ON GENERALIZED β -ABSOLUTE CONVERGENCE OF SINGLE AND DOUBLE SERIES IN MULTIPLICATIVE SYSTEMS

KIRAN N. DARJI

Abstract. In this paper, we obtain sufficient conditions for the generalized β -absolute convergence ($0 < \beta \leq 2$) of single and double series in multiplicative systems of functions of generalized bounded fluctuation.

1. Introduction

Concerning the absolute convergence of Fourier series, the theorem of Bernstein [1, Vol. II, Theorem 2 of Bernstein, p. 154], the theorem of Szász [1, Vol. II, Szász Theorem, p. 155], and the theorem of Zygmund [1, Vol. II, p. 160] are classical. Gogoladze and Meskhia [3] generalized β -absolute convergence ($0 < \beta < 2$) of the Fourier trigonometric series with gaps for some classes of functions, also, it was proved that these conditions are unimprovable in a certain sense. Similar problems are also studied in the papers [4] and [11]. In 2010, Móricz [8] obtained sufficient conditions for generalized β -absolute convergence of single Walsh-Fourier series. In 2011, Móricz and Veres [9] proved analogues of the results proved in [8] for the double Walsh-Fourier series. In 2012, Golubov and Volosivets [6] obtained several sufficient conditions for generalized β -absolute convergence of single and double series in multiplicative systems. Those conditions gave a multiplicative analogue of results due to Gogoladze and Meskhia [3]. They noticed that their results are analogous of the results obtained by Móricz in [8], and Móricz and Veres in [9]. Generalizing the results of Golubov and Volosivets [6], in 2017, Kuznetsova [7] obtained sufficient conditions for generalized β -absolute convergence of single series in multiplicative systems. Extending some of these results of Kuznetsova, Volosivets and Kuznetsova [13] obtained sufficient condition for generalized β -absolute convergence of double series in multiplicative systems. In this paper, generalizing the result of Kuznetsova [7, Theorem 1, p. 306] and Volosivets and Kuznetsova [13, Theorem 5, p. 227], we obtain sufficient conditions for generalized β -absolute convergence of single and double series in multiplicative systems. In particular case, our condition for single and double series are multiplicative analogue of the result obtained by Móricz [8, Theorem 3, p. 281] and Móricz and Veres [9, Theorem 3, p. 129], respectively.

Throughout the paper, C represents a constant vary time to time.

Mathematics subject classification (2020): 42C10.

Keywords and phrases: Multiplicative system, generalized β -absolute convergence, functions of *p*- Λ -bounded fluctuation, functions of *p*- (Λ^1, Λ^2) -bounded fluctuation.

2. Results for functions of one variable

Let $\mathbf{P} = \{p_j\}_{j=1}^{\infty}$ be a sequence of natural numbers such that $2 \leq p_j \leq N$ for all $j \in \mathbb{N}$ and $\mathbb{Z}_j = \{0, 1, \dots, p_j - 1\}$. Consider the sequence $\{m_j\}_{j=0}^{\infty}$ defined as follows: $m_0 = 1, m_n = m_{n-1}p_n$ for $n \in \mathbb{N}$. Then any number $x \in [0, 1)$ can be represented as

$$x = \sum_{j=1}^{\infty} x_j m_j^{-1}, \quad x_j \in \mathbb{Z}_j,$$
(1)

and every $k \in \mathbb{Z}_+$ is uniquely represented as

$$k = \sum_{j=1}^{\infty} k_j m_{j-1}, \quad k_j \in \mathbb{Z}_j.$$
⁽²⁾

The expression (1) is also uniquely determined if, for $x = s/m_n$, $0 < s < m_n$, $s \in \mathbb{Z}$, a finite number of nonzero x_i is taken.

For numbers $x \in [0,1)$ and $k \in \mathbb{Z}_+$ with expansions (1) and (2), we set, by definition,

$$\chi_k(x) = \exp\left(2\pi i \left(\sum_{j=1}^{\infty} \frac{x_j k_j}{p_j}\right)\right).$$

The system $\{\chi_k(x)\}_{k=0}^{\infty}$ of functions is called a multiplicative system. It is known that it is orthonormal and complete in $L^1[0,1)$ (see [5, Chap. 1, Sec. 1.5]). It is easy to see that, for $0 \le n < m_k$, the function $\chi_n(x)$ is constant on

$$I_j^k = \left[\frac{j-1}{m_k}, \frac{j}{m_k}\right), \quad 1 \leq j \leq m_k, \quad k \in \mathbb{Z}_+.$$

