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ON ( ,)( f )–STATISTICAL CONVERGENCE OF

DOUBLE SEQUENCES IN 2–NORMED LINEAR SPACES

ÖMER KIŞI ∗ AND RÜMEYSA AKBIYIK

Abstract. In this study, we utilize modulus functions under various conditions to define ( ,)( f ) -
statistical convergence of double sequences in 2-normed linear spaces. Additionally, we ex-
plore the relationships between the sets of ( ,)( f ) -statistically convergent sequences and
( ,)( f ) -statistically bounded sequences in 2-normed linear spaces.

1. Introduction

The statistical convergence of real numbers, crucial in summability theory, has
been explored by numerous mathematicians. Independently, Fast [3] and Schoenberg
[22] introduced the concept of statistical convergence, which has since been studied
by various authors. Mursaleen and Edely [20] further extended this concept to double
sequences. Statistical convergence has served as a valuable tool for numerous mathe-
maticians in addressing various unresolved problems across sequence spaces, summa-
bility theory, and other applications. Over recent decades, this concept has been in-
vestigated across a spectrum of disciplines and under different appellations, spanning
Banach spaces, measure theory, Fourier analysis, number theory, ergodic theory, cone
metric space, trigonometric series, time scale, and topological space. To extend this
concept, Mursaleen [9] proposed the notion of  -statistical convergence, employing the
sequence  = (n) . Further applications and generalizations concerning  -statistical
convergence and statistical convergence can be found in references [9, 15, 21, 26]. Ad-
ditionally, readers should consult the monographs [2], and [19], as well as the recent
papers [16], [23], [24] and [25] for background information on sequence spaces.

In 1953, Nakano [8] introduced the concept of a modulus function. A function
f : [0,) → [0,) is defined as a modulus function (or modulus) if it satisfies the
following conditions:

1. f (x) = 0 ⇔ x = 0,

2. f (x+ y) � f (x)+ f (y) for every x,y ∈ [0,) ,

3. f is increasing,
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4. f is continuous from the right at 0.

Given these properties, it is clear that a modulus function must be continuous over
the entire interval [0,) . A modulus function can be either bounded or unbounded.
For example, f (x) = xp where p ∈ (0,1] is an unbounded modulus function, whereas
f (x) = x

x+1 is a bounded modulus function.
Several authors have introduced new concepts and established inclusion theorems

using a modulus function f (see, Khan and Khan [4], Kılınç and Solak [5], Maddox
[7], Pehlivan and Fisher [6], Savaş and Patterson [17, 18]).

Aizpuru et al. [1] utilized an unbounded modulus function to define another den-
sity concept. Consequently, they introduced a novel notion of nonmatrix convergence,
which lies between ordinary convergence and statistical convergence and aligns with
the statistical convergence under the identity modulus.

Gähler [10, 11] is acknowledged for pioneering the concept of 2-normed space
during the mid-1960s. Subsequently, this concept was further elaborated upon by later
researchers. Since then, numerous scholars have made contributions to the exploration
of this concept, yielding varying degrees of success. For further exploration, refer to
publications such as those cited in [12, 13], and [14].

1.1. Research gaps with key observations based on literature review

Statistical convergence, initially introduced by Fast [3] and Schoenberg [22], has
significantly contributed to summability theory and sequence spaces. While subsequent
researchers, including Mursaleen and Edely [20], extended this concept to double se-
quences, much of the research has focused on particular sequence spaces and specific
types of convergence. Despite numerous investigations across fields such as Banach
spaces, ergodic theory, Fourier analysis, and topological spaces, there remains a need
to explore statistical convergence in more generalized and abstract settings, especially
in the context of 2-normed linear spaces. Moreover, the application of modulus func-
tions to define new types of statistical convergence has not been fully explored in this
area, leaving a gap in the literature regarding the relationships between various forms
of convergence and boundedness within these spaces.

1.2. Motivation

The main contribution of this paper is the introduction of ( ,)( f ) -statistical
convergence for double sequences in 2-normed linear spaces, utilizing modulus func-
tions under various conditions. By extending the well-established concept of statistical
convergence to more abstract settings, this study addresses a significant gap in the lit-
erature. Additionally, it explores the relationships between ( ,) ( f ) -statistically con-
vergent sequences and ( ,) ( f ) -statistically bounded sequences within these spaces.
This thorough investigation not only advances theoretical understanding but also pro-
vides valuable insights for practical applications and further research in related mathe-
matical fields.
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2. Preliminaries

In this section, we give significant existing conceptions and results which are cru-
cial for our findings.

