,d) .
A net {Dγ}γ∈G in P0(X) is called B− -convergent (lower bornological convergent) to
D ∈ P0(X) if for every B ∈ B and ε > 0, the following condition occurs eventually:

D∩B ⊂ Dε
γ .

In this case, we write D ∈ B−− lim Dγ .
Similarly the net is called B+ -convergent (upper bornological convergent) to D∈

P0(x) if for every B ∈ B and ε > 0, the following condition occurs eventually:

Dγ ∩B ⊂ Dε .

In this case, we write D ∈ B+ − lim Dγ .

When both the upper and lower bornological convergences occur, we say two-
sided bornological convergence occurs and we write D ∈ B− lim Dγ .

DEFINITION 10. [1] Let (X ,d) , (Y,μ) be metric spaces, B be a bornology on
X . A net {(Dγ ,uγ)}γ∈G in P[X ,Y ] is said to be P−(B)-convergent to (D,u) ∈
P[X ,Y ] , if for every B ∈ B and ε > 0, the following inclusion holds eventually:

u(D∩B1) ⊂ [uγ(Dγ ∩Bε
1)]

ε , for all B1 ⊂ B .

In this case, we write (D,u) ∈ P−(B)− lim(Dγ ,uγ) .
Similarly, the net {(Dγ ,uγ)}γ∈G in P[X ,Y ] is said to be P+(B)-convergent

to (D,u) ∈ P[X ,Y ] , if for every B ∈ B and ε > 0, the following inclusion holds
eventually:

uγ(Dγ ∩B1) ⊂ [u(D∩Bε
1)]

ε , for all B1 ⊂ B .

In this case, we write (D,u) ∈ P+(B)− lim(Dγ ,uγ) .

If the net {(Dγ ,uγ)}γ∈G is both P−(B)-convergent and P+(B)-convergent to
(D,u) , then we say that {(Dγ ,uγ)}γ∈G is P(B)-convergent to (D,u) and in this case,
we write (D,u) ∈ P(B)− lim(Dγ ,uγ) .

REMARK 1. The graphical representation of the above P(B)-convergence is the
following: A net {(Dγ ,uγ )}γ∈G in P[X ,Y ] is P(B)-convergent to (D,u)∈P[X ,Y ] ,
if for each B ∈ B and ε > 0, both the inclusions Gr(uγ)∩ (B×Y ) ⊂ Gr(u)ε and
Gr(u)∩ (B×Y ) ⊂ Gr(uγ )ε hold eventually, where Gr(uγ) and Gr(u) are the graphs
of uγ and u respectively. Here the enlargement is taken with respect to any metric
compatible with the product uniformity. For definiteness we choose the box metric
given by (d× μ)((x1,y1),(x2,y2)) = max{d(x1,x2),μ(y1,y2)}.
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DEFINITION 11. [1] Let B be a bornology on (X ,d) and (E,v) ∈ P[X ,Y ] . We
say that (E,v) is uniformly continuous relative to the bornology B , if for every B ∈B
with E ∩B �= φ , the map

v : E ∩B → Y

is uniformly continuous.
We say that (E,v) is strongly uniformly continuous relative to the bornology B ,

if for every B ∈ B and for every ε > 0, there is η > 0 such that μ(v(x),v(w)) < ε ,
whenever d(x,w) < η and x,w ∈ E ∩Bη .

3. Bornological I convergence and I -convergence of partial maps

In this section, we generalize the notion of bornological convergence and the no-
tion of convergence of partial maps via ideals of directed sets and investigate their basic
properties.

DEFINITION 12. Let B be a bornology on X . A net {Dγ}γ∈G in P0(X) is
called B−

I -convergent (lower bornological I -convergent) to D∈P0(X) , if for every
B ∈ B and ε > 0,

{γ ∈ G : D∩B ⊂ Dε
γ} ∈ F (I ).

In this case, we write D ∈ B−
I − lim Dγ .

Similarly, the net {Dγ}γ∈G in P0(X) is called B+
I -convergent (upper bornolog-

ical I -convergent) to D ∈ P0(X) , if for every B ∈ B and ε > 0,

{γ ∈ G : Dγ ∩B ⊂ Dε} ∈ F (I ).

In this case, we write D ∈ B+
I − lim Dγ .

If D ∈ B−
I − lim Dγ as well as D ∈ B+

I − lim Dγ , then we say that the net
{Dγ}γ∈G is bornological I -convergent to D and in this case, we write D ∈ BI −
lim Dγ .

DEFINITION 13. Let B be a bornology on X . A net {(Dγ ,uγ )}γ∈G in P[X ,Y ]
is said to be PI

−(B)-convergent to (D,u) ∈P[X ,Y ] , if for every B ∈B and ε > 0,

{γ ∈ G : ∀B1(⊂ B), u(D∩B1) ⊂ [uγ(Dγ ∩Bε
1)]

ε} ∈ F (I ).

In this case, we write (D,u) ∈ PI
−(B)− lim(Dγ ,uγ) .

Similarly, the net {(Dγ ,uγ )}γ∈G in P[X ,Y ] is said to be PI
+(B)-convergent

to (D,u) ∈ P[X ,Y ] , if for every B ∈ B and ε > 0,

{γ ∈ G : ∀B1(⊂ B), uγ(Dγ ∩B1) ⊂ [u(D∩Bε
1)]

ε} ∈ F (I ) .

