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REDUCTION AND SUMMATION FORMULAS FOR APPELL

FUNCTIONS IN THE SPIRIT OF BURCHNALL–CHAUNDY

THOMAS ERNST ∗ AND PER W. KARLSSON

Abstract. We find some reduction and summation formulas for multiple hypergeometric func-
tions by using Burchnall-Chaundy expansions. The proofs use Legendre duplication, Kummer’s
second summation formula, Gauss summation formula and Whipple transformation. Many times
we simply put a hypergeometric function argument equal to zero in order to cancel this second
factor. We conclude by proving a q -analogue of a reduction formula for the third q -Appell
function.

1. Introduction

This paper is based on notes of the late Per Karlsson, whose son Henrik kindly
provided them to the first author. Karlsson was a leading expert on multiple hypergeo-
metric functions [10], which have many applications as is seen in Exton [7]. After these
two books, the paper by Toscano [11], the book by Hari M. Srivastava [9], and the book
by Appell et. al. [2], the subject has been dormant for several years. This article is an
attempt to revitalize this important subject.

For the convenience of the reader, we state all necessary definitions. The pertinent
theorems can be found in [3], [5], [6] and [8].

DEFINITION 1. Throughout, unit arguments in hypergeometric functions are left
out [3]. The sign ≡ denotes a definition and ∼= denotes a formal equality. The variables

a,b,c,a1,a2, . . . ,b1,b2, . . . ∈ C

denote certain parameters in hypergeometric series or q -hypergeometric series. The
variables i, j,k, l,m,n, p,r will denote natural numbers except for certain cases where
it will be clear from the context that i will denote the imaginary unit.

DEFINITION 2. Let the Pochhammer symbol (a)n be defined by

(a)n =
n−1


m=0

(a+m), (a)0 = 1. (1)
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Since products of Pochhammer symbols occur so often, we shall frequently use the
more compact notation

(a1,a2, . . . ,am)n ≡
m


j=1

(a j)n. (2)

THEOREM 1. A formula for the Pochhammer symbol [8, p. 22 (2)] is given by

(a)kn = knk
k−1


m=0

(
a+m

k
)n. (3)

DEFINITION 3. Let −bi � N0 , 1 � i � r and p � r + 1. Then the generalized
hypergeometric series pFr [6] is defined by

pFr(a1, . . . ,ap;b1, . . . ,br;z) ≡p Fr

[
a1, . . . ,ap

b1, . . . ,br

∣∣∣∣∣z
]

≡



n=0

(a1, . . . ,ap)n

n!(b1, . . . ,br)n
zn.

(4)

Several times we shall use that its value for z = 0 is 1.
The basic formula for 2F1(a,b;c;1) ≡ 2F1(a,b;c) is given in the following theo-

rem.

THEOREM 2. The Gauß summation formula

2F1(a,b;c) =
(c)(c−a−b)
(c−a)(c−b)

, (c−a−b)> 0. (5)

We turn to double hypergeometric series. Four double hypergeometric series,
known as Appell series [1], [2], are defined by.

DEFINITION 4. The first Appell function is defined by

F1(a;b,b′;c;x1,x2) ≡



m1,m2=0

(a)m1+m2(b)m1(b
′)m2

m1!m2!(c)m1+m2

xm1
1 xm2

2 ,

max(|x1|, |x2|) < 1.

The second Appell function is defined by

F2(a;b,b′;c,c′;x1,x2) ≡



m1,m2=0

(a)m1+m2(b)m1(b
′)m2

m1!m2!(c)m1(c′)m2

xm1
1 xm2

2 ,

|x1|+ |x2| < 1.

The third Appell function is defined by

F3(a,a′;b,b′;c;x1,x2) ≡



m1,m2=0

(a)m1(a
′)m2(b)m1(b

′)m2

m1!m2!(c)m1+m2

xm1
1 xm2

2 ,

max(|x1|, |x2|) < 1.
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The fourth Appell function is defined by

F4(a;b;c,c′;x1,x2) ≡



m1,m2=0

(a)m1+m2(b)m1+m2

m1!m2!(c)m1(c′)m2

xm1
1 xm2

2 ,

|√x1|+ |√x2| < 1.