The statistical convergence depends on the natural density of subsets of N. The
number  (A) of a subset A of N is called a natural density of A and is defined by

 (A) = lim
n→

1
n
|{a � n : a ∈ A}|

where |{a � n : a ∈ A}| is the number of elements of A which are less than or equal to
n (see [3]).

A number sequence (xk) is said to be statistically convergent (or S -convergent) to
the number l if

lim
n→

1
n
|{k � n : |xk − l| � }| = 0

for each  > 0, in the case the limit exists. In this case, we write S− limxk = l or
xk → l (S) and S denotes the set of all S -convergent sequences.

A double sequence x = (xmn) of real numbers is said to be convergent to L ∈ R

in Pringsheim’s sense (shortly, p -convergent to L ∈ R), if for any  > 0, there exists
N ∈ N such that |xmn −L| < , whenever m,n > N . In this case, we write

lim
m,n→

xmn = L.

We recall that a subset K of N×N = N2 is said to have natural density 2(K) if

2(K) = lim
m,n→

K(m,n)
m.n

,

where K(m,n) = |{( j,k) ∈ N2 : j � m,k � n}|.
Let X be a real vector space of dimension d , where 2 � d <  . A 2-norm on X

is a function ‖., .‖ : X ×X → R which satisfies

i) ‖x,y‖ = 0 ⇔ x and y are linearly dependent,

ii) ‖x,y‖ = ‖y,x‖ ,

iii) ‖x,y‖ = ||‖x,y‖ ,

iv) ‖x,y+ z‖ � ‖x,y‖+‖y,z‖ .

The pair (X ,‖., .‖) is then called a 2-normed space [10].
As an example of a 2-normed space we may take X = R2 being equipped with the

2-norm ‖x,y‖ := the area of the parallelogram spanned by the vectors x and y , which
may be given explicitly by the formula

‖x,y‖ = (x1y2 − x2y1) , x = (x1,x2) and y = (y1,y2) .
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Let w = (wk) be a sequence in 2-normed space (X ,‖., .‖) . The sequence (wk) is
said to be statistically convergent to w0 , if for every  > 0, the set

{k ∈ N : ‖wk −w0,z‖ � }

has natural density zero for each nonzero z in X , in other words (wk) statistically
converges to w0 in 2-normed space (X ,‖., .‖) if

lim
k→

1
k
|{k : ‖wk −w0,z‖ � }| = 0,

for each nonzero z in X . In this case we write st − limk→ ‖wk,z‖ = ‖w0,z‖ .

Let  = (r) and  = (s) be two non-decreasing sequences of positive real
numbers, each tending to  and such that r+1 � r +1,1 = 1;s+1 � s +1,1 = 1.
Let Ir = [r−r +1,r] , Is = [s− s +1,s] and Ir,s = Ir × Is .

For any set K ⊆ N2 , the number,

( ,)(K) = P− lim
r,s→,

1
rs

|{(i, j) ∈ Ir,s : (i, j) ∈ K}| ;

is called ( ,)-density of the set K , provided the limit exists, (see, [18].)
Throughout we shall denote (r,s) = (rs) and the collection of such sequences

 will be denoted by 2 .

DEFINITION 1. A double sequence w = (wmn) in a 2-normed space (Y,‖., .‖) is
said to be ( ,)-statistically convergent or S , -convergent to w0 ∈ X with respect to
the 2-norm if for every  > 0

P− lim
r,s→

1
r,s

|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }| = 0

for all z ∈ Y .
I.e., the set

K() = {(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }
has ( ,)-density zero.

In this case we write wmn → w0
(
S( ,) (Y,‖., .‖)) or wmn

S( ,)(Y,‖.,.‖)→ w0 and

S( ,) (Y,‖., .‖) =
{

w = (wmn) | ∃w0 ∈ R, wmn
S( ,)(Y,‖.,.‖)→ w0

}

Let S ,(Y,‖., .‖) denote the set of all ( ,)-statistically convergent of double
sequences in 2-normed space Y .

If r = r and s = s for all r,s then the space S ,(Y,‖., .‖) is reduced to the
space St2(Y,‖., .‖) and since 2(K) �  ,(K) , we have S ,(Y,‖., .‖) ⊂ St2(Y,‖., .‖) .
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3. Main results

In this section, we present the primary findings of the paper. Our emphasis lies in
delineating the connections between the sets of ( ,) ( f )-statistically convergent and
( ,) ( f )-statistically bounded sequences.