In this case, we write (D,u) ∈ PI
+(B)− lim(Dγ ,uγ) .
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If (D,u) ∈ PI
−(B)− lim(Dγ ,uγ) as well as (D,u) ∈ PI

+(B)− lim(Dγ ,uγ) ,
then we say that the net {(Dγ ,uγ)}γ∈G is PI (B)-convergent to (D,u) and we denote
it by (D,u) ∈ PI (B)− lim(Dγ ,uγ) .

REMARK 2. Note that if I is a G -admissible ideal, then P−(B)-convergence,
P+(B)-convergence and P(B)-convergence imply PI

−(B)-convergence,
PI

+(B)-convergence and PI (B)-convergence respectively. On the other hand if
I = I0 , then PI

−(B)-convergence, PI
+(B)-convergence and PI (B)-conver-

gence coincide with P−(B)-convergence, P+(B)-convergence and P(B)-con-
vergence respectively as introduced by Beer et al. in [1].

We now cite an example of a net of partial maps which is PI
+(B)-convergent

but not P+(B)-convergent.

EXAMPLE 1. Let X = [−1,0] and Y = R be two metric spaces with usual metric.
Let Id = {A ∈ N : d(A) = 0} , where d(A) is the asymptotic density of the set A ,

defined by d(A) = lim
n→∞

|A(n)|
n , where A(n) = { j ∈ A : j � n} and |A(n)| represents the

number of elements in A(n) . Then Id is a non-trivial ideal in N . Let A = {k3 : k ∈N} .
Then A is an infinite subset of N and A ∈ Id . Let us consider the function u : X →Y ,
defined by u(x) = 0, ∀x ∈ X . Now for every n ∈ A , let us define un : X → Y by

un(x) =
{−nx−1, if − 1

n � x
u(x), otherwise,

and for every n /∈ A , we define, un : X → Y by un(x) = u(x) , ∀x ∈ X . Then with
respect to the bornology B = P0(X) , the sequence of partial maps {(X ,un)}n∈N is not
P+(B)-convergent to (X ,u) . To show this, we choose B = [− 5

6 ,0] ∈ B and ε = 1
3 .

Then for B1 = [− 1
2 ,0] , Bε

1∩X = [− 5
6 ,0] , u(Bε

1∩X) = {0} and [u(Bε
1∩X)]ε = (− 1

3 , 1
3 ) .

Now for n > 1 and n ∈ A , un(B1 ∩X) = [−1,0] and so un(B1 ∩X) �⊂ [u(Bε
1 ∩X)]ε .

This shows that, with respect to the bornology B = P0(X) , the sequence of partial
maps {(X ,un)}n∈N is not P+(B)-convergent to (X ,u) . Moreover, the sequence is
not P+(B)-convergent to any partial map.

Now, let B ∈ B = P0(X) and ε > 0 be given. Then for all B1 ⊂ B and n /∈ A ,
un(B1 ∩X) = {0} and u(Bε

1 ∩X) = {0} and so [u(Bε
1 ∩X)]ε = (−ε,ε) . Thus un(B1 ∩

X) ⊂ [u(Bε
1 ∩X)]ε . Therefore,

(N\A)⊂ {n ∈ N : ∀B1(⊂ B),un(B1∩X) ⊂ [u(Bε
1 ∩X)]ε} .

Since (N\A) ∈ F (Id) , it follows that

{n ∈ N : ∀B1(⊂ B),un(B1∩X) ⊂ [u(Bε
1 ∩X)]ε} ∈ F (Id) .

Thus, with respect to the bornology B = P0(X) , the sequence of partial maps
{(X ,un)}n∈N is PI

+(B)-convergent to (X ,u) .

From the above example, it is clear that PI (B)-convergence is a generalization
of P(B)-convergence.

Now we characterize the notions of PI
−(B)-convergence and PI

+(B)-con-
vergence.



I -CONVERGENCE OF PARTIAL MAPS 167

THEOREM 1. Let {(Dγ ,uγ)}γ∈G be a net in P[X ,Y ] and B be a bornology on
X .

(a) If (D,u) ∈ PI
−(B)− lim (Dγ ,uγ) , then ∀B ∈ B and ∀ε > 0 ,

{γ ∈ G : D∩B ⊂ Dε
γ} ∈ F (I ).

(b) If (D,u) ∈ PI
+(B)− lim (Dγ ,uγ) , then ∀B ∈ B and

∀ε > 0, {γ ∈ G : Dγ ∩B ⊂ Dε} ∈ F (I ).

Proof. (a) Let B ∈ B and ε > 0 be given. By assumption, we have

A = {γ ∈ G : ∀B1(⊂ B),u(D∩B1) ⊂ [uγ(Dγ ∩Bε
1)]

ε} ∈ F (I ).

Since I is non-trivial, A �= /0 . Choose γ1 ∈ A . Let x ∈ D∩ B . Then considering
B1 = {x} , we have

u(x) ∈ [uγ1(Dγ1 ∩{x}ε )]ε .

