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ON SOME IMPROPER INTEGRALS INVOLVING THE

CUBE OF THE TAILS OF TWO MACLAURIN SERIES

RUSSELL A. GORDON, SEÁN M. STEWART ∗ AND OMRAN KOUBA

Abstract. Using a reformulation of a recently devised method for evaluating definite integrals
known as integration by differentiation [J. Phys. A: Math. Theor. 50 (2017) 235201], a family
of ten improper integrals containing the cube of the tails of the Maclaurin series for the sine
and cosine functions are found. Contributions to the value of the improper integral from various
terms that repeatedly appear in the integrands for the improper integrals to be evaluated when
applying the method are explicitly found, thereby greatly helping to streamline the computational
aspects of the process. A number of inter-relations between six of the ten improper integrals are
established, leading to some intriguing binomial identities.

1. Introduction

The problem of evaluating improper integrals that contain the tails of the Maclau-
rin series for the sine and cosine functions dates back well over a century where it was
posed as a problem [13, Problem 1914, p. 329]. Since then it has appeared in various
guises [12, 8], [9, Ex. 2.68 and 2.69, pp. 46–47], [10, 7] and is most easily evaluated
using elementary integration. More recently, the first two of the present authors gave
evaluations for a family of improper integrals containing the square of the tails of the
Maclaurin series for the sine and cosine functions [11,2,1]. More specifically, for each
n ∈ Z�0 = {0,1,2, . . .} , let

Cn(x) = cosx−
n


k=0

(−1)kx2k

(2k)!
and Sn(x) = sinx−

n


k=0

(−1)kx2k+1

(2k+1)!
.

For a ∈ R it can easily be shown that the improper integral
∫ 
0 C2

n(x)/xa dx converges
for 4n+1< a < 4n+5 while the improper integral

∫ 
0 S2

n(x)/xa dx converges for 4n+
3 < a < 4n+7. So for a ∈ Z�0 , there are three convergent improper integrals in each
of the families

∫ 

0

C2
n(x)
xa dx, a =

⎧⎪⎨
⎪⎩

4n+2

4n+3

4n+4,

and
∫ 

0

S2
n(x)
xa dx, a =

⎧⎪⎨
⎪⎩

4n+4

4n+5

4n+6

(1)
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where n ∈ Z�0 . Four of the improper integrals in these families have integrands that
are even functions. Their values were found using Fourier transform [11] and contour
integration [2] methods, and an elementary method involving integration by parts and
induction [1]. The values are:

In =
∫ 

0

C2
n(x)

x4n+2 dx =
1

(4n+1)!

(
4n
2n

)
· 
2

; (2)

Jn =
∫ 

0

C2
n(x)

x4n+4 dx =
1

(4n+3)!

(
4n+2
2n+1

)
· 
2

; (3)

n =
∫ 

0

S2
n(x)

x4n+4 dx =
1

(4n+3)!

(
4n+2
2n+1

)
· 
2

; (4)

n =
∫ 

0

S2
n(x)

x4n+6 dx =
1

(4n+5)!

(
4n+4
2n+2

)
· 
2

. (5)

Notice that each of the improper integrals is equal to a positive rational multiple of 
2 ,

which is the value of −1 =
∫ 
0

(
S−1(x)

x

)2
dx =

∫ 
0

(
sinx
x

)2
dx , where the empty sum

that arises in Sn(x) when n = −1 is understood to be nil. Two obvious connections
between the four improper integrals are Jn = n and In = n−1 for all n ∈ Z�0 .

The remaining two improper integrals in this family have integrands that are odd
functions. Neither Fourier transform methods nor contour integration methods can be
used to evaluate these integrals. In the former case, the general forms for the Fourier
transforms needed are not known [11]. In the latter case, the integrand being odd pre-
cludes contour integration being used. The integrals can instead be found using antidif-
ferentiation and an inductive argument that relies on making use of the cosine integral
function. The values are [2]:

Kn =
∫ 

0

C2
n(x)

x4n+3 dx =
2

(4n+2)!

{
24n log2−24nH4n+2 +

2n+1


k=n+1

(
4n+2

2k

)
H2k

}
; (6)

n =
∫ 

0

S2
n(x)

x4n+5 dx =
2

(4n+4)!

{
24n+2 log2−24n+2H4n+4 +

2n+1


k=n+1

(
4n+4
2k+1

)
H2k+1

}
.

(7)

Here Hn denotes the n th harmonic number defined by n
k=1

1
k along with H0 ≡ 0.

Notice that each improper integral consists of a sum of a rational part (which may be
zero) and a term consisting of a positive rational multiple of log2.

In moving to the case for improper integrals containing the cube of the tails of
the Maclaurin series for the sine and cosine functions, their evaluation becomes more
challenging. Fourier transform methods for the case when the integrand is even cannot
be used since, unlike the squared case where the presence of the squared term allowed
Plancherel’s theorem to be used, this is clearly not the case when the integrand is cubed.
And while it is possible to use contour integration methods to evaluate those improper
integrals where the integrand is even, it again fails for those cases where the integrand
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is odd. In overcoming these challenges, a recently devised technique known as ‘inte-
gration by differentiation’ can be used. Originally introduced heuristically by Kempf,
Jackson, and Morales [6,5] in the context of quantum field theory, it was made rigorous
several years later by Jia, Tang, and Kempf [4] and further extended recently by the
present authors [3]. Still relatively unknown, using a reformulation of this method we
shall see that it is a very powerful method in the evaluation of certain types of definite
integrals.

For a ∈ R , it is easily shown that
∫ 
0 C3

n(x)/xa dx converges for 6n + 1 < a <
6n+ 7 while the integral

∫ 
0 S3

n(x)/xa dx converges for 6n+ 4 < a < 6n+ 10. So for
a ∈ Z�0 there are a total of five convergent improper integrals in each of the families

∫ 

0

C3
n(x)
xa dx, a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6n+2

6n+3

6n+4

6n+5

6n+6,

and
∫ 

0

S3
n(x)
xa dx, a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6n+5

6n+6

6n+7

6n+8

6n+9

(8)

where n ∈ Z�0 . Six of these improper integrals have integrands that are even:

Cn =
∫ 

0

C3
n(x)

x6n+2 dx; (9a) Sn =
∫ 

0

S3
n(x)

x6n+5 dx; (9b)

Cn =
∫ 

0

C3
n(x)

x6n+4 dx; (9c) Sn =
∫ 

0

S3
n(x)

x6n+7 dx; (9d)

Cn =
∫ 

0

C3
n(x)

x6n+6 dx; (9e) Sn =
∫ 

0

S3
n(x)

x6n+9 dx. (9f)