DEFINITION 2. Let f be an unbounded modulus, (rs) = (r,s) ∈ 2 and U ⊆
N2 . The number  f

( ,) (U) , referred to as the  f -density of U , is given by

 f
( ,) (U) := lim

r,s→

1
f (r,s)

f (|{(u,v) ∈ Ir,s : (u,v) ∈U}|)

if this limit exists.

It should be noted that in the case f (x) = x , the concepts of  f
( ,) -density and

( ,) -density coincide. In addition, in the case f (x) = x and (r,s) = (rs) ,  f
( ,) -

density and 2 -density coincide.

REMARK 1. It is not necessary for the equality  f
( ,) (U)+  f

( ,)

(
N2 \U

)
= 1

to remain true, in general, even though for a natural density it is always true. The
example below illustrates this fact.

EXAMPLE 1. Let us take f (x)= log(x+1) , (r,s)= (rs) and U = {2rs : r,s ∈ N}
⊆ N2 . Then,  f

( ,) (U)+  f
( ,)

(
N2 \U

) 
= 1. Indeed, since f is an unbounded mod-
ulus and

r,s

2
−1 � |{(u,v) ∈ Ir,s : (u,v) ∈U}| � r,s

2
for each r,s ∈ N , we may write

1
f (r,s)

f

(
r,s

2
−1

)
� 1

f (r,s)
f (|{(u,v) ∈ Ir,s : (u,v) ∈U}|) � 1

f (r,s)
f

(
r,s

2

)
or

1
log(rs+1)

log
( rs

2

)
� 1

f (r,s)
f (|{(u,v) ∈ Ir,s : (u,v) ∈U}|)

� 1
log(rs+1)

log
( rs

2
+1

)
.

By taking the limits as r,s →  in the above inequality, we get that

1 � lim
r,s→

1
f (r,s)

f (|{(u,v) ∈ Ir,s : (u,v) ∈U}|) � 1.

Thus,  f
( ,) (U) = 1. Furthermore, by using the fact

r,s +1
2

−1 �
∣∣{(u,v) ∈ Ir,s : (u,v) ∈ N2�U

}∣∣ � r,s +1
2
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for each r,s ∈N , we have  f
( ,)

(
N2�U

)
= 1. Therefore,  f

( ,) (U)+ f
( ,)

(
N2 \U

)
= 2.

DEFINITION 3. Let (wmn) be a sequence in a metric space (Y,‖., .‖) , f be an
unbounded modulus and (r,s) ∈ 2 be given. Then, (wmn) is called to be ( ,)( f )-
statistically convergent in 2-normed linear space (Y,‖., .‖) (or simply S f

( ,) (Y,‖., .‖)-
convergent) if there exists a w0 ∈ Y such that

lim
r,s→

1
f (r,s)

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|) = 0

for each  > 0, for all z∈X . In such instances, we express wmn →w0

(
S f

( ,) (Y,‖., .‖)
)

or wmn

Sf
( ,)(Y,‖.,.‖)

→ w0 .

Throughout the study, the set of all ( ,)( f ) -statistically convergent sequences
in 2-normed linear space (Y,‖., .‖) will be represented by S f

( ,) (Y,‖., .‖) , defined as
follows:

S f
( ,) (Y,‖., .‖)

=
{

(wmn) : limr,s→
1

f(r,s) f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|) = 0, ∃w0 ∈ Y

}
.

Notice that S f
( ,) (Y,‖., .‖) -convergence simplifies to S( ,) (Y,‖., .‖)-convergencewhen

f (x)= x . Moreover, S f
( ,) (Y,‖., .‖)-convergence reduces to St f

2 (Y,‖., .‖) -convergence

when r = r and s = s . Moreover, S f
( ,) (Y,‖., .‖)-convergence reduces to St2 (Y,‖., .‖) -

convergence when f (x) = x and r = r and s = s, . We denote by S f
( ,),0 (Y,‖., .‖)

the set of all S f
( ,),0 (Y,‖., .‖)-null sequences. It is evident that S f

( ,),0 (Y,‖., .‖) ⊂
S f

( ,) (Y,‖., .‖) .

THEOREM 1. Let (wmn) and (tmn) be sequences in 2-normed linear space (Y,‖., .‖) ,
f be an unbounded modulus and (r,s) ∈ 2.