Then, for some v ∈ Dγ1 ∩Bd(x,ε) , we have μ(u(x),uγ1(v)) < ε . In particular, x ∈
Bd(v,ε) ⊂ Dε

γ1
. Since x ∈ D∩B is arbitrary, D∩B ⊂ Dε

γ1
. Therefore A ⊂ {γ ∈ G :

D∩ B ⊂ Dε
γ} . Since A ∈ F (I ) , we have {γ ∈ G : D∩ B ⊂ Dε

γ} ∈ F (I ) . This
completes the proof.

(b) The proof is similar to that of (a) , so it is omitted. �

THEOREM 2. Let {(Dγ ,uγ)}γ∈G be a net in P[X ,Y ] and B be a bornology on
X . Then

(a) (D,u) ∈ PI
+(B)− lim (Dγ ,uγ) if and only if for every B ∈ B and ε > 0 ,

{γ ∈ G : sup
z∈Dγ∩B

inf
x∈D∩Bd(z,ε)

μ(u(x),uγ(z)) < ε} ∈ F (I ).

(b) (D,u) ∈ PI
−(B)− lim (Dγ ,uγ) if and only if for every B ∈ B and ε > 0 ,

{γ ∈ G : sup
z∈D∩B

inf
x∈Dγ∩Bd(z,ε)

μ(u(z),uγ(x)) < ε} ∈ F (I ).

Proof. (a) Let (D,u)∈PI
+(B)− lim (Dγ ,uγ ) . Let B∈B and ε > 0 be given.

Then we have,

A = {γ ∈ G : ∀B1(⊂ B), uγ(Dγ ∩B1) ⊂ [u(D∩B
ε
2
1 )]

ε
2 } ∈ F (I ).

Let γ ∈ A and z ∈ Dγ ∩B . We choose B1 = {z} . Then uγ(z) ∈ [u(D∩B
ε
2
1 )]

ε
2 . This

means that, for some x ∈ D ∩ Bd(z, ε
2 ) , we have μ(uγ(z),u(x)) < ε

2 . Therefore,
inf

x∈D∩Bd(z, ε
2 )

μ(uγ(z),u(x)) < ε
2 . Since z ∈ Dγ ∩B is arbitrary, we have

sup
z∈Dγ∩B

inf
x∈D∩Bd(z, ε

2 )
μ(uγ(z),u(x)) � ε

2 < ε .
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Then clearly,

sup
z∈Dγ∩B

inf
x∈D∩Bd(z,ε)

μ(uγ(z),u(x)) � sup
z∈Dγ∩B

inf
x∈D∩Bd(z, ε

2 )
μ(uγ(z),u(x)) < ε .

Thus A ⊂ {γ ∈ G : sup
z∈Dγ∩B

inf
x∈D∩Bd(z,ε)

μ(uγ(z),u(x)) < ε}. Since A ∈ F (I ) , we have

{γ ∈ G : sup
z∈Dγ∩B

inf
x∈D∩Bd(z,ε)

μ(uγ(z),u(x)) < ε} ∈ F (I ). Therefore, the condition is

necessary.
Conversely, assume that the given condition holds. Let B ∈ B and ε > 0. Then

A = {γ ∈ G : sup
z∈Dγ∩B

inf
x∈D∩Bd(z,ε)

μ(uγ(z),u(x)) < ε} ∈ F (I ) .

Let γ ∈ A . If B1 ⊂ B , then

sup
z∈Dγ∩B1

inf
x∈D∩Bd(z, ε)

μ(uγ(z),u(x)) < ε.

Therefore, for all z ∈ Dγ ∩ B1 , there exists x ∈ D ∩ {z}ε ⊂ D ∩ Bε
1 such that

μ(uγ(z),u(x)) < ε . Thus

A ⊂ {
γ ∈ G : ∀B1(⊂ B), uγ(Dγ ∩B1) ⊂ [u(D∩Bε

1)]
ε} .

Since A ∈ F (I ) , we have{
γ ∈ G : ∀B1(⊂ B), uγ(Dγ ∩B1) ⊂ [u(D∩Bε

1)]
ε} ∈ F (I ).

This gives, (D,u) ∈ PI
+(B)− lim (Dγ ,uγ) .

(b) The proof is similar to that of (a) , so it is omitted. �
Now if B is a bornology on X , then {B×Y : B ∈ B} forms a base for some

bornology B∗ (say) on X ×Y . Using this bornology B∗ on X ×Y , we now show that
the PI

−(B) and PI
+(B) convergences in P[X ,Y ] are actually the lower and the

upper bornological I -convergences of graphs respectively in X ×Y , which extend the
results of [10] as well as of [1].

THEOREM 3. Let {(Dγ ,uγ)}γ∈G be a net in P[X ,Y ] and B be a bornology on
X . Then, for (D,u) ∈ P[X ,Y ] , the following equivalences hold:

(a) Gr(u)∈ (B∗
I )−− lim Gr(uγ ) if and only if (D,u)∈PI

−(B)− lim(Dγ ,uγ)
(b) Gr(u)∈ (B∗

I )+− lim Gr(uγ) if and only if (D,u)∈PI
+(B)− lim(Dγ ,uγ) .