The remaining four integrals have integrands that are odd. They are:

Cn =
∫ 

0

C3
n(x)

x6n+3 dx; (10a) Sn =
∫ 

0

S3
n(x)

x6n+6 dx; (10b)

Cn =
∫ 

0

C3
n(x)

x6n+5 dx; (10c) Sn =
∫ 

0

S3
n(x)

x6n+8 dx. (10d)

For small values of n , exact values for the integrals can be readily found using
simple techniques such as integration by parts. For example, when n = 0, the values of
the integrals with even integrands are

∫ 

0

(cosx−1)3

x2 dx = −3
4
 ;

∫ 

0

(cosx−1)3

x4 dx = −1
8
 ;

∫ 

0

(cosx−1)3

x6 dx = − 11
160

 ;

∫ 

0

(sinx− x)3

x5 dx = − 5
32

 ;

∫ 

0

(sinx− x)3

x7 dx = − 11
960

 ;

∫ 

0

(sinx− x)3

x9 dx = − 181
53760

 ;
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while the values of the integrals with odd integrands are

∫ 

0

(cosx−1)3

x3 dx = −3log2+
9
8

log3;

∫ 

0

(cosx−1)3

x5 dx = log2− 27
32

log3;

∫ 

0

(sinx− x)3

x6 dx =
1
40

− log2+
81
160

log3;

∫ 

0

(sinx− x)3

x8 dx =
19

1680
+

2
15

log2− 243
2240

log3.

For larger values of n , the coefficients for the numbers  , log2, and log3; which we
shall verify are rational; quickly become more involved. For instance, two examples
when n = 1 are

∫ 

0

(sinx− x+ x3/6)3

x15 dx =
73501

116237721600
 ;

∫ 

0

(cosx−1+ x2/2)3

x11 dx = − 1187
2419200

− 7
1350

log2+
729

179200
log3.

As the value of n grows, eventually all computer algebra systems fail to find exact
values for the integrals. The primary goal of this paper is to find the exact values of
these integrals for all values of n ∈ Z�0 .

In the next section, a reformulation of the method of integration by differentiation
that is going to be used in the evaluation of the family of integrals given in (8) is intro-
duced. The contribution of several terms that are going to be repeatedly found in the
integrands of those improper integrals we wish to evaluate are explicitly found, thereby
easing some of the computational burden associated with the method. Expressions for
all ten of the convergent improper integrals (9a) to (9f) and (10a) to (10d) are listed
in Section 3 while their evaluation is given in Section 4. In Section 5, a number of
inter-relations between the six improper integrals (9a) to (9f) are established and lead
to some interesting binomial identities. These are recorded in Section 6.

2. A reformulation of the method of integration by differentiation

When the integration by differentiation method applies, it allows the integral to be
found in a systematic fashion without the need of having to resort to special functions,
brute force, or some other combination of clever tricks. As a technique, it is naturally
well suited to the evaluation of the improper integrals we consider here. It also makes
the evaluation of Dirichlet-type integrals very easy. Recall Dirichlet’s famous integral
is
∫ 
0

sinx
x dx = 

2 . We now present a reformulation of this so-called integration by
differentiation method.

We begin by first introducing a function that helps in streamlining the process. Let
z = a + bi be a fixed non-zero complex number with a � 0, b ∈ R , and let n be a
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non-negative integer. Here i is the imaginary unit. Define a function E(n,z)(x) on R by
E(n,z)(0) = zn+1/(n+1)! and

E(n,z)(x) =
1

xn+1

(
ezx−

n


k=0

zk

k!
xk

)

for x �= 0. Note that the function E(n,z) is analytic on R and bounded on the interval
[0,) . We now give in the following Lemma an integral representation for the function
E(n,z) .

LEMMA 1. The function E(n,z) has the following integral representation

E(n,z)(x) =
zn+1

n!

∫ 1

0
(1− t)nezxt dt.

Proof. Using properties of the beta function, we find that

E(n,z)(x) =



k=n+1

zk

k!
xk−n−1 =




k=0

zk+n+1

(k+n+1)!
xk

=
zn+1

n!




k=0

(
(zx)k

k!
· k!n!
(k+n+1)!

)

=
zn+1

n!




k=0

(
(zx)k

k!
·
∫ 1

0
(1− t)ntk dt

)

=
zn+1

n!

∫ 1

0




k=0

(
(zxt)k

k!
(1− t)n dt

)

=
zn+1

n!

∫ 1

0
(1− t)nezxt dt,

and this completes the proof. Here the interchange made between the integral and sum
is valid since the power series for the exponential function converges uniformly on the
interval [0,1] . �

In what follows, we use the principal branch of the logarithm function, denoted
by Log, for complex arguments. Again Hn denotes the n th harmonic number, with
H0 = 0. Finally, the Laplace transform of f , denoted by F , is defined by

F(s) = L { f (t)}(s) :=
∫ 

0
e−st f (t)dt,

for all values of s for which the improper integral converges. The connection between
the Laplace transform and our reformulated method of integration by differentiation
will be formalised in Proposition 1. In the next Lemma, we give an important limit for
the Laplace transform of the function E(n,z) .
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LEMMA 2. The Laplace transform (n,z) of E(n,z) satisfies the equation

lim
s→0+

(
(n,z)(s)−

zn

n!
logs

)
=

zn

n!

{
Hn − log |z|− iarctan

(
b
a

)}
(11)

for all appropriate n and z values.

Proof. Using Lemma 1, we find

(n,z)(s) := L {E(n,z)(x)}(s)
=
∫ 

0
E(n,z)(x)e

−sx dx

=
∫ 

0

(
zn+1

n!

∫ 1

0
(1− t)nezxt dt

)
e−sx dx.

Fubini’s theorem can be applied to change the order of integration since

∫∫
R

∣∣∣(1− t)ne(zt−s)x
∣∣∣ dA

exists, where R is the infinite rectangle {(t,x) : 0 � t � 1, x � 0} . Doing so, and noting
that

lim
x→

e(zt−s)x = lim
x→

e(at−s)x+bitx = 0

for all t � 0 when s > 0 and a � 0, we find

(n,z)(s) =
zn+1

n!

∫ 1

0

∫ 

0
(1− t)ne(zt−s)x dxdt

=
zn+1

n!

∫ 1

0
(1− t)n · e(zt−s)x

zt− s

∣∣∣∣∣


0

dt

=
zn+1

n!

∫ 1

0

(1− t)n

s− zt
dt

=
zn+1

n!

∫ 1

0

1− (1− t)n

zt − s
dt +

zn+1

n!

∫ 1

0

1
s− zt

dt

=
zn+1

n!