The hypergeometric and Gamma functions are intimately connected and we first
state the necessary Gamma function formulas. The Legendre duplication formula [8, p.
24]

(2x) =
22x−1(x)(x+ 1

2)√


, x 	= 0,−1
2
,−1,−3

2
. . . . (6)

DEFINITION 5. The generalized  function is defined as follows:


[

a1, . . . ,ap

b1, . . . ,br

]
≡ (a1) . . .(ap)

(b1) . . .(br)
.

THEOREM 3. The following expansions for Appell functions can be found in the
paper by Burchnall-Chaundy [4, Eqs. (26), (28), (30), (39), (41), (43), (47), (49)]

F2(a;b,b′;c,c′;x1,x2) =



r=0

(a,b,b′)r

(1,c,c′)r
xr
1x

r
2

× 2F1(a+ r,b+ r;c+ r;x1) 2F1(a+ r,b′+ r;c′ + r;x2),

F3(a,a′;b,b′;c;x1,x2) =



r=0

(−1)r(a,a′,b,b′)r

(1,c+ r−1)r(c)2r
xr
1x

r
2

× 2F1(a+ r,b+ r;c+2r;x1) 2F1(a′ + r,b′+ r;c+2r;x2),
(7)

F1(a;b,b′;c;x1,x2) =



r=0

(c−a,a,b,b′)r

(1,c+ r−1)r(c)2r
xr
1x

r
2

× 2F1(a+ r,b+ r;c+2r;x1) 2F1(a+ r,b′+ r;c+2r;x2),
(8)

F1(a;b,b;c;x1,x2) =



r=0

(−1)r(b)r(a)2r

(1)r(c)2r
x1

rx2
r

× 2F1(a+2r,b+ r;c+2r;x1+ x2),
(9)

F4(a;b;c,c;x1,x2) =



r=0

(a,b)2r

(1,c)r(c)2r
x1

rx2
r

× 2F1(a+2r,b+2r;c+2r;x1+ x2),
(10)

F2(a;b,b;c,c;x1,x2) =



r=0

(−1)r (a)2r(b,c−b)r

(c)2r(1,c)r
x1

rx2
r

× 2F1(a+2r,b+ r;c+2r;x1+ x2),
(11)
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F1(a;b,b;c;x1,x2) =



r=0

(a,b,c−a)r

r!(c)2r
x1

rx2
r

× 2F1(a+ r,b+ r;c+2r;x1+ x2− x1x2),
(12)

F3(a,a;b,b;c;x1,x2) =



r=0

(a,b,c−a−b)r

r!(c)2r
x1

rx2
r

× 2F1(a+ r,b+ r;c+2r;x1+ x2− x1x2).
(13)

2. Appell function reduction formulas

In this section we will state and prove several Appell function reduction formulas
by using the previous Burchnall-Chaundy expansions.

THEOREM 4. A reduction formula for the third Appell function is given by

F3
(
a,a;a− 1

2 ,a− 1
2 ;2a;x1,x2

)
=

[
(1+

√
1− x1)(1+

√
1− x2)

4

]1−2a

× 2F1

[
a− 1

2 ,2a−1
a+ 1

2

∣∣∣∣∣− (1−√
1− x1)(1−

√
1− x2)

(1+
√

1− x1)(1+
√

1− x2)

]
.