(i) If wmn

S f
( ,)(Y,‖.,.‖)

→ w0 , then qwmn

S f
( ,)(Y,‖.,.‖)

→ qw0 , for all q ∈ C.

(ii) If wmn

S f
( ,)(Y,‖.,.‖)

→ w0 and tmn

S f
( ,)(Y,‖.,.‖)

→ t0 , then wmn +tmn

S f
( ,)(Y,‖.,.‖)

→ w0 + t0.

Proof. (i) If q = 0, the proof is clear. If q 
= 0, the proof follows from the fact

1
f(r,s) f (|{(m,n) ∈ Ir,s : ‖qwmn −qw0,z‖ � }|)

= 1
f(r,s) f

(∣∣∣{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � 
|q|

}∣∣∣) .
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Since wmn

Sf
( ,)(Y,‖.,.‖)

→ w0 , we have

lim
r,s→

1
f (r,s)

f (|{(m,n) ∈ Ir,s : ‖qwmn −qw0,z‖ � }|) = 0.

Therefore, we obtain

lim
r,s→

1
f (r,s)

f

(∣∣∣∣
{

(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � 
|q|

}∣∣∣∣
)

= 0.

As a result, qwmn

S f
( ,)(Y,‖.,.‖)

→ qw0 , for all q ∈ C.
(ii) The proof follows from the fact

f (|{(m,n) ∈ Ir,s : ‖(wmn + tmn)− (w0 − t0) ,z‖ � }|)
� f

(∣∣∣{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � 
2

}∣∣∣)
+ f

(∣∣∣{(m,n) ∈ Ir,s : ‖tmn − t0,z‖ � 
2

}∣∣∣) . �

THEOREM 2. Let (wmn) be a sequence in 2-normed linear space (Y,‖., .‖) , f be

an unbounded modulus, (r,s) ∈ 2 and w0 ∈ Y . Then, wmn

S f
( ,)(Y,‖.,.‖)

→ w0 implies

wmn
S( ,)(Y,‖.,.‖)→ w0 .

Proof. Let wmn

Sf
( ,)(Y,‖.‖)

→ w0 . Then, for each  > 0 and for all z ∈ Y

lim
r,s→

1
f (r,s)

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|) = 0.

So, for any k ∈ N , there exists a u0 ∈ N such that

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|) � 1
k

f (r,s) � 1
k
k f

(
1
k
r,s

)
= f

(
1
k
r,s

)
,

for all r,s � u0.
Given that f is a modulus function, we have

|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }| � 1
k
r,s.

Since this inequality holds for every k ∈ N , we deduce

lim
r,s→

1
r,s

|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }| = 0.

Therefore, wmn
S( ,)(Y,‖.,.‖)→ w0 . �
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REMARK 2. In general, the converse of Theorem 2 does not hold. That is,

wmn
S( ,)(Y,‖.,.‖)→ w0 does not necessarily imply wmn

Sf
( ,)(Y,‖.,.‖)

→ w0 for every unbounded
modulus f and each (r,s) ∈ 2 . The following example illustrates this scenario.

EXAMPLE 2. Consider the sequence (wmn) in a 2-normed linear space (R2,‖., .‖)
as

wmn =

{
mn, if m = u3, n = v

3

0, if m 
= u3, n 
= v
3 u,v ∈ N.

If we take f (x) = log(x+1) , and (r,s) = (rs) , then for every  > 0, we have

|{(m,n) ∈ Ir,s : ‖wmn −0,z‖ � }| �
√
r,s.

That is,

lim
r,s→

1
r,s

|{(m,n) ∈ Ir,s : ‖wmn −0,z‖ � }| � lim
r,s→

√
r,s

r,s
= 0.

This means that wmn
S( ,)(R2,‖.,.‖)→ 0 and so (wmn) ∈ S( ,)

(
R2,‖., .‖) . However, for

every  > 0, we have

lim
r,s→

1
f (r,s)

f (|{(m,n) ∈ Ir,s : ‖wmn −0,z‖ � }|) = lim
r,s→

1
f (r,s)

f

(√
r,s−1

)
=

1
3
.

So that wmn

Sf
( ,)(R2,‖.,.‖)

� 0, and hence (wmn) /∈ S f
( ,)

(
R2,‖., .‖) .

By substituting r = r and s = s into Theorem 2, we obtain the following out-
come.