∫ 1

0

1− (1− t)n

zt − s
dt− zn

n!
Log(s− zt)

∣∣∣∣
1

0

=
zn+1

n!

∫ 1

0

1− (1− t)n

zt − s
dt− zn

n!
(Log(s− z)− logs) ;

(n,z)(s)−
zn

n!
logs =

zn+1

n!

∫ 1

0

1− (1− t)n

zt − s
dt− zn

n!
Log(s− z)

for all s > 0. Observing the integrand for the remaining t -integral is continuous for
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0 � t � 1 and 0 � s � 1, on taking the limit as s → 0+ yields

lim
s→0+

(
(n,z)(s)−

zn

n!
logs

)
=

zn

n!

(∫ 1

0

1− (1− t)n

t
dt−Log(−z)

)

=
zn

n!

(∫ 1

0

1− tn

1− t
dt−Log(−a−bi)

)

=
zn

n!

{
Hn− log(

√
a2 +b2)− iarctan

(
b
a

)}

=
zn

n!

{
Hn− log |z|− iarctan

(
b
a

)}
.

This completes the proof. �

REMARK 1. We note that taking the limit of (11) as a → 0− yields

lim
s→0+

(
(n,z)(s)−

(bi)n

n!
logs

)
=

(bi)n

n!

(
Hn− log |b|+ i

2
sgn(b)

)
.

Here sgn denotes the sign function.

Let S be the collection of all functions that are analytic on R , bounded on [0,) ,
the improper integral

∫ 
0 f exists, and can be expressed as a finite linear combination

of terms of the form tke t , where k is a negative integer and  is a complex number
with Re � 0, using complex numbers for the scalars. We now give the main result
to be used in evaluating the improper integrals in this paper using. It represents a
reformulation of what in the past has been referred to as the method of integration by
differentiation.

PROPOSITION 1. Suppose that f ∈ S can be expressed as

f (x) =
n


k=1

ckezkx

xpk+1 +
m


k=1

dk

xqk+1 ,

where zk = ak + bki with ak � 0 and bk �= 0 , the values of ck and dk are complex
numbers, and the values of pk and qk are positive integers. Then

∫ 

0
f (x)dx =

n


k=1

ckz
pk
k

pk!

{
Hpk − log |zk|− iarctan

(
bk

ak

)}
. (12)

Proof. Define a function g on R by

g(x) =
n


k=1

ckE(pk,zk)(x) =
n


k=1

ck

(
ezkx

xpk+1 −
pk


j=0

z j
k

j!
x j−pk−1

)

and note that

f (x)−g(x) =
m


k=1

(
dk

xqk+1 +
ck

xpk+1

pk


j=0

z j
k

j!
x j

)
.
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Since f and g are continuous at zero and the rational function f −g consists of a linear
combination of terms of the form 1/x� , where � is a positive integer, we conclude that
f −g must be the zero function. It follows that f (x) = 

k=1 ckE(pk,zk)(x) . In addition,
since

∫ 
0 f exists, we must have n

k=1 ckz
pk
k /pk! = 0 since this is the coefficient of 1/x

in the expression for f (using the g representation for f ). Using this fact together with
Lemma 2, we find that

∫ 

0
f (t)dt = lim

s→0+
L { f (t)}(s)

= lim
s→0+

n


k=1

ck(pk,zk)(x)

= lim
s→0+

n


k=1

ck

(
(pk,zk)(x)−

zpk
k

pk!
logs

)

=
n


k=1

ckzpk

pk!

{
Hpk − log |zk|− iarctan

(
bk

ak

)}
.

This completes the proof. �

We now give a number of corollaries stemming from Proposition 1. These relate
to the contribution particular terms appearing in the integrand of (12) give to the value
of the improper integral when evaluating each of the ten improper integrals found in
(8). In what follows we use z to denote the conjugate of the complex number z .

COROLLARY 1. Let z = a+bi with a � 0 and b > 0 and write zn = c+di. If a
function f belongs to S , from Proposition 1 a term in f of the form

eax sin(bx)
xn+1 contributes

1
n!

{
dHn−d log(

√
a2 +b2)− carctan

(
b
a

)}
(13)

as part of the value of the integral when evaluated, while

eax cos(bx)
xn+1 contributes

1
n!

{
cHn− c log(

√
a2 +b2)+d arctan

(
b
a

)}
(14)

as part of the value of the integral when evaluated.

Proof. From Proposition 1, a term in the integrand of the form

eax sin(bx)
xn+1 =

eax

xn+1 ·
eibx− e−ibx

2i
=

1
2i

(
ezx

xn+1 −
ezx

xn+1

)
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contributes

1
2i

[
zn

n!

{
Hn − log |z|− iarctan

(
b
a

)}
− z n

n!

{
Hn− log |z |− iarctan

(−b
a

)}]

=
1

2in!

{
(zn − zn)Hn− (zn− zn) log |z|− i(zn + zn)arctan

(
b
a

)}

=
1

2in!

{
(2diHn−2di log |z|−2ciarctan

(
b
a

)}

=
1
n!

{
dHn−d log(

√
a2 +b2)− carctan

(
b
a

)}

as part of the value of the integral when evaluated. Similarly, a term in the integrand of
the form

eax cos(bx)
xn+1 =

eax

xn+1 ·
eibx + e−ibx

2
=

1
2

(
ezx

xn+1 +
ezx

xn+1

)

contributes

1
2

[
zn

n!

{
Hn− log |z|− iarctan

(
b
a

)}
+

zn

n!

{
Hn − log |z |− iarctan

(−b
a

)}]

=
1

2n!

{
(zn + zn)Hn − (zn + zn) log |z|− i(zn− zn)arctan

(
b
a

)}

=
1

2n!

{
2cHn−2c log |z|+2d arctan

(
b
a

)}

=
1
n!

{
cHn− c log(

√
a2 +b2)+d arctan

(
b
a

)}

as part of the value of the integral when evaluated. This completes the proof. �

COROLLARY 2. Taking the limits of (13) and (14) as a→ 0− in Corollary 1, we
find that

sin(bx)
xn+1 contributes

1
n!

(
dHn−d logb+

c
2

)
(15)

and
cos(bx)
xn+1 contributes

1
n!

(
cHn− c logb− d

2

)
(16)

as part of their values of the integrals when evaluated.

COROLLARY 3. Let f belong to S . Then from Proposition 1 a term in f of the
form

ezx

xn+1 contributes
zn

n!

{
Hn − log |z|− iarctan

(
b
a

)}
,

to the integral
∫ 
0 f (x)dx , where z = a+bi with a � 0 , while a term of the form

1
xn+1 contributes 0,
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to the same integral. Moreover, the value of
∫ 
0 f (x)dx is equal to the sum of these

contributions.