Proof. When
a = a′, c = 2a, b = b′, b = a− 1

2

in formula (7) we obtain for the left hand side

by (7)
=




r=0

(−1)r(a,a,a− 1
2 ,a− 1

2 )r

(1,2a−1+ r)r(2a)2r
xr
1x

r
2

× 2F1(a+ r,a− 1
2 + r;2a+2r;x1) 2F1(a+ r,a− 1

2 + r;2a+2r;x2)

by [5, §2.8 (6)]
=




r=0

(−1)r(a,a,a− 1
2 ,a− 1

2 ,2a−1)r

r!(2a,2a−1)2r
xr
1x

r
2

×
[

1
2 + 1

2

√
1− x1

]1−2a−2r [
1
2 + 1

2

√
1− x2

]1−2a−2r

=
[
(1+

√
1− x1)(1+

√
1− x2)

4

]1−2a

×



r=0

(−1)r(a− 1
2 ,2a−1)r

r!(a+ 1
2)r

(
x1

(1+
√

1− x1)2

)r ( x2

(1+
√

1− x2)2

)r

,

which is equal to the desired result. �

THEOREM 5. Assume Re(c− a− b) > 0 , Re(c− a′ − b′) > 0 . Then a reduction
formula for the third Appell function is given by

F3(a,a′,b,b′;c;1,1) = 
[

c,c−a−b
c−a,c−b

]
3F2

[
a′,b′,c−a−b

c−a,c−b

]
.
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Proof. Let’s choose x1 = x2 = 1 in formula (7) to obtain for the left hand side

by (3),(7)
=




r=0

(−1)r(a,a′,b,b′,c−1)r

r!(c,c−1)2r

×
[

c+2r,c+2r,c−a−b,c−a′−b′
c−a+ r,c−b+ r,c−a′+ r,c−b′+ r

]
= 

[
c,c,c−a−b,c−a′−b′
c−a,c−b,c−a′,c−b′

] 


r=0

(−1)r(a,a′,b,b′,c−1, c
2 , c+1

2 )r

r!(c−a,c−b,c−a′,c−b′, c−1
2 , c

2 )r

= 
[

c,c,c−a−b,c−a′−b′
c−a,c−b,c−a′,c−b′

]
6F5

[
a,a′,b,b′,c−1, c+1

2

c−a,c−b,c−a′,c−b′, c−1
2

∣∣∣∣∣−1

]
.

This is equal to the desired result by [3, p. 28 (2)]. �

THEOREM 6. Assume Re(c−a−b)> 0 . Then a summation formula for the third
Appell function is given by

F3(a,1−a,b,1−b;c;1,1)=
1
2
(c−1)

[
c+a+b−2

2 , c−a−b
2

c+a−b
2 , c−a+b

2

]
.

Proof. Let’s choose x = a− 1
2 , y = b− 1

2 in [3, p. 97, Ex. 3(III)]. Then choose
x1 = x2 = 1 in formula (7) to obtain for the left hand side

by (5), (7)
=




r=0

(−1)r(a,1−a,b,1−b)r

(1,c+ r−1)r(c)2r

×
[

c+2r,c+2r,c−a−b,c+a+b−2
c−a+ r,c−b+ r,c+a−1+ r,c+b−1+ r

]
by (3)
= 

[
c,c,c−a−b,c+a+b−2

c−a,c−b,c+a−1,c+b−1

]
× 6F5

[
c+1
2 ,c−1,a,1−a,b,1−b

c−1
2 ,c−a,c−b,c+a−1,c+b−1

∣∣∣∣∣−1

]
by [3, p. 97, Ex. 3(III)]

= 

[
c,c−a−b,c+a+b+2, 1

2 , 1
2 ,c+a+1,c−b,c+b−1

c−b,c+a−1,c+b−1,c−1, c+a+b−1
2 , c+a−b

2 , c−a+b
2 , c+1−a−b

2

]
by (6)
=

1
2


[
c, c+a+b−2

2 , c−a−b
2

c−1, c+a−b
2 , c−a+b

2

]
,

which is equal to the desired result. �
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THEOREM 7. A reduction formula for the first Appell function is given by

F1(a;a− 1
2 ,a− 1

2 ;2a;x1,x2) =
[
1
4
(1+

√
1− x1)(1+

√
1− x2)

]1−2a

× 2F1

[
a− 1

2 ,2a−1
a+ 1

2

∣∣∣∣∣ (1−
√

1− x1)(1−
√

1− x2)
(1+

√
1− x1)(1+

√
1− x2)

]
.