COROLLARY 1. Let (wmn) be a sequence in 2-normed linear space (Y,‖., .‖) , f

be an unbounded modulus, and w0 ∈ Y . Then, wmn
St f

2 (Y,‖.,.‖)→ w0 implies wmn
St2(Y,‖.,.‖)→

w0 .

THEOREM 3. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) , f

be an unbounded modulus, (r,s) ∈ 2 and w0 ∈ Y . If limr,s→ inf f (rs)
rs

> 0 , then

wmn
S( ,)(Y,‖.,.‖)→ w0 implies wmn

S f
( ,)(Y,‖.,.‖)

→ w0.

Proof. Let wmn
S( ,)(Y,‖.,.‖)→ w0 . Since f is a modulus, we have

|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }| � 1
f (1)

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|)
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for all  > 0. That is

limr,s→
1
r,s

|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|

� limr,s→
f (rs)
rs

1
f (1)

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|)
f (rs)

.

Since limr,s→ inf f (rs)
rs

> 0 and wmn
S( ,)(Y,‖.,.‖)→ w0 , we obtain

lim
r,s→

1
f (r,s)

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|) = 0.

Therefore, we have wmn

Sf
( ,)(Y,‖.,.‖)

→ w0. �
The following result is derived by setting r = r and s = s in Theorem 3.

COROLLARY 2. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
and w0 ∈ Y . If limr,s→ inf f (rs)

rs > 0 , then wmn
St2(Y,‖.,.‖)→ w0 implies wmn

St f
2 (Y,‖.,.‖)→ w0.

From Theorem 2 and Theorem 3, we get the following result.

COROLLARY 3. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
f be an unbounded modulus, (r,s)∈ 2 and w0 ∈Y . If limr,s→ inf f (rs)

rs
> 0 we have

wmn
S( ,)(Y,‖.,.‖)→ w0 if and only if wmn

S f
( ,)(Y,‖.,.‖)

→ w0.

THEOREM 4. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
f be an unbounded modulus, (r,s) ∈ 2 and w0 ∈ Y . If limr,s→ inf f (rs)

rs > 0 then

wmn
St2(Y,‖.,.‖)→ w0 implies wmn

S f
( ,)(Y,‖.,.‖)

→ w0.

Proof. Suppose wmn
St2(Y,‖.,.‖)→ w0 . Then, for every  > 0, we get

|{m � r,n � s : ‖wmn −w0,z‖ � }| � |{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }| .
So

limr,s→
1
rs

|{m � r,n � s : ‖wmn −w0,z‖ � }|

� limr,s→
1
rs

|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|

� 1
rs

1
f (1) f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|)

� f (rs)
rs

1
f (1)

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|)
f (rs)

.
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Since wmn
St2(Y,‖.,.‖)→ w0 and limr,s→ inf f (rs)

rs > 0, then we get

lim
r,s→

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|)
f (rs)

= 0.

As a result, we have wmn

Sf
( ,)(Y,‖.,.‖)

→ w0. �
From Theorem 4, the following result is obtained by setting f (x) = x.

COROLLARY 4. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
(r,s) ∈ 2 and w0 ∈ Y . If limr,s→ inf rs

rs > 0 then wmn
St2(Y,‖.,.‖)→ w0 implies

wmn
S( ,)(Y,‖.,.‖)→ w0.

From Theorem 4, we get the following result by taking r = r and s = s.

COROLLARY 5. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
f be an unboundedmodulus, and w0 ∈Y . If limr,s→ inf f (rs)

rs > 0 then wmn
St2(Y,‖.,.‖)→ w0

implies wmn
St f

2 (Y,‖.,.‖)→ w0.

DEFINITION 4. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖),
f be an unbounded modulus, and (r,s) ∈ 2 be given. Then, (wmn) is called  f -

statistically bounded in Y (or simply S f
 (Y,‖., .‖)-bounded) if there exists t ∈ Y such

that

lim
r,s→

1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|) = 0,

for some U ∈ R+ and for all z ∈ Y .

Throughout the study, the collection of all S f
( ,) (Y,‖., .‖) -bounded sequences

will be represented by BS f
( ,) (Y,‖., .‖) , denoted as:

BS f
( ,) (Y,‖., .‖) =

{
(wmn) : limr,s→

1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|) = 0

for some t ∈Y and U ∈ R+
}
.