Let $G(\mathbf{P})$ be the group consisting of sequences of the form $\tilde{x} = (x_1, x_2, ...), x_j \in \mathbb{Z}_+, 0 \leq x_j < p_j$, with the operation $\tilde{x} \oplus \tilde{y} = \tilde{z}$, where $z_j = x_j + y_j \pmod{p_j}, j \in \mathbb{N}$. The inverse operation $\tilde{x} \oplus \tilde{y}$ is defined in a similar way. The mapping $\lambda_{\mathbf{P}}(\tilde{x}) = \sum_{j=1}^{\infty} x_j m_j^{-1}$ of the group $G(\mathbf{P})$ to [0, 1) is not bijective, because each number of the form

$$x = \frac{k}{m_l}, \quad k, l \in \mathbb{N}, \quad k < m_l, \tag{3}$$

is the image of two different elements from $G(\mathbf{P})$. Let us define an inverse mapping $\lambda_{\mathbf{P}}^{-1}$. For $x \in [0, 1)$ of the form (3), we set $x_j = [m_j x] \pmod{p_j}$, $j \in \mathbb{N}$. Then $\lambda_{\mathbf{P}}^{-1}(x) = (x_1, \ldots, x_l, 0, \ldots)$. For any other $x \in [0, 1)$, there exists a unique element $\tilde{x} \in G(\mathbf{P})$ with the property $\lambda_{\mathbf{P}}(\tilde{x}) = x$, and, in that case, we set $\lambda_{\mathbf{P}}^{-1}(x) = \tilde{x}$. We define the generalized distance

$$\rho(x,y) = \lambda_{\mathbf{P}}(\lambda_{\mathbf{P}}^{-1}(x) \ominus \lambda_{\mathbf{P}}^{-1}(y))$$

and the addition

$$x \oplus y = \lambda_{\mathbf{P}}(\lambda_{\mathbf{P}}^{-1}(x) \oplus \lambda_{\mathbf{P}}^{-1}(y))$$

on [0,1). Note that $x \oplus y$ is not defined if $\lambda_{\mathbf{p}}^{-1}(x) \oplus \lambda_{\mathbf{p}}^{-1}(y) = \tilde{z}$, where $z_j = p_j - 1$ for $j \ge j_0$, i.e., $x \oplus y$ is defined for almost all $x \in [0,1)$ for a fixed $y \in [0,1)$. It is easy to see that $x \oplus /m_{k+1}$, $k \in \mathbb{Z}_+$, is always defined and that $\rho\left(x \oplus \frac{1}{m_{k+1}}, x\right) < \frac{1}{m_k}$.

In the same way, we also define

$$x \ominus y = \lambda_{\mathbf{P}}(\lambda_{\mathbf{P}}^{-1}(x) \ominus \lambda_{\mathbf{P}}^{-1}(y))$$

with constrains similar to those in the case $x \oplus y$.

For $f \in L^1[0,1)$, the Fourier coefficients in the system $\{\chi_j(x)\}_{j=0}^{\infty}$ are given by the formula

$$\hat{f}(j) = \int_0^1 f(x) \ \overline{\chi_j(x)} \ dx, \quad j \in \mathbb{Z}_+.$$

We note that the space $L^p[0,1)$, $1 \le p < \infty$, is endowed with the standard norm

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{1/p}$$

Let

$$\Delta_u f(x) = f(x \oplus u) - f(x).$$

It follows from the condition $f \in L^p[0,1)$ that $\|\Delta_u f(x)\|_p \to 0$ as $u \to 0$. Therefore, we can introduce the discrete modulus of continuity of a function $f \in L^p[0,1)$, $1 \le p < \infty$, as the sequence

$$\omega_k(f)_p = \sup\{\|\Delta_u f(x)\|_p : u \in I_1^k\}, \ k \in \mathbb{Z}_+.$$

The space $C^*[0,1)$ with the corresponding norm

$$||f||_{\infty} = \sup_{x \in [0,1)} |f(x)|$$

is the closure of the set of polynomials in the system $\{\chi_k(x)\}_{k=0}^{\infty}$ in the norm $\|.\|_{\infty}$. For $f \in C^*[0,1)$, we put, by definition,

$$\omega_k(f)_{\infty} = \sup\left\{ |f(x) - f(y)| : x, y \in [0, 1), \ \rho(x, y) < \frac{1}{m_k} \right\}, \ k \in \mathbb{Z}_+.$$

Let $\alpha \ge 1$. We say that a sequence $\gamma = \{\gamma_i\}_{i=0}^{\infty}$ belongs to the class $A^*(\alpha) = A^*(\alpha, 2) = A^*(\alpha, 2, \mathbf{P})$, if $\gamma_i > 0$ for all *i* and

$$\left(\sum_{i=m_k}^{m_{k+1}-1}\gamma_i^{\alpha}\right)^{1/\alpha} \leqslant Cm_k^{(1-\alpha)/\alpha}\sum_{i=m_{k-1}}^{m_k-1}\gamma_i =: Cm_k^{(1-\alpha)/\alpha}\Gamma_k, \quad k \in \mathbb{N}.$$

For k = 0, we assume that a similar inequality is valid for $\Gamma_0 = \gamma_0$. This definition is given in the paper of L. Gogoladze [2] and also in the paper of Gogoladze and Meskhia [3] for $m_k = 2^k$.