COROLLARY 4. If q is a positive integer and b a real number, then terms in f of
the form

sin(bx)
x2q contributes (−1)q+1 · b2q−1

(2q−1)!
· (H2q−1− logb

)
cos(bx)

x2q contributes (−1)q · b2q−1

(2q−1)!
· 
2

sin(bx)
x2q+1 contributes (−1)q · b2q

(2q)!
· 
2

cos(bx)
x2q+1 contributes (−1)q · b2q

(2q)!
· (H2q− logb

)
to the integral

∫ 
0 f (x)dx .

Proof. When n = 2q − 1 with q a positive integer, we find that (ib)n =
−i(−1)qb2q−1 . Thus c = 0 and d = (−1)q+1b2q−1 and the first and second of the
results in Corollary 4 follow from (15) and (16) in Corollary 2.

In a similar manner, when n = 2q with q a positive integer, we find that (ib)n =
(−1)qb2q . Thus c = (−1)qb2q and d = 0 and the third and fourth results in Corollary
4 follow from (15) and (16) in Corollary 2. This completes the proof. �

As our reformulated integration by differentiation method is not likely to be famil-
iar to many, we illustrate the approach using two simple examples.

EXAMPLE 1. We shall verify that (Eq. (9b) when n = 0)

∫ 

0

(sinx− x)3

x5 dx = − 5
32

 .

From elementary trigonometric identities, we see that the integrand can be expressed as

(sinx− x)3

x5 =
3
4 sin(x)

x5 −
1
4 sin(3x)

x5 − 3
2x4 +

3
2 cos(2x)

x4 +
3sin(x)

x3 − 1
x2 .

Using Proposition 1, by Corollary 3, two of the corresponding terms will be zero. These
are the third and sixth terms. We use Corollary 4 to evaluate the four remaining terms.
We have:

3
4 sin(x)

x5 contributes
3
4
(−1)2 · 1

4

4!
· 
2

=

64

;

1
4 sin(3x)

x5 contributes
1
4
(−1)2 · 3

4

4!
· 
2

=
27
64

;
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3
2 cos(2x)

x4 contributes
3
2
(−1)2 · 2

3

3!
· 
2

=  ;

3sin(x)
x3 contributes 3(−1)1 · 1

2

2!
· 
2

= −3
4

.

So the value for the integral is

∫ 

0

(sinx− x)3

x5 dx =

64

− 27
64

+− 3
4

= −5
32

,

as expected. Note that a direct approach using elementary methods to evaluate this
integral is possible but involves considerably more work.

EXAMPLE 2. We shall verify that (Eq. (10a) when n = 0)

∫ 

0

(cosx−1)3

x3 dx = −3log2+
9
8

log3.

From elementary trigonometric identities, we see that the integrand can be expressed as

(cosx−1)3

x3 =
1
4 cos(3x)

x3 +
15
4 cos(x)

x3 −
3
2 cos(2x)

x3 − 5
2x3 .

Using Proposition 1, by Corollary 3, one of the corresponding terms evaluates to zero.
This is the fourth term. We then use Corollary 4 to evaluate the three remaining terms.
We have:

1
4 cos(3x)

x3 contributes
1
4
(−1)1 · 32

2!
· (H2 − log3) =

9
8

(log3−H2) ;

15
4 cos(x)

x3 contributes
15
4

(−1)1 · 1
2

2!
· (H2− log1) = −15

8
H2

3
2 cos(2x)

x3 contributes
3
2
(−1)1 · 22

2!
· (H2 − log2) = 3(log2−H2) .

So the value for the integral is

∫ 

0

(cosx−1)3

x3 dx =
9
8

(log3−H2)− 15
8

H2 −3(log2−H2)

= −3log2+
9
8

log3,

as expected.
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3. Main results

In this section, we list results for all ten convergent improper integrals in the class
given by (8). Six of these results involve even integrands. For those containing Sn(x)
in the integrand, if r has the value 2, 3, or 4, then:

∫ 

0

S3
n(x)

x6n+2r+1 dx =
(−1)3n+r

(6n+2r)!

{
1−36n+2r−1 +

n


k=0

(
6n+2r
2k+1

)
26n−2k+2r

−4
2n+1


k=1

(
6n+2r

2k

) n


j=k−n−1

(
2k

2 j +1

)}
· 3

8
. (17)

For those containing Cn(x) in the integrand, if r has the value 1, 2, or 3, then:

∫ 

0

C3
n(x)

x6n+2r dx =
(−1)3n+r

(6n+2r−1)!

{
1+36n+2r−2−

n


k=0

(
6n+2r−1

2k

)
26n−2k+2r

+4
2n


k=0

(
6n+2r−1

2k

) n


j=k−n

(
2k
2 j

)}
· 3

8
. (18)

REMARK 2. As was the case for the square of the tails when the integrand was
even, notice the value for each of the improper integrals is equal to a rational multiple

of 3
8 ; the value of S−1 =

∫ 
0

(
sinx
x

)3
dx .

The remaining four results involve odd integrands. For those containing Sn(x) in
the integrand, if r has the value 3 or 4, then:

∫ 

0

S3
n(x)

x6n+2r dx =
3(−1)3n+r−1

4(6n+2r−1)!

{
H6n+2r−1 +36n+2r−2 (log3−H6n+2r−1)

−
n


k=0

(
6n+2r−1

2k+1

)
26n−2k+2r−1 (log2−H6n−2k+2r−2)

−4
2n+1


k=1

(
6n+2r−1

2k

) n


j=k−n−1

(
2k

2 j +1

)
H6n−2k+2r−1

}
. (19)

For those containing Cn(x) in the integrand, if r has the value 1 or 2, then:

∫ 

0

C3
n(x)

x6n+2r+1 dx =
3(−1)3n+r

4(6n+2r)!

{
H6n+2r −36n+2r−1 (log3−H6n+2r)

+
n


k=0

(
6n+2r

2k

)
26n−2k+2r+1 (log2−H6n−2k+2r)

+4
2n


k=0

(
6n+2r

2k

) n


j=k−n

(
2k
2 j

)
H6n−2k+2r

}
. (20)
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REMARK 3. Notice in these four cases, the value for the improper integral con-
sists of a sum of three terms: a rational part (which may be zero) and two terms con-
sisting of a rational multiple of log2 and log3.

4. Evaluations using Proposition 1

In this section, we use the reformulated method of integration by differentiation
as established in Proposition 1 to prove the integral equalities listed in the previous
section. The results follow in a relatively straight forward manner on application of
Corollaries 3 and 4. As the evaluations depend on a term containing the square of a
finite sum, we consider this first.