When f (x) = x , we denote BS( ,) (Y,‖., .‖) instead of BS f
( ,) (Y,‖., .‖) . When

r = r and s = s, we use BSt f
2 (Y,‖., .‖) instead of BS f

( ,) (Y,‖., .‖) . Furthermore,

in the special case where f (x) = x and r = r and s = s , we express BSt2 (Y,‖., .‖)
instead of BS f

( ,) (Y,‖., .‖) .

THEOREM 5. Let (wmn) be a sequence in a 2-normed linear space (Y,‖.‖) , f be
an unbounded modulus and (r,s) ∈ 2 . If (wmn) is S f

( ,) (Y,‖., .‖) -convergent, then

it is S f
( ,) (Y,‖., .‖)-bounded.
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Proof. Suppose (wmn) is S f
( ,) (Y,‖., .‖) -convergent and wmn

S( ,)(Y,‖.,.‖)→ w0 .
Then, for each  > 0, we have

|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }| � |{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � U}|
for some U ∈ R+ such that U >  . Given that f is a modulus, the inequality above
implies that

1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � }|)

� 1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � U}|) .

Since wmn
S( ,)(Y,‖.,.‖)→ w0, then we have

lim
r,s→

1
f (rs)

f (|{(m,n) ∈ Irs : ‖wmn −w0,z‖ � }|) = 0.

Thus,

lim
r,s→

1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn −w0,z‖ � U}|) = 0,

implies that (wmn) is S f
( ,) (Y,‖., .‖)-bounded. �

REMARK 3. In general, the converse of the above theorem is not valid. That
is, an S f

( ,) (Y,‖., .‖) -bounded sequence is not necessarily S f
( ,) (Y,‖., .‖) -convergent

for every unbounded modulus function f and all (r,s) ∈ 2 . The following example
illustrates this scenario.

EXAMPLE 3. Consider the sequence (wmn) in
(
R2,‖., .‖) as

(wmn) = ((1,1) ,(2,2) ,(1,1) ,(2,2) , . . . ) .

Then, (wmn) is S f
( ,)

(
R2,‖., .‖)-bounded but (wmn) is not S f

( ,)

(
R2,‖., .‖)-conver-

gent if we take r = r and s = s and f (x) = x , where 0 <  � 1.

By utilizing Theorem 5 with f (x) = x , we obtain the following result.

COROLLARY 6. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
and (r,s) ∈ 2 . If (wmn) is S( ,) (Y,‖., .‖) -convergent, then it is S( ,) (Y,‖., .‖)-
bounded but the converse is not true, in general.

The following result is derived by setting r = r and s = s in Theorem 5.

COROLLARY 7. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
f be an unbounded modulus. If (wmn) is St f

2 (Y,‖., .‖) -convergent, then it is

St f
2 (Y,‖., .‖)-bounded but the converse is not true, in general.
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THEOREM 6. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) , f
be an unbounded modulus and (r,s) ∈ 2 . If (wmn) is S f

( ,) (Y,‖., .‖)-bounded, then

it is S( ,) (Y,‖., .‖)-bounded.

Proof. Suppose (wmn) is S f
( ,) (Y,‖., .‖) -bounded. Then, for some there is t ∈ X

such that

lim
r,s→

1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|) = 0,

for some U ∈ R+ . So, for any k ∈ N , there is u0 ∈ N such that for all r,s � u0,

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|) � 1
k

f (r,s) � 1
k
k f

(
1
k
r,s

)
= f

(
1
k
r,s

)
.

Since f is a modulus function, we have

|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}| � 1
k
r,s.

This means that,

lim
r,s→

1
rs

|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}| = 0.

Therefore, (wmn) is S( ,) (Y,‖., .‖) -bounded. �

REMARK 4. In general, the converse of the above theorem does not hold. That is,
an S( ,) (Y,‖., .‖) -bounded sequence may not necessarily be S f

( ,) (Y,‖., .‖)-bounded

for every unbounded modulus f and each (r,s) ∈ 2.

The following example illustrates this situation.

EXAMPLE 4. Consider the sequence

(wmn) = ((1,1) ,(0,0) ,(0,0) ,(4,4) ,(0,0) ,(0,0) ,(0,0) ,(0,0) ,(9,9) , . . .)

in
(
R2,‖., .‖) . It is clear that

{(m,n) ∈ Ir,s : ‖wmn −0,z‖ > U} = {(1,1) ,(4,4) ,(9,9) , . . .} ,

for any U ∈ R+ . If we take f (x) = log(x+1) and r = r and s = s , then

lim
r,s→

1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn −0,z‖ � U}|) =
1
2

= 0.