Proof. (a) Let (D,u) ∈ PI
−(B)− lim(Dγ ,uγ) . To verify bornological conver-

gence of graphs, it is suffices to work with the basic sets in B∗ . Let B×Y ∈B∗ , where
B ∈ B . Let ε > 0 be given. Then by Theorem 1 and Theorem 2, we have

A = {γ ∈ G : D∩B ⊂ Dε
γ} ∈ F (I )

and

C = {γ ∈ G : sup
z∈D∩B

inf
x∈Dγ∩Bd(z,ε)

μ(u(z),uγ(x)) < ε} ∈ F (I ) .
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Now A, C ∈ F (I ) ⇒ A∩C ∈ F (I ). Let γ ∈ A∩C . Then both

D∩B ⊂ Dε
γ (1)

and
sup

z∈D∩B
inf

x∈Dγ∩Bd(z,ε)
μ(u(z),uγ(x)) < ε (2)

hold. Now fix (z,u(z)) ∈ (B×Y )∩Gr(u) so that z∈D . Then by (1), Bd(z,ε)∩Dγ �= φ
and by (2), there exists some x ∈ Bd(z,ε)∩Dγ , so that μ(uγ(x),u(z)) < ε. So we have,
(x,uγ(x)) ∈ Gr(uγ) and (d × μ)((z,u(z)),(x,uγ (x))) < ε . This gives, Gr(u)∩ (B×
Y ) ⊂ Gr(uγ)ε . Therefore,

A∩C ⊂ {γ ∈ G : Gr(u)∩ (B×Y) ⊂ Gr(uγ)ε}.
Since A∩C ∈F (I ) , we have {γ ∈ G : Gr(u)∩(B×Y )⊂Gr(uγ )ε} ∈F (I ) . Hence
Gr(u) ∈ (B∗

I )−− lim Gr(uγ) .
Conversely, let Gr(u) ∈ (B∗

I )− − lim Gr(uγ) . Let B ∈ B and ε > 0 be given.
Choosing 0 < η < ε , we have

A1 = {γ ∈ G : Gr(u)∩ (B×Y) ⊂ Gr(uγ)η} ∈ F (I ).

Let γ ∈ A1 and z ∈ D∩B be arbitrary. Then (z,u(z)) ∈ (B×Y )∩Gr(u) . So, there
exists (y0,uγ(y0)) ∈ Gr(uγ ) such that

(d× μ)((z,u(z)),(y0,uγ(y0))) < η .

Thus we get, y0 ∈Dγ such that d(z,y0) < η < ε as well as μ(u(z),uγ (y0)) < η . There-
fore

inf
x∈Bd(z,ε)∩Dγ

μ(u(z),uγ(x)) < η .

Since z ∈ D∩B is arbitrary, we have

sup
z∈D∩B

inf
x∈Bd(z,ε)∩Dγ

μ(u(z),uγ(x)) � η < ε.

Thus,

A1 ⊂ {γ ∈ G : sup
z∈D∩B

inf
x∈Bd(z,ε)∩Dγ

μ(u(z),uγ(x)) < ε}.

Since A1 ∈ F (I ) , we have {γ ∈ G : sup
z∈D∩B

inf
x∈Bd(z,ε)∩Dγ

μ(u(z),uγ(x)) < ε} ∈ F (I ) .

Then, by Theorem 2 (b) , we have (D,u) ∈ PI
−(B)− lim(Dγ ,uγ) . This completes

the proof.
(b) The proof of (b) is similar to that of (a) , so it is omitted. �

COROLLARY 1. Let {(Dγ ,uγ)}γ∈G be a net in P[X ,Y ] and B be a bornology
on X . Then PI (B)-convergence on P[X ,Y ] coincide with B∗

I -convergence of
graphs of partial maps in X ×Y .
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THEOREM 4. Let {(Dγ ,uγ )}γ∈G be a net in P[X ,Y ] and B be a local bornology
on X . If the net {(Dγ ,uγ )}γ∈G is PI (B)-convergent to both the partial maps (S,u)
and (T,v) , then S = T .

Proof. Let the net {(Dγ ,uγ)}γ∈G be PI (B)-convergent to both the partial maps
(S,u) and (T,v) . If possible, let S �= T . Then, without any loss of generality, we
assume x∈ S\T . Since T is a closed subset of X , we have {x}ε ∩T = /0 , for some ε >
0. Choose 0 < δ < ε

2 , so that {x}δ ∈ B . Let B = {x}δ . Since the net is PI
−(B)-

convergent to (S,u) , we have

{γ ∈ G : ∀B1(⊂ B),u(S∩B1) ⊂ [uγ(Dγ ∩Bδ
1 )]δ } ∈ F (I ) .

Let us take B1 = {x} . Then we have

P = {γ ∈ G : u(S∩{x})⊂ [uγ(Dγ ∩{x}δ )]δ } ∈ F (I ) .

Since u(S∩{x}) �= /0 , we have uγ(Dγ ∩{x}δ ) �= /0 , for all γ ∈ P . Now

v(T ∩B
ε
2 ) ⊂ v(T ∩{x}ε) = /0 .

Thus for all γ ∈ P , we have

uγ(Dγ ∩B) �⊂ [v(T ∩B
ε
2 )]

ε
2 .

Hence

P ⊂ {γ ∈ G : uγ(Dγ ∩B) �⊂ [v(T ∩B
ε
2 )]

ε
2 } .