4.1. Square of a finite sum

For n ∈ Z�0 , if we take the Cauchy product of the series 
k=0kxk with itself,

assuming that k = 0 for all k > n , we find(
n


k=0

kx
k

)2

=
n


k=0

k


j=0

 jk− jx
k +

2n


k=n+1

n


j=k−n

 jk− jx
k.

We shall write this as(
n


k=0

kx
k

)2

=
2n


k=0

kxk, where k =

{
k

j=0 jk− j, 0 � k � n;

n
j=k−n jk− j, n < k � 2n.

Now define the terms bc(n,k) for n � 0 and 0 � k � 2n so that the equation

c2
n(x) =

(
n


k=0

(−1)k

(2k)!
x2k

)2

=
2n


k=0

bc(n,k)x2k

is satisfied. Noting that bc(n,k) is the coefficient of xk in the expression c2
n(
√

x) and
that

(−1) j

(2 j)!
· (−1)k− j

(2k−2 j)!
=

(−1)k

(2k)!

(
2k
2 j

)
,

it follows that

bc(n,k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)k

(2k)!

k


j=0

(
2k
2 j

)
, 0 � k � n;

(−1)k

(2k)!

n


j=k−n

(
2k
2 j

)
, n < k � 2n.

Observing the convention that
(n
k

)
= 0 whenever k > n or k < 0, we may write

(−1)k(2k)!bc(n,k) =
n


j=k−n

(
2k
2 j

)
(21)
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for 0 � k � 2n . We also note that

(−1)k(2k)!bc(n,k) =

{
1, k = 0,

22k−1, 1 � k � n.

Next, define the terms bs(n,k) for n � 0 and 1 � k � 2n+1 so that the equation

s2
n(x) =

(
n


k=0

(−1)k

(2k+1)!
x2k+1

)2

=
2n+1


k=1

bs(n,k)x2k,

is satisfied. We begin by noting that

sn(
√

x)√
x

=
n


k=0

(−1)k

(2k+1)!
xk,

and
(−1) j

(2 j +1)!
· (−1)k− j

(2k−2 j +1)!
=

(−1)k

(2k+2)!

(
2k+2
2 j +1

)
.

Since bs(n,k) is the coefficient of xk−1 in the expression s2
n(
√

x)/x , we find that

bs(n,k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)k+1

(2k)!

k−1


j=0

(
2k

2 j +1

)
, 1 � k � n+1;

(−1)k+1

(2k)!

n


j=k−n−1

(
2k

2 j +1

)
, n+1 < k � 2n+1.

Again observing the convention that
(n
k

)
= 0 whenever k > n or k < 0, we may write

(−1)k+1(2k)!bs(n,k) =
n


j=k−n−1

(
2k

2 j +1

)
(22)

for 1 � k � 2n+1. We also note that

(−1)k+1(2k)!bs(n,k) = 22k−1

for 1 � k � n+1.

4.2. Proofs for the family of ten improper integrals

We now prove our main results given in Section 3. To verify the values for the
family of ten improper integrals containing the cube of the tails of the Maclaurin series
for the sine and cosine functions, we require four separate proofs.

We commence by giving proofs for the three improper integrals Cn , Cn , and
Cn that have an even integrand and contain a cosine term.
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Proof. Consider the integrals

Cr,n =
∫ 

0

(cosx− cn(x))3

x6n+2r dx,

where n is a fixed non-negative integer and r has the value 1, 2 , or 3. It then fol-
lows that C1,n = Cn , C2,n = Cn , and C3,n = Cn and these correspond to the
integrals (9a), (9c), and (9e) respectively. Expanding the cube term using elementary
trigonometric identities, we have

(cosx− cn(x))3 = cos3 x−3cn(x)cos2 x+3c2
n(x)cosx− c3

n(x)

= cos3 x−3cos2 x
n


k=0

ac(n,k)x2k+3cosx
2n


k=0

bc(n,k)x2k−
3n


k=0

cc(n,k)x2k

=
3
4

cosx+
1
4

cos(3x)− 3
2

n


k=0

ac(n,k)x2k − 3
2

cos(2x)
n


k=0

ac(n,k)x2k

+3cosx
2n


k=0

bc(n,k)x2k −
3n


k=0

cc(n,k)x2k, (23)

where the values of ac(n,k) are (−1)k/(2k)! , the values of bc(n,k) are given by (21),
and (as we shall see) the values for cc(n,k) are not needed. Dividing throughout by
x6n+2r yields

(cosx− cn(x))3

x6n+2r =
3
4 cosx

x6n+2r +
1
4 cos(3x)
x6n+2r −

n


k=0

3
2ac(n,k)
x6n−2k+2r −

n


k=0

3
2ac(n,k)cos(2x)

x6n−2k+2r

+
2n


k=0

3bc(n,k)cosx
x6n−2k+2r −

3n


k=0

cc(n,k)
x6n−2k+2r . (24)

In evaluating the improper integral, on applying Proposition 1, due to Corollary 3 we
see the contribution to the improper integral from two of the corresponding terms will
be zero. These are the third and sixth terms of (24). The contribution to the improper
integral from the remaining four terms follow from the second of the results given in
Corollary 4. We have:

Cr,n =

2

{ 3
4 (−1)3n+r

(6n+2r−1)!
+

1
4 (−1)3n+r36n+2r−1

(6n+2r−1)!

−
n


k=0

3
2ac(n,k)(−1)3n−k+r26n−2k+2r−1

(6n−2k+2r−1)!
+

2n


k=0

3bc(n,k)(−1)3n−k+r

(6n−2k+2r−1)!

}

= (−1)3n+r
{

1
(6n+2r−1)!

+
36n+2r−2

(6n+2r−1)!

−
n


k=0

(−1)kac(n,k)26n−2k+2r

(6n−2k+2r−1)!
+4

2n


k=0

bc(n,k)(−1)k

(6n−2k+2r−1)!

}
· 3

8
.
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Using the values for ac(n,k) and bc(n,k) , we obtain

Cr,n =
(−1)3n+r

(6n+2r−1)!

{
1+36n+2r−2−

n


k=0

(
6n+2r−1

2k

)
26n−2k+2r

+ 4
2n


k=0

(
6n+2r−1

2k

) n


j=k−n

(
2k
2 j

)}
· 3

8
,

as the value for the integral, with the values for Cn , Cn , and Cn following on setting
r = 1,2, and 3, respectively. This completes the proof. �

Next we give proofs for the three improper integrals Sn , Sn , and Sn that have
an even integrand and contain a sine term.