This means that (wmn) is not S f
( ,) (Y,‖., .‖)-bounded. However,

lim
r,s→

1
rs

|{(m,n) ∈ Ir,s : ‖wmn −0,z‖ � U}| = 0.

Thus, (wmn) is S( ,) (Y,‖., .‖)-bounded.
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From Theorem 6, the following result is obtained by setting r = r and s = s .

COROLLARY 8. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
f be an unboundedmodulus. If (wmn) is St f

2 (Y,‖., .‖)-bounded, then it is St2 (Y,‖., .‖) -
bounded but the converse is not true, in general.

THEOREM 7. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
f be an unbounded modulus and (r,s) ∈ 2 . If limr,s→ inf f (rs)

rs
> 0 and (wmn) is

S( ,) (Y,‖., .‖) -bounded, then (xk) is S f
( ,) (Y,‖., .‖) -bounded.

Proof. Suppose (wmn) is S( ,) (Y,‖., .‖) -bounded. Then, there is t ∈Y such that

lim
r,s→

1
rs

|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}| = 0

for some U ∈ R+ . Since f is a modulus, we have

limr,s→
1
rs

|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|

� limr,s→
1
rs

1
f (1)

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|)

� limr,s→
f (rs)
rs

1
f (1)

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|)
f (rs)

.

Since (wmn) is S( ,) (Y,‖., .‖)-bounded and limr,s→ inf f (rs)
rs

> 0, we get that

lim
r,s→

1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|) = 0.

Thus, (wmn) is S f
( ,) (Y,‖., .‖)-bounded. �

From Theorem 6 and Theorem 7, we get the following result.

COROLLARY 9. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
(r,s) ∈ 2 , and f be an unbounded modulus such that limr,s→ inf f (rs)

rs
> 0 . Then,

(wmn) is S( ,) (Y,‖., .‖) -bounded if and only if it is S f
( ,) (Y,‖., .‖)-bounded.

THEOREM 8. Let (wmn) be a sequence in a 2-normed linear space (Y,‖., .‖) ,
f be an unbounded modulus and (r,s) ∈ 2. If limr,s→ inf f (rs)

f (rs) > 0 and (wmn) is

St f
2 (Y,‖., .‖)-bounded, then (wmn) is S f

( ,) (Y,‖., .‖)-bounded.
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Proof. Suppose (wmn) ∈ St f
2 (Y,‖., .‖) . Then, there is t ∈ X such that

lim
r,s→

1
f (rs)

f (|{m � r,n � s : ‖wmn − t,z‖ � U}|) = 0

for some U ∈ R+ . Obviously, we have

|{m � r,n � s : ‖wmn − t,z‖ � U}| � |{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}| .

Since f is a modulus, we may write

1
f (rs)

f (|{m � r,n � s : ‖wmn − t,z‖ � U}|)

� 1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|)

=
f (rs)
f (rs)

1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|) .

Since (wmn) ∈ St f
2 (Y,‖., .‖) and limr,s→ inf f (rs)

f (rs) > 0, we get

lim
r,s→

1
f (rs)

f (|{(m,n) ∈ Ir,s : ‖wmn − t,z‖ � U}|) = 0.

Therefore, (wmn) is S f
( ,) (Y,‖., .‖) -bounded. �

4. Conclusion

In this paper, we introduced ( ,)( f ) -statistical convergence for double sequen-
ces in 2-normed linear spaces, utilizing modulus functions under various conditions.
This approach not only addresses existing gaps in the literature but also contributes to
the theoretical framework of statistical convergence in more abstract settings.

Our investigation into the relationships between ( ,) ( f ) -statistically convergent
sequences and ( ,) ( f ) -statistically bounded sequences provides valuable insights for
both theoretical advancements and practical applications. The results offer a foundation
for further research in functional analysis and sequence spaces.

In future work, based on this research, there is potential to generalize the concept
of ( ,) ( f ) -statistical convergence within the context of ideals and explore its impli-
cations for sequences order  . This can lead to the development of new theoretical
frameworks and methodologies, thereby enriching the field of abstract mathematics.
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[24] Ö. TALO AND F. BAŞAR, Certain spaces of sequences of fuzzy numbers defined by a modulus function,
Demonstratio Math., 43, no. 1 (2010), 139–149.
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