Since P ∈ F (I ) , we have

{γ ∈ G : uγ(Dγ ∩B) �⊂ [v(T ∩B
ε
2 )]

ε
2 } ∈ F (I ) .

Thus

{γ ∈ G : uγ(Dγ ∩B) ⊂ [v(T ∩B
ε
2 )]

ε
2 } /∈ F (I ) ,

which is a contradiction, since {(Dγ ,uγ)}γ∈G is PI (B) -convergent to (T,v) . There-
fore S = T . �

THEOREM 5. Let B be a bornology on X . Then PIG
(B) limits of each net in

C [X ,Y ] are unique if and only if B is local, where IG is any G -admissible ideal on
G .

Proof. Let B be a local bornology on X . Let (S,v) and (T,u) be two partial
maps in C [X ,Y ] to which a net {(Dγ ,uγ)}γ∈G ∈ C [X ,Y ] be PIG

(B)-convergent.
Since B is local, then, by Theorem 4, S = T . Now suppose that there exists x ∈ S so
that u(x) �= v(x) . By continuity of u , there exists ε1 > 0 so small, that

(u(T ∩Bd(x,2ε1)))ε1 ∩Bμ(v(x),ε1) = /0, (3)

and Bd(x,ε1)∈B . Since the net is PIG
(B)-convergent to (T,u) , the net is PIG

+(B)-
convergent to (T,u) . Thus we have,



I -CONVERGENCE OF PARTIAL MAPS 171

P = {γ ∈ G : uγ(Dγ ∩Bd(x,ε1)) ⊂ [u(T ∩ (Bd(x,ε1))ε1
)]ε

1} ∈ F (IG ).

Again, since the net is PIG
(B)-convergent to (S,v) , the net is PIG

−(B)-convergent
to (S,v) . Thus we have,

Q = {γ ∈ G : sup
y∈S∩Bd(x,ε1)

inf
z∈Bd(y,ε1)∩Dγ

μ(v(y),uγ (z)) < ε1} ∈ F (IG ).

Since P,Q ∈ F (IG ) , we have P∩Q ∈ F (IG ) and so P∩Q �= /0 . Let ω ∈ P∩Q .
Then there exists zω ∈ Bd(x,ε1)∩Dω such that uω(zω) ∈ Bμ(v(x),ε1) and

uω(zω ) ∈ uω(Dω ∩Bd(x,ε1)) ⊂ [u(T ∩ (Bd(x,ε1))ε1
)]ε

1 ⊂ [u(T ∩Bd(x,2ε1))]ε
1
,

which contradicts (3). Hence PIG
(B) limits of each net in C [X ,Y ] are unique.

Conversely, let the bornology B be not local. We show that there exists a net of
continuous partial maps which has different PIG

(B) limits. Since B is not local,
there exists α0 ∈ X , such that for each n ∈ N and B ∈ B , we can choose α(n,B) ∈
Bd(α0,

1
n ) \B . Let us choose β �= α0 in X and ζ ∈ Y . We consider the directed set

G = N×B with the product direction, where N is directed in the usual way and B
is directed by subset inclusion. We consider D(n,B) = {α(n,B),β} and the continuous
mapping u(n,B) that maps both α(n,B) and β to ζ , for every n ∈ N and B ∈B . Then
the net of continuous partial maps {(D(n,B),u(n,B))}(n,B)∈N×B is P(B)-convergent to
the continuous partial maps (S,u) and (T,v) , where S = {α0,β} , T = {β} , u(S) =
{ζ} and v(T ) = {ζ} . So for any G -admissible ideal IG of G = N×B , the net
{(D(n,B),u(n,B))}(n,B)∈N×B of continuous partial maps is PIG

(B)-convergent to both
(S,u) and (T,v) . This completes the proof. �

THEOREM 6. Let B be a bornology on X and (D,u) ∈P[X ,Y ] be strongly uni-
formly continuous relative to B . Then a net {(Dγ ,uγ)}γ∈G in P[X ,Y ] is PI

+(B)-
convergent to (D,u) if and only if ∀B ∈ B and ε > 0 , there exists ζ > 0 such that

{γ ∈ G : sup
z∈Dγ∩B

sup
x∈Bd(z,ζ )∩D

μ(u(x),uγ(z)) < ε} ∈ F (I ).

Proof. Sufficient part of the statement follows from Theorem 2. We only show
that the condition is necessary.

Let a net {(Dγ ,uγ)}γ∈G ∈ P[X ,Y ] be PI
+(B)-convergent to (D,u) . Let B ∈

B and ε > 0 be given. Let also η > 0 be such that 2η < ε . By strong uniform conti-
nuity of (D,u) relative to B , there exists δ , 0 < δ < 2η , such that x,y ∈ D∩Bδ and
d(x,y) < δ implies μ(u(x),u(y)) < η . Now since (D,u) ∈ PI

+(B)− lim(Dγ ,uγ) ,
by Theorem 1 and Theorem 2, we have

A = {γ ∈ G : Dγ ∩B ⊂ D
δ
2 } ∈ F (I )

and

C = {γ ∈ G : sup
z∈Dγ∩B

inf
x∈Bd(z, δ

2 )∩D
μ(u(x),uγ(z)) < δ

2 } ∈ F (I ).
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Thus A∩C ∈ F (I ) . Choose γ ∈ A∩C . Then for every z ∈ B∩Dγ , there exists
xz ∈ Bd(z, δ

2 )∩D such that μ(u(xz),uγ(z)) < δ
2 < η . Since Bd(z, δ

2 ) ⊂ Bδ , we have

Bd(z, δ
2 )∩D ⊂ Bδ ∩D . Let x ∈ Bd(z, δ

2 )∩D ⊂ Bδ ∩D . Then d(x,xz) < δ . Then
by strong uniform continuity of (D,u) , we have μ(u(x),u(xz)) < η . Thus for every
x ∈ Bd(z, δ

2 )∩D , we have

μ(u(x),uγ(z)) � μ(u(x),u(xz))+ μ(u(xz),uγ(z)) < η + η = 2η .