Proof. Put
c = 2a, b = b′, b = a− 1

2

in formula (8) to obtain for the left hand side:

by (8)
=




r=0

(a,a,a− 1
2 ,a− 1

2 ,2a−1)r

r!(2a,2a−1)2r
xr
1x

r
2

× 2F1(a+ r,a+ r− 1
2 ;2(a+ r);x1) 2F1(a+ r,a+ r− 1

2 ;2(a+ r);x2)

by [5, §2.8 (6)]
=




r=0

(a− 1
2 ,2a−1)r

r!24r(a+ 1
2 )r

(
1+

√
1− x1

2

)1−2a−2r

×
(

1+
√

1− x2

2

)1−2a−2r

xr
1x

r
2

=
[
1
4
(1+

√
1− x1)(1+

√
1− x2)

]1−2a

× 2F1

[
a− 1

2 ,2a−1
a+ 1

2

∣∣∣∣∣ x1x2

(1+
√

1− x1)2(1+
√

1− x2)2

]
.

This is equal to the desired result. �

THEOREM 8. For x < 1
2 − 1√

2
we use analytic continuation of 3F2 .

For terminating series, that is

b = −n, c 	= −n, (c−b−a)� Z,

a reduction formula for a special first Appell function is given by

F1(a;b,b;c;x,1− x)

= 
[

c,c−b−a
c−a,c−b

]
3F2

[
1
2a, a+1

2 ,b
c−b,1+a+b− c

∣∣∣∣∣4x(1− x)

]
.

Proof. Let us choose x1 + x2 = 1 in formula (9), then use Gauß’s summation
formula to obtain for the left hand side

by (9), (5)
=




r=0

(−1)r(b)r(a)2r

r!(c)2r
[x(1− x)]r 

[
c+2r,c−a−b− r

c−a,c−b+ r

]
= 

[
c,c−b−a
c−a,c−b

] 


r=0

(−1)r(b)r(c−b−a)−r(a)2r

r!(c−b)r
[x(1− x)]r ,
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which is equal to the desired result by (3). �

THEOREM 9. Assume |√x|+
∣∣∣∣√ 1

2 − x

∣∣∣∣ < 1 . Then a reduction formula for a spe-

cial F4 is given by

F4
(
a;b; a+b+1

2 , a+b+1
2 ;x, 1

2 − x
)

= 

[
a+b+1

2 , 1
2

a+1
2 , b+1

2

]
2F1

[
a,b

a+b+1
2

∣∣∣∣∣2x

]
.

This is a particular case of Watson’s F4 reduction formula.

Proof. Put x1 + x2 = 1
2 , c = a+b+1

2 in formula (10) to obtain

F4
(
a;b; a+b+1

2 , a+b+1
2 ;x, 1

2 − x
)

by (10)
=




r=0

(a,b)2r

(1, a+b+1
2 )r( a+b+1

2 )2r

(
x( 1

2 − x)
)r

2F1

[
a+2r,b+2r
a+b+1

2 +2r

∣∣∣∣∣ 1
2

]

=



r=0

(a,b)2r

(1, a+b+1
2 )r( a+b+1

2 )2r

(
x( 1

2 − x)
)r 

[
a+b+1

2 +2r, 1
2

a+1
2 + r, b+1

2 + r

]

= 

[
a+b+1

2 , 1
2

a+1
2 , b+1

2

]



r=0

( a
2 , a+1

2 , b
2 , b+1

2 )r42r

(1, a+b+1
2 , a+1

2 , b+1
2 )r

(
x( 1

2 − x)
)r

= 

[
a+b+1

2 , 1
2

a+1
2 , b+1

2

]
2F1

[
a
2 , b

2
a+b+1

2

∣∣∣∣∣8x(1−2x)

]
by [5, §2.11 (2)]

= ,

which proves the desired result. �

THEOREM 10. A reduction formula for a special second Appell function is given
by

F2(a;b,b;c,c;x,1− x)

= 
[

c,c−a−b
c−a,c−b

]
3F2

[
a
2 , a+1

2 ,b
c,1+a+b− c

∣∣∣∣∣4x(1− x)

]
,

b = −n∨Re(c−a) > 0.