Proof. Consider the integrals

Sr−1,n =
∫ 

0

(sinx− sn(x))3

x6n+2r+1 dx,

where n is a fixed non-negative integer and r has the value 2, 3 , or 4. It follows that
S1,n = Sn , S2,n = Sn , and S3,n = Sn and these correspond to the integrals (9b),
(9d), and (9f) respectively. Expanding the cube term using elementary trigonometric
identities, we have

(sinx− sn(x))3 = sin3 x−3sn(x)sin2 x+3s2
n(x)sinx− s3

n(x)

= sin3 x−3sin2 x
n


k=0

as(n,k)x2k+1 +3sinx
2n+1


k=1

bs(n,k)x2k

−
3n+1


k=1

cs(n,k)x2k+1

=
3
4

sinx− 1
4

sin(3x)− 3
2

n


k=0

as(n,k)x2k+1 +
3
2

cos2x
n


k=0

as(n,k)x2k+1

+3sinx
2n+1


k=1

bs(n,k)x2k −
3n+1


k=1

cs(n,k)x2k+1, (25)

where the values of as(n,k) are (−1)k/(2k + 1)! , the values of bs(n,k) are given by
(22), and (as before) the values of cs(n,k) will not be needed. Dividing throughout by
x6n+2r+1 yields

(sinx− sn(x))3

x6n+2r+1 =
3
4 sinx

x6n+2r+1 −
1
4 sin(3x)
x6n+2r+1 −

n


k=0

3
2as(n,k)
x6n−2k+2r +

n


k=0

3
2as(n,k)cos(2x)

x6n−2k+2r

+
2n+1


k=1

3bs(n,k)sinx
x6n−2k+2r+1 −

3n+1


k=1

cs(n,k)
x6n−2k+2r

. (26)

In evaluating the improper integral, on applying Proposition 1, due to Corollary 3 we
see the contribution from two of the corresponding terms to the improper integral will
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be zero. These are the third and sixth terms of (26). The contribution to the improper
integral from the remaining four terms follow from the second and third results given
in Corollary 4. We have:

Sr−1,n =

2

{
3
4 (−1)3n+r

(6n+2r)!
−

1
4 (−1)3n+r36n+2r

(6n+2r)!

+
n


k=0

3
2as(n,k)(−1)3n−k+r26n−2k+2r−1

(6n−2k+2r−1)!
+

2n+1


k=1

3bs(n,k)(−1)3n−k+r

(6n−2k+2r)!

}

= (−1)3n+r

{
1

(6n+2r)!
− 36n+2r−1

(6n+2r)!
+

n


k=0

(−1)kas(n,k)26n−2k+2r

(6n−2k+2r−1)!

+ 4
2n+1


k=1

bs(n,k)(−1)k

(6n−2k+2r)!

}
· 3

8
.

Using the values for as(n,k) and bs(n,k) , we find that

Sr−1,n =
(−1)3n+r

(6n+2r)!

{
1−36n+2r−1 +

n


k=0

(
6n+2r
2k+1

)
26n−2k+2r

− 4
2n+1


k=1

(
6n+2r

2k

) n


j=k−n−1

(
2k

2 j +1

)}
· 3

8
,

as the value for the integral, with the values for Sn , Sn , and Sn following on setting
r = 2,3, and 4, respectively. This completes the proof. �

We now give proofs for the two improper integrals Cn and Cn that have an odd
integrand and contain a cosine term.

Proof. Consider the integrals

Cr,n =
∫ 

0

(cosx− cn(x))
3

x6n+2r+1 dx,

where n is a fixed non-negative integer and r has the value 1 or 2. It follows that
C1,n = Cn and C2,n = Cn and these correspond to the integrals (10a) and (10c),
respectively. If the expansion for (cosx− cn(x))3 given in (23) is divided by x6n+2r+1 ,
then

(cosx− cn(x))3

x6n+2r+1 =
3
4 cosx

x6n+2r+1 +
1
4 cos(3x)
x6n+2r+1 −

n


k=0

3
2ac(n,k)

x6n−2k+2r+1 −
n


k=0

3
2ac(n,k)cos(2x)

x6n−2k+2r+1

+
2n


k=0

3bc(n,k)cosx
x6n−2k+2r+1 −

3n


k=0

cc(n,k)
x6n−2k+2r+1 . (27)
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Using Corollary 4 to evaluate the four non-zero contributions to the improper integral,
we find:

Cr,n = −
3
4 (−1)3n+r

(6n+2r)!
(log1−H6n+2r)−

1
4 (−1)3n+r36n+2r

(6n+2r)!
(log3−H6n+2r)

+
n


k=0

3
2ac(n,k)(−1)3n−k+r26n−2k+2r

(6n−2k+2r)!
(log2−H6n−2k+2r)

−
2n


k=0

3bc(n,k)(−1)3n−k+r

(6n−2k+2r)!
(log1−H6n−2k+2r)

=
3(−1)3n+r

4(6n+2r)!

{
H6n+2r −36n+2r−1 (log3−H6n+2r)

+
n


k=0

(−1)kac(n,k)(6n+2r)!
(6n−2k+2r)!

26n−2k+2r+1 (log2−H6n−2k+2r)

+ 4
2n


k=0

(−1)kbc(n,k)(6n+2r)!
(6n−2k+2r)!

H6n−2k+2r

}
.

Substituting the values for ac(n,k) and bc(n,k) gives

Cr,n =
3(−1)3n+r

4(6n+2r)!

{
H6n+2r−36n+2r−1 (log3−H6n+2r)

+
n


k=0

(
6n+2r

2k

)
26n−2k+2r+1 (log2−H6n−2k+2r)

+4
2n


k=0

(
6n+2r

2k

) n


j=k−n

(
2k
2 j

)
H6n−2k+2r

}
,

as the value for the integral, with the values for Cn and Cn following on setting r = 1
and 2, respectively. This completes the proof. �

Lastly, we give proofs for the two improper integrals Sn and Sn that have an
odd integrand and contain a sine term.