Hence

sup
z∈Dγ∩B

sup
x∈Bd(z, δ

2 )∩D

μ(u(x),uγ(z)) � 2η < ε .

Choose ζ = δ
2 . Then we have,

A∩C ⊂ {γ ∈ G : sup
z∈Dγ∩B

sup
x∈Bd(z,ζ )∩D

μ(u(x),uγ (z)) < ε}.

Since A∩C ∈ F (I ) , we have {γ ∈ G : sup
z∈Dγ∩B

sup
x∈Bd(z,ζ )∩D

μ(u(x),uγ(z)) < ε} ∈
F (I ). This completes the proof. �

THEOREM 7. Let B be a bornology on X that is stable under small enlargements
and (D,u)∈P[X ,Y ] be uniformly continuous relative to B . Then a net {(Dγ ,uγ)}γ∈G

in P[X ,Y ] is PI (B)-convergent to (D,u) if and only if both
(a) for every B ∈ B and ε > 0 , there exists ζ > 0 such that

{γ ∈ G : sup
z∈Dγ∩B

sup
x∈Bd(z,ζ )∩D

μ(u(x),uγ (z)) < ε} ∈ F (I ) ;

and
(b) for every B ∈ B and ε > 0 , {γ ∈ G : D∩B ⊂ Dε

γ} ∈ F (I ) hold.

Proof. Since (D,u) is uniformly continuous relative to B and B is stable under
small enlargements, it follows that (D,u) is strongly uniformly continuous relative to
B . Then, by Theorem 1 and Theorem 6, we see that the conditions are necessary.

Conversely, let the conditions hold. Let B ∈ B and ε > 0 be given. It is sufficient
to show that

{γ ∈ G : sup
z∈D∩B

inf
x∈Bd(z,ε)∩Dγ

μ(u(z),uγ (x)) < ε} ∈ F (I ) .

Choose ζ < ε so small that Bζ ∈ B ,

C = {γ ∈ G : sup
z∈Dγ∩Bζ

sup
x∈Bd(z,ζ )∩D

μ(u(x),uγ (z)) < ε
2} ∈ F (I )

and

E = {γ ∈ G : D∩B ⊂ Dζ
γ } ∈ F (I ) .



I -CONVERGENCE OF PARTIAL MAPS 173

Choose γ ∈C∩E . Let z∈D∩B . Then there exists x(z,γ)∈Dγ ∩Bζ with d(z,x(z,γ))<

ζ . Since γ ∈C , x(z,γ)∈Dγ ∩Bζ and z∈Bd(x(z,γ),ζ )∩D , we have μ(u(z),uγ (x(z,γ)))
< ε

2 . Thus inf
x∈Bd(z,ζ )∩Dγ

μ(u(z),uγ(x)) < ε
2 . Hence

sup
z∈D∩B

inf
x∈Bd(z,ε)∩Dγ

μ(u(z),uγ (x)) � sup
z∈D∩B

inf
x∈Bd(z,ζ )∩Dγ

μ(u(z),uγ(x)) � ε
2 < ε .

Therefore, C ∩ E ⊂ {γ ∈ G : sup
z∈D∩B

inf
x∈Bd(z,ε)∩Dγ

μ(u(z),uγ (x)) < ε}. Since C ∩E ∈
F (I ) , we have {γ ∈ G : sup

z∈D∩B
inf

x∈Bd(z,ε)∩Dγ
μ(u(z),uγ(x)) < ε} ∈ F (I ) . This com-

pletes the proof. �

4. I ∗ -convergence of partial maps

In this section, we introduce the notions of bornological I ∗ -convergence and
I ∗ -convergence of nets of partial maps and study their relationship with bornological
I -convergence and I -convergence of nets of partial maps.

DEFINITION 14. Let (X ,d) be a metric space and B be a bornology on X . A
net {Dγ}γ∈G ∈ P0(X) is said to be BI ∗ -convergent (bornological I ∗ convergent)
to D ∈ P0(X) , if there exists a set G ′ ∈ F (I ) such that G ′ itself is a directed set
with respect to the binary relation induced from (G ,�) and the net {Dγ}γ∈G ′ is B -
convergent to D .

In this case, we write D ∈ BI ∗ − limDγ .

THEOREM 8. Let I be a G -admissible ideal of a directed set (G ,�) , {Dγ}γ∈G

be a net in P0(X) and D ∈ P0(X) . Then D ∈ BI ∗ − limDγ implies D ∈ BI −
limDγ .