Proof. Let’s put x1 +x2 = 1 in formula (11). Then use Gauss’ summation formula
to obtain for the left hand side

by (11)
=




r=0

(−1)r (a)2r(b,c−b)r

(c)2r(1,c)r


[
c+2r,c−b−a− r

c−a,c−b+ r

]
[x(1− x)]r .

Again, this is equal to the desired result. �
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THEOREM 11. Assume Re(c−a−b)> 0 . Then

F1(a;b,b;c;1,y) = 
[

c,c−a−b
c−a,c−b

]
2F1

[
a,b
c−b

∣∣∣∣∣y
]

.

Proof. Put
x1 + x2− x1x2 = 1

in formula (12), which is equivalent to (1− x1)(1− x2) = 0. Then use Gauss’ summa-
tion formula. �

THEOREM 12. A reduction formula for a quadratic first Appell function is given
by

F1

(
a;b,b;c;x,

x
x−1

)
= 3F2

[
a,b,c−a

c
2 , c+1

2

∣∣∣∣∣ x2

4(x−1)

]
.

Proof. Put
x1 + x2− x1x2 = 0

in formula (12), which is equivalent to x2 = x1
x1−1 . Then the second factor becomes

1. �

THEOREM 13. Assume Re(c−a−b)> 0 . Then a reduction formula for a special
third Appell function is given by

F3(a,a;b,b;c;1,y) = 
[

c,c−a−b
c−a,c−b

]
3F2

[
a,b,c−a−b
c−a,c−b

∣∣∣∣∣y
]

.

Proof. Consider the special case

x1 + x2− x1x2 = 1

in formula (13), then use Gauß’s summation formula. �

THEOREM 14. Assume max(|x|, | x
x−1 |) < 1 . Then a reduction formula for a qua-

dratic third Appell function is given by

F3

(
a,a;b,b;c;x,

x
x−1

)
= 3F2

[
a,b,c−a−b

c
2 , c+1

2

∣∣∣∣∣ x2

4(x−1)

]
.

Proof. Put
x1 + x2− x1x2 = 0

in formula (13) and solve for x2 . �
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3. A q -analogue of a reduction formula for the third q -Appell function 3

We are able to q -deform one of the reduction formulas. In order to do this, the two
21 formulas must be summed by the Heine formula. First we state some definitions.

DEFINITION 6. [6] Let  > 0 be an arbitrary small number. We will always use
the following branch of the logarithm: − +  < Im(logq) � +  . This defines a
simply connected space in the complex plane. The power function is then defined by

qa ≡ ea log(q).

DEFINITION 7. [6] The q -shifted factorials are defined by

〈a;q〉n ≡
n−1


m=0

(1−qa+m),

〈ã;q〉n ≡
n−1


m=0

(1+qa+m).

DEFINITION 8. We shall define a q -hypergeometric series by

p+p′r+r′

[
â1, . . . , âp

b̂1, . . . , b̂r
|q;z

]
≡




k=0

〈â1;q〉k . . . 〈âp;q〉k
〈1, b̂1;q〉k . . .〈b̂r;q〉k

[
(−1)kq(k

2)
]1+r+r′−p−p′

zk,

where
â ≡ a∨ ã.

It is assumed that the denominator contains no zero factors, i.e. b̂k 	= −l + 2m i
logq , k =

1, . . . ,r, l,m ∈N . In a few cases the parameter â will be the real plus infinity, (0 < |q|<
1) . They correspond to multiplication by 1.