Proof. Consider the integrals

Sr−2,n =
∫ 

0

(sinx− sn(x))3

x6n+2r dx,

where n is a fixed non-negative integer and r has the value 3 or 4. It follows that
S1,n = Sn and S2,n = Sn and these correspond to the integrals (10b) and (10d),
respectively. If the expansion for (sinx− sn(x))3 given in (25) is divided by x6n+2r ,
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then

(sinx− sn(x))3

x6n+2r =
3
4 sinx

x6n+2r −
1
4 sin(3x)
x6n+2r −

n


k=0

3
2as(n,k)

x6n−2k+2r−1 +
n


k=0

3
2as(n,k)cos(2x)

x6n−2k+2r−1

+
2n+1


k=1

3bs(n,k)sinx
x6n−2k+2r −

3n+1


k=1

cs(n,k)
x6n−2k+2r−1 . (28)

Using again Corollary 4 to evaluate the four non-zero contributions to the improper
integral, we find:

Sr−2,n =
− 3

4(−1)3n+r+1

(6n+2r−1)!
(log1−H6n+2r−1)

+
1
4 (−1)3n+r+136n+2r−1

(6n+2r−1)!
(log3−H6n+2r−1)

−
n


k=0

3
2as(n,k)(−1)3n−k+r+126n−2k+2r−2

(6n−2k+2r−2)!
(log2−H6n−2k+2r−2)

+
2n+1


k=1

3bs(n,k)(−1)3n−k+r

(6n−2k+2r−1)!
(log1−H6n−2k+2r−1)

=
3(−1)3n+r−1

4(6n+2r−1)!

{
H6n+2r−1 +36n+2r−2 (log3−H6n+2r−1)

−
n


k=0

(−1)kas(n,k)(6n+2r−1)!
(6n−2k+2r−2)!

26n−2k+2r−1 (log2−H6n−2k+2r−2)

+4
2n+1


k=1

(−1)kbs(n,k)(6n+2r−1)!
(6n−2k+2r−1)!

H6n−2k+2r−1

}
.

Using the values for as(n,k) and bs(n,k) , we find that

Sr−2,n =
3(−1)3n+r−1

4(6n+2r−1)!

{
H6n+2r−1 +36n+2r−2 (log3−H6n+2r−1)

−
n


k=0

(
6n+2r−1

2k+1

)
26n−2k+2r−1 (log2−H6n−2k+2r−2)

−4
2n+1


k=1

(
6n+2r−1

2k

) n


j=k−n−1

(
2k

2 j +1

)
H6n−2k+2r−1

}
,

as the value for the integral with the values for Sn and Sn following on setting r = 3
and 4, respectively. This completes the proof. �
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5. Interconnections between some of the improper integrals

As mentioned earlier, for the family of improper integrals containing the square of
the tails of the Maclaurin series for the sine and cosine functions listed in (1), two sim-
ple connections between the integrals with even integrands exist, namely Jn = n and
In = n−1 , respectively [11]. For the family of improper integrals containing the cube
of the tails of the Maclaurin series for the sine and cosine functions, a far richer struc-
ture in terms of interconnections between the improper integrals (9a) to (9f) containing
even integrands exists. We list these and show how each can be established using meth-
ods of contour integration. Some intriguing binomial identities that are consequences
of these results are presented in the section that follows.

5.1. Results

Six interconnections between the improper integrals (9a) to (9f) containing even
integrands exist. For each n ∈ Z�0 , they are

Cn = (6n+6)Sn; (29)

Sn +(6n+5)Cn =
3(−1)n+1

(2n+1)!
Jn; (30)

Sn +(6n+5)(6n+6)Sn =
3(−1)n+1

(2n+1)!
Jn; (31)

Sn−1 = −(6n+3)Cn; (32)

Cn − (6n+2)Sn−1 =
3(−1)n+1

(2n)!
In; (33)

Cn +(6n+2)(6n+3)Cn =
3(−1)n+1

(2n)!
In. (34)

Here In and Jn are given by (2) and (3), respectively. We also note that (31) and (34)
are simple consequences of the previous two connections appearing above them.

5.2. Proofs

For each non-negative integer n , let

en(x) =
n


k=0

xk

k!
, cn(x) =

n


k=0

(−1)kx2k

(2k)!
, sn(x) =

n


k=0

(−1)kx2k+1

(2k+1)!
,

En(x) = ex − en(x), Cn(x) = cosx− cn(x), Sn(x) = sinx− sn(x).

Recalling S−1(x) = sinx , note that the equations s′n(x) = cn(x) and S′n(x) =Cn(x) , and
c′n(x) = −sn−1(x) (with s−1(x) = 0) and C′

n(x) = −Sn−1(x) are valid for all n ∈ Z�0 .
It is also easy to verify that

e2n+1(ix) = cn(x)+ isn(x) and E2n+1(ix) =Cn(x)+ iSn(x).
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Here i =
√−1 is the imaginary unit. Also, we see that the four functions

(E2n+1(iz))
3

z6n+5 ,
(E2n+1(iz))

3

z6n+6 ,
(E2n(iz))

3

z6n+2 , and
(E2n(iz))

3

z6n+3 ,

with z ∈ C are analytic in C . By considering the powers on the polynomial terms, one
can see that the integrals for all four of these functions over the semi-circular contour
C in the upper half of the complex plane with end-points on the x -axis at x = ± go
to zero as  →  . We are now in a position to prove each of the six results given in
section 5.1. We give proofs for (29) and (30); proofs for (32) and (33) are similar.

Proof. Since ∫ 

−
(E2n+1(ix))

3

x6n+6 dx = 0 =
∫ 

−
(E2n+1(ix))

3

x6n+5 dx,

as
(E2n+1(ix))

3 = C3
n(x)−3Cn(x)S2

n(x)+ i
(
3C2

n(x)Sn(x)−S3
n(x)

)
,

equating real and imaginary parts in the respective integrals yields∫ 

−
C3

n(x)
x6n+6 dx =

∫ 

−
3S2

n(x)Cn(x)
x6n+6 dx (35)

and ∫ 

−
S3

n(x)
x6n+5 dx =

∫ 

−
3C2

n(x)Sn(x)
x6n+5 dx. (36)

As the two integrands in (35) are even, it follows that

Cn =
∫ 

0

C3
n(x)

x6n+6 dx =
∫ 

0

3S2
n(x)Cn(x)
x6n+6 dx =

∫ 

0

(S3
n(x))

′

x6n+6 dx,

since S′n(x) = Cn(x) . Using integration by parts on the right-most integral produces

Cn =
[

S3
n(x)

x6n+6

]
0

+(6n+6)
∫ 

0

S3
n(x)

x6n+7 dx.

As S3
n(x)/x6n+6 behaves as O(x3) as x → 0+ and as O(x−3) as x →  , we have

Cn = (6n+6)
∫ 

0

S3
n(x)

x6n+7 dx = (6n+6)Sn,

thereby proving (29). Similarly, since the two integrands in (36) are even

Sn =
∫ 

0

S3
n(x)

x6n+5 dx =
∫ 

0

3C2
n(x)Sn(x)
x6n+5 dx

=
∫ 

0

3C2
n(x)

(
Sn−1− (−1)n

(2n+1)!x
2n+1

)
x6n+5 dx

=
∫ 

0

3C2
n(x)Sn−1(x)

x6n+5 dx+
3(−1)n+1

(2n+1)!