Proof. Let D ∈ BI ∗ − limDγ . Then there exists G ′ ∈ F (I ) such that G ′ itself
is a directed set with respect to the binary relation induced from (G ,�) and {Dγ}γ∈G ′
is B -convergent to D .

Let B ∈ B and ε > 0 be given. Then there exists γ0 ∈ G ′ , such that for all γ ∈ G ′
with γ � γ0 , we have

D∩B ⊂ Dε
γ and Dγ ∩D ⊂ Dε .

Since I is G -admissible, Mγ0 ∈ F (I ) . Then Mγ0 ∩G ′ ∈ F (I ) . Now

Mγ0 ∩G ′ ⊂ {γ ∈ G : D∩B ⊂ Dε
γ}∩{γ ∈ G : Dγ ∩B ⊂ Dε} .

So {γ ∈ G : D∩B ⊂ Dε
γ} ∈ F (I ) as well as {γ ∈ G : Dγ ∩B ⊂ Dε} ∈ F (I ) . Hence

D ∈ BI − limDγ . �

DEFINITION 15. [9] Let I be a G -admissible ideal of a directed set G . Then
I is said to satisfy the condition (DP), if for every countable family of mutually disjoint
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sets {P1,P2, . . .} in I , there exists a countable family of sets {Q1,Q2, . . .} in G such

that for each i ∈ N , PiΔQi ⊂ G \Mγi for some γi ∈ G and Q =
∞⋃

i=1
Qi ∈ I , where Δ

stands for the symmetric difference between two sets.

LEMMA 1. Let I be an ideal of a directed set (G ,�) satisfying the condition
(DP). Then for any countable family of sets {E1,E2, . . .} in F (I ) there exists a E ∈
F (I ) such that E itself is a directed set with respect to the binary relation induced
from (G ,�) and for each i ∈ N , E \Ei ⊂ G \Mγ(i) for some γ(i) ∈ G .

Proof. Let {E1,E2, . . .} be a countable family of sets in F (I ) . Then {F1,F2, . . .}
is a countable family of sets in I , where Fi = G \Ei,∀i ∈ N . Now we construct a se-
quence of sets {Pi}i∈N as follows:

P1 = F1 , P2 = F2 \F1 ,. . . , Pi = Fi \ (F1∪F2∪ . . .∪Fi−1), . . . .

Clearly, Pi ∈I , for all i ∈N and Pi∩Pj = /0 for i �= j . Since I satisfies the condition
(DP), there exists a countable family of sets {Q1,Q2, . . .} in G such that for each i∈N ,

PiΔQi ⊂ G \Mγi for some γi ∈ G and Q =
∞⋃

i=1
Qi ∈ I . Now, fix i ∈ N . Then

Fi \Q ⊂ (
i⋃

j=1
Fj)\Q = (

i⋃
j=1

Pj)\Q =
i⋃

j=1
(Pj \Q) ⊂

i⋃
j=1

(Pj \Qj) ⊂
i⋃

j=1
(PjΔQj)

⊂
i⋃

j=1
(G \Mγ j) .

Now, for γ1,γ2, . . . ,γi , there exists γ(i) ∈ G , such that γ(i) � γ j , ∀ j = 1,2, . . . , i . Then

Fi \Q⊂
i⋃

j=1
(G \Mγ j) ⊂ G \Mγ(i) .

Let E = G \Q . Then E ∈ F (I ) and E \Ei = Fi \Q⊂ G\Mγ(i) .
We now show that E itself is a directed set with respect to the binary relation

induced from (G ,�) . It is clear that � is reflexive and transitive on E . Now, let
e1,e2 ∈ E . Since e1,e2 are two elements of G , there exists e ∈ G such that e � e1 and
e � e2 . Now E ∩Me ∈ F (I ) . Let e′ ∈ E ∩Me . Then e′ � e and so e′ � e1 and
e′ � e2 . Therefore, E is a directed set with respect to the binary relation induced from
(G ,�) . �

THEOREM 9. Let I be an ideal on a directed set (G ,�) satisfying the condition
(DP), (X ,d) be a metric space and B be a bornology on X . Then for any net {Dγ}γ∈G

in P0(X) and D ∈ P0(X) , D ∈ BI − limDγ implies D ∈ BI ∗ − limDγ .

Proof. Let D ∈ BI − limDγ . Let B ∈ B and ε > 0 be given. Since D ∈ BI −
limDγ , for each j ∈ N ,
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Aj = {γ ∈ G : D∩B ⊂ D
1
j

γ } ∈ F (I )

and

Bj = {γ ∈ G : Dγ ∩B ⊂ D
1
j } ∈ F (I ) .

Let Ej = Aj ∩Bj, j ∈ N . Then Ej ∈ F (I ),∀ j ∈ N . Since I satisfies the condition
(DP), by Lemma 1, there exists E ∈ F (I ) such that E itself is a directed set with
respect to the binary relation induced from (G ,�) and for each j ∈ N , E \Ej ⊂ G \
Mγ( j) for some γ( j) ∈ G . Now for the above ε > 0, there exists j ∈ N such that 1

j < ε .

Then for that j , E \Ej ⊂ G \Mγ( j) for some γ( j) ∈ G . Then for all γ ∈ E and γ � γ( j)

we have γ ∈ Ej = Aj ∩Bj and so

D∩B ⊂ D
1
j

γ ⊂ Dε
γ

and

Dγ ∩B ⊂ D
1
j ⊂ Dε .