DEFINITION 9. [6] The q -analogue of the third Appell function is defined by

3(a,a′;b,b′;c|q;x1,x2)

≡



m1,m2=0

〈a;q〉m1〈a′;q〉m2〈b;q〉m1〈b′;q〉m2

〈1;q〉m1〈1;q〉m2〈c;q〉m1+m2

xm1
1 xm2

2 , max(|x1|, |x2|) < 1.

DEFINITION 10. The q function is defined by

q(z) ≡
⎧⎨⎩

〈1;q〉
〈z;q〉 (1−q)1−z if 0 < |q| < 1

〈1;q−1〉
〈z;q−1〉 (q−1)1−zq(z

2), if |q| > 1.
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The simple poles of q are located at z = −n± 2k i
logq , n,k ∈ N0 .

DEFINITION 11. The generalized q function is defined as follows:

q

[
a1, . . . ,ap

b1, . . . ,br

]
≡ q(a1) . . .q(ap)

q(b1) . . .q(br)
.

THEOREM 15. Heines q-analogue of Gauß’s summation formula, [6, (7.57)],
states that

21(a,b;c|q;qc−a−b) = q

[
c,c−a−b
c−a,c−b

]
, |qc−a−b| < 1. (14)

We shall also need the following lemma.

LEMMA 1. [6, (10.217)], an expansion formula for the third q-Appell function,
and a q-analogue of (7) is given by

3(a,a′;b,b′;c|q;x1,x2) =



r=0

(−1)r〈a,a′,b,b′;q〉r
〈1,c+ r−1;q〉r〈c;q〉2r

xr
1x

r
2q

rc+ 3
2 r(r−1)

× 21(a+ r,b+ r;c+2r|q;x1) 21(a′ + r,b′+ r;c+2r|q;x2).
(15)

THEOREM 16. Assume Re(c−a−b) > 0 , Re(c−a′ −b′) > 0 . Then a reduction
formula with double q-power argument for the third q-Appell function is given by

3(a,a′;b,b′;c|q;qc−a−b,qc−a′−b′)

= q

[
c,c,c−a−b,c−a′−b′
c−a,c−b,c−a′,c−b′

]
×7 9

[
a,a′,b,b′,c−1, c+1

2 , c̃+1
2

c−a,c−b,c−a′,c−b′, c−1
2 , c̃−1

2 ,3

∣∣∣∣∣q;qc

]
.

Proof. Put x1 = qc−a−b, x2 = qc−a′−b′ in formula (15) to obtain for the left hand
side

by (14), (15)
=




r=0

(−1)r〈a,a′,b,b′,c−1;q〉r
〈1;q〉r〈c,c−1;q〉2r

×qrc+ 3
2 r(r−1)q

[
c+2r,c+2r,c−a−b,c−a′−b′

c−a+ r,c−b+ r,c−a′+ r,c−b′+ r

]
by [6, (1.46), (6.33), (6.34) ]

= q

[
c,c,c−a−b,c−a′−b′
c−a,c−b,c−a′,c−b′

]

×



r=0

(−1)r〈a,a′,b,b′,c−1, c
2 , c+1

2 , c̃+1
2 ;q〉r

〈1,c−a,c−b,c−a′,c−b′, c−1
2 , c

2 , c̃−1
2 ;q〉r

qrc+ 3
2 r(r−1),
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which is equal to the desired formula. �
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Conclusion. We have found several special reduction formulas which are seldom
seen in the literature. Some with short and some with long proofs. Of course, the
formulas with proofs which use Gauss’ summation formula and/or quadratic transfor-
mations require certain restrictions of the variables. We have pointed this out, when
possible. As a by-product, we have found proper restrictions of the parameters for the
third Appell function to converge for double unit argument.

Discussion. There are also confluent formulas and reduction formulas for Horn
and triple functions etc. These can be derived from our new formulas.

It was not possible to find q -analogues of the formulas, where the argument was
set to zero. The reason was that this would require q -analogues of formulas (12) and
(13) with the second q -addition.

Conflict of interest. The manuscript contains no conflicts of interest. There is no
Data Availability Statement, since this is pure mathematics.
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