∫ 

0

C2
n(x)

x4n+4 dx

=
∫ 

0

−(C3
n(x))′

x6n+5 dx+
3(−1)n+1

(2n+1)!
Jn.
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Integrating by parts, omitting the limit step, produces

Sn = −(6n+5)
∫ 

0

C3
n(x)

x6n+6 dx+
3(−1)n+1

(2n+1)!
Jn = −(6n+5)Cn +

3(−1)n+1

(2n+1)!
Jn.

Rearranging terms completes the proof for (30). �

REMARK 4. We are not aware of a proof of these six integral relationships without
the use of contour integration and complex functions as we have given here; such a
proof would be interesting.

6. Some intriguing binomial identities

We now discuss some interesting binomial identities that arise from the integral
connections discovered in the previous section. Suppose n is a fixed positive integer.
Let

Ak =
n


j=k−n−1

(
2k

2 j +1

)
for 1 � k � 2n+1, Bk =

n


j=k−n

(
2k
2 j

)
for 0 � k � 2n,

these being related to bc(n,k) and bs(n,k) appearing in (21) and (22) respectively.
Note that Ak = 22k−1 when 1 � k � n+1 and Bk = 22k−1 when 1 � k � n . With this
notation, along with the general equations (17) and (18), we find that

Sn =
(−1)3n+2

(6n+4)!

{
1−36n+3 +

n


k=0

(
6n+4
2k+1

)
26n−2k+4−4

2n+1


k=1

(
6n+4

2k

)
Ak

}
3
8

;

Sn =
(−1)3n+3

(6n+6)!

{
1−36n+5 +

n


k=0

(
6n+6
2k+1

)
26n−2k+6−4

2n+1


k=1

(
6n+6

2k

)
Ak

}
3
8

;

Cn =
(−1)3n+3

(6n+5)!

{
1+36n+4−

n


k=0

(
6n+5

2k

)
26n−2k+6 +4

2n


k=0

(
6n+5

2k

)
Bk

}
3
8

.

Using the fact that Cn = (6n+6)Sn , we find that

1+36n+4−
n


k=0

(
6n+5

2k

)
26n−2k+6 +4

2n


k=0

(
6n+5

2k

)
Bk

must be equal to

1−36n+5 +
n


k=0

(
6n+6
2k+1

)
26n−2k+6−4

2n+1


k=1

(
6n+6

2k

)
Ak.

In full form, after a little simplification, this identity states that

n


k=0

((
6n+5

2k

)
+
(

6n+6
2k+1

))
26n−2k+4
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is equal to

36n+4 +
2n


k=0

(
6n+5

2k

) n


j=k−n

(
2k
2 j

)
+

2n+1


k=1

(
6n+6

2k

) n


j=k−n−1

(
2k

2 j +1

)
.

For example, for the n = 3 case, we see that

3


k=0

((
23
2k

)
+
(

24
2k+1

))
222−2k = 322 +

6


k=0

(
23
2k

) 3


j=k−3

(
2k
2 j

)

+
7


k=1

(
24
2k

) 3


j=k−4

(
2k

2 j +1

)
.

Since we know the sum Sn +(6n+5)Cn , it follows that the sum of

(−1)3n+2

(6n+4)!

(
1−36n+3 +

n


k=0

26n−2k+4
(

6n+4
2k+1

)
−4

2n+1


k=1

Ak

(
6n+4

2k

))

and
(−1)3n+3

(6n+4)!

(
1+36n+4−

n


k=0

26n−2k+6
(

6n+5
2k

)
+4

2n


k=0

Bk

(
6n+5

2k

))

should equal
4

4n+3
· (−1)n+1

((2n+1)!)3

This equality can be expressed as the sum of

−1+36n+3−
n


k=0

26n−2k+4
(

6n+4
2k+1

)
+4

2n+1


k=1

Ak

(
6n+4

2k

)

and

1+36n+4−
n


k=0

26n−2k+6
(

6n+5
2k

)
+4

2n


k=0

Bk

(
6n+5

2k

)

is equal to

4 · (6n+4)!
4n+3

· 1
((2n+1)!)3 = 4 · (6n+4)!

(4n+3)!(2n+1)!
· (4n+2)!
((2n+1)!)2

= 4 ·
(

6n+4
2n+1

)
·
(

4n+2
2n+1

)
.

It then follows that

36n+3−
n


k=0

26n−2k+2
(

6n+4
2k+1

)
−

n


k=0

26n−2k+4
(

6n+5
2k

)
+

2n+1


k=1

Ak

(
6n+4

2k

)

+
2n


k=0

Bk

(
6n+5

2k

)
=
(

6n+4
2n+1

)(
4n+2
2n+1

)
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a rather involved but intriguing identity.

Since we know the sum Sn +(6n+6)(6n+5)Sn , it follows that the sum of

−1+36n+3−
n


k=0

26n−2k+4
(

6n+4
2k+1

)
+4

2n+1


k=1

Ak

(
6n+4

2k

)

and

1−36n+5 +
n


k=0

26n−2k+6
(

6n+6
2k+1

)
−4

2n+1


k=1

Ak

(
6n+6

2k

)

should equal (as shown with the last identity)

4 ·
(

6n+4
2n+1

)
·
(

4n+2
2n+1

)
.

It follows that

−2 ·36n+3−
n


k=0

26n−2k+2
(

6n+4
2k+1

)
+

2n+1


k=1

Ak

((
6n+4

2k

)
−
(

6n+6
2k

))

+
n


k=0

26n−2k+4
(

6n+6
2k+1

)
=
(

6n+4
2n+1

)
·
(

4n+2
2n+1

)
.

This equation has the advantage of only requiring Ak values rather than both Ak and
Bk values.

We have thus shown that the connections between some of our cubed integrals as
listed in equations (29), (30), and (31) lead to some unexpected identities. It might
be interesting to try to verify these identities without using integrals. Similarly, the
equations (32), (33), and (34) lead to three more binomial identities. We will not take
the time or space to write them out here.

7. Conclusion

Using a reformulation of a recently devised method referred to as integration by
differentiation, we have determined the values for a family of improper integrals that
would otherwise be difficult to achieve using more standard approaches. In an effort
to alleviate much of the computational burden that arises in applying the method, the
contribution to the value of the improper integral due to several terms that repeatedly
appear in the integrands of those improper integrals we wish to evaluate have been
explicitly found. As demonstrated here, we contend that when the method applies, it
is a powerful general approach that can be used in the evaluation of a wide class of
improper integrals.
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