Therefore, D ∈ BI ∗ − limDγ . �
We now introduce the notion of I ∗ -convergence of nets of partial maps.

DEFINITION 16. Let (X ,d),(Y,μ) be two metric spaces, B be a bornology on
X . A net {(Dγ ,uγ)}γ∈G ∈ P[X ,Y ] is said to be PI ∗(B)-convergent to (D,u) ∈
P[X ,Y ] , if there exists a set G ′ ∈ F (I ) such that G ′ itself is a directed set with re-
spect to the binary relation induced from (G ,�) and the net {(Dγ ,uγ )}γ∈G ′ is P(B)-
convergent to (D,u) .

In this case, we write (D,u) ∈ PI ∗(B)− lim(Dγ ,uγ) .

THEOREM 10. Let I be a G -admissible ideal of a directed set (G ,�) ,
{(Dγ ,uγ)}γ∈G be a net in P[X ,Y ] and (D,u) ∈ P[X ,Y ] . Then (D,u) ∈ PI ∗(B)−
lim(Dγ ,uγ) implies (D,u) ∈ PI (B)− lim(Dγ ,uγ ) .

Proof. Let (D,u) ∈ PI ∗(B)− lim(Dγ ,uγ) . Then there exists G ′ ∈ F (I ) such
that G ′ itself is a directed set with respect to the binary relation induced from (G ,�)
and {(Dγ ,uγ)}γ∈G ′ is P(B)-convergent to (D,u) .

Let B∈B and ε > 0 be given. Then there exists γ0 ∈ G ′ , such that for all B1 ⊂ B
and for all γ ∈ G ′ with γ � γ0 , we have

u(D∩B1) ⊂ [uγ(Dγ ∩Bε
1)]

ε and uγ(Dγ ∩B1) ⊂ [u(D∩Bε
1)]

ε .

Since I is G -admissible, Mγ0 ∈ F (I ) and so Mγ0 ∩G ′ ∈ F (I ) . Then

Mγ0 ∩G ′ ⊂ {γ ∈ G : ∀B1(⊂ B),u(D∩B1) ⊂ [uγ(Dγ ∩Bε
1)]

ε}
∩{γ ∈ G : ∀B1(⊂ B),uγ(Dγ ∩B1) ⊂ [u(D∩Bε

1)]
ε} .

So {γ ∈G : ∀B1(⊂B),u(D∩B1)⊂ [uγ(Dγ ∩Bε
1)]

ε}∈F (I ) as well as {γ ∈G : ∀B1(⊂
B),uγ(Dγ ∩B1)⊂ [u(D∩Bε

1)]
ε}∈F (I ) . Hence, (D,u)∈PI (B)− lim(Dγ ,uγ) . �
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THEOREM 11. Let I be an ideal on a directed set (G ,�) satisfying the condi-
tion (DP), (X ,d),(Y,μ) be metric spaces and B be a bornology on X . Then for any
net {(Dγ ,uγ)}γ∈G in P[X ,Y ] and (D,u) ∈ P[X ,Y ] , (D,u) ∈ PI (B)− lim(Dγ ,uγ)
implies (D,u) ∈ PI ∗(B)− lim(Dγ ,uγ) .

Proof. Let (D,u)∈PI (B)− lim(Dγ ,uγ) . Let B∈B and ε > 0 be given. Since
(D,u) ∈ PI (B)− lim(Dγ ,uγ) , for each j ∈ N ,

Aj = {γ ∈ G : ∀B1(⊂ B),u(D∩B1) ⊂ [uγ(Dγ ∩B
1
j
1 )]

1
j } ∈ F (I )

and

Cj = {γ ∈ G : ∀B1(⊂ B),uγ (Dγ ∩B1) ⊂ [u(D∩B
1
j
1 )]

1
j } ∈ F (I ) .

Let Ej = Aj ∩Cj, j ∈ N . Then Ej ∈ F (I ),∀ j ∈ N . Since I satisfies the condition
(DP), by Lemma 1, there exists E ∈ F (I ) such that E itself is a directed set with
respect to the binary relation induced from (G ,�) and for each j ∈ N , E \Ej ⊂ G \
Mγ( j) for some γ( j) ∈ G . Now for the above ε > 0, there exists j ∈ N such that 1

j < ε .

Then for that j , E \Ej ⊂G \Mγ( j) , for some γ( j) ∈G . Then for all γ ∈E and γ � γ( j) ,
we have γ ∈ Ej = Aj ∩Cj and so

∀B1(⊂ B),u(D∩B1) ⊂ [uγ(Dγ ∩B
1
j
1 )]

1
j ⊂ [uγ(Dγ ∩Bε

1)]
ε

and

∀B1(⊂ B),uγ (Dγ ∩B1) ⊂ [u(D∩B
1
j
1 )]

1
j ⊂ [u(D∩Bε

1)]
ε .

Therefore, (D,u) ∈ PI ∗(B)− lim(Dγ ,uγ) . �

REMARK 3. It is not clear, whether the (DP)-condition is necessary for Theorem
9 and Theorem 11, so examination of necessity of (DP)-condition for that two theorems
remains open.
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