A sequence $\gamma = {\gamma_i}_{i=0}^{\infty}$ belongs to the class $A^*(\infty, 2)$, if $\gamma_i > 0$ for all *i* and

$$\max_{m_k \leqslant i < m_{k+1}} \gamma_i \leqslant C m_k^{-1} \Gamma_k, \ k \in \mathbb{N}.$$

We say that a non-decreasing sequences $\Lambda = {\lambda_k}_{k=1}^{\infty}$ of positive numbers belongs to the class \mathbb{L} if $\lim_{n\to\infty} \Lambda_n = \infty$, where $\Lambda_n = \sum_{k=1}^n \lambda_k^{-1}$.

Let $\Lambda = {\lambda_i}_{i=1}^{\infty} \in \mathbb{L}$ and $p \ge 1$. Let $k \in \mathbb{Z}_+$ be fixed, and let f(x) be bounded on [0,1). If $i \in [1, m_k] \cap \mathbb{Z}$, then we denote

$$osc(f, I_i^k) = \sup\{|f(x) - f(y)| : x, y \in I_i^k\}$$

 $\mathfrak{w}_k(f, p, \Lambda) = \sup\sum_{i=1}^{m_k} \frac{osc^p(f, I_{\alpha_i}^k)}{\lambda_i},$

where the supremum in the formula for \mathfrak{a}_k is taken over all permutations $\{\alpha_i\}_{i=1}^{m_k}$ of the index set $\{1, 2, \dots, m_k\}$. If

$$V^p_{\Lambda}(f) = \sup\{\mathfrak{a}_k(f, p, \Lambda) : k \in \mathbb{Z}_+\} < \infty,$$

then f belongs to the class $\Lambda Fl^{(p)}[0,1)$ of functions of p- Λ -bounded fluctuation.

Note that, for p = 1, the class $\Lambda Fl^{(p)}[0,1)$ reduce to the class $\Lambda Fl^{(1)}[0,1)$ of functions of Λ -bounded fluctuation and for $\Lambda = \{1\}$, the class $\Lambda Fl^{(p)}[0,1)$ reduce to the class $Fl^{(p)}[0,1)$ of functions of *p*-bounded fluctuation.

We prove the following results.

THEOREM 1. Let $f \in \Lambda Fl^{(p)}[0,1) \cap C^*[0,1)$ $(p \ge 1)$, and let $0 < \beta < 2$, $\gamma = \{\gamma_r\}_{r=1}^{\infty} \in A^*(2/(2-\beta),2) \text{ or } \beta = 2, \ \gamma \in A^*(\infty,2).$ If the series

$$\sum_{k=0}^{\infty} m_k^{-\beta/2} \Gamma_k \left(\frac{\omega_k^q(f)_{\infty}}{\Lambda_{m_k}} \right)^{\frac{\beta}{p+q}}$$

converges, then the series

$$\sum_{r=1}^{\infty} \gamma_r |\hat{f}(r)|^{\beta} \tag{4}$$

,

also converges, where $q \ge 1$.

Proof. For $k \in \mathbb{Z}_+$, consider $g(x) = f(x \oplus m_{k+1}^{-1}) - f(x)$. Then, for each $r \in \mathbb{Z}_+$, $\widehat{g}(r) = (\chi_r(m_{k+1}^{-1}) - 1)\widehat{f}(r)$. In view of Parseval's equality, we get

$$\sum_{r=0}^{\infty} \left| \widehat{f}(r) \left(\chi_r(m_{k+1}^{-1}) - 1 \right) \right|^2 = \int_0^1 |g(x)|^2 dx = \int_0^1 |f_u(x)|^2 dx,$$

where $f_u(x) = f(x \oplus (up_{k+1} + 1)m_{k+1}^{-1}) - f(x \oplus um_k^{-1})$ for $0 \le u < m_k$. Since, for $r \in [m_k, m_{k+1})$,

$$\left|\chi_r(m_{k+1}^{-1}) - 1\right| = \left|\exp\left(\frac{2\pi i j}{p_{k+1}}\right) - 1\right| = 2\sin\left(\frac{\pi j}{p_{k+1}}\right) \ge 2\sin\left(\frac{\pi}{N}\right),\tag{5}$$

where *N* is the majorant of the generating sequence $\{p_j\}_{j=1}^{\infty}$ and $j = [r/m_k] \in [1, p_{k+1} - 1]$, it follows that

$$B_k := \sum_{r=m_k}^{m_{k+1}-1} |\widehat{f}(r)|^2 \leqslant C \int_0^1 |f_u(x)|^2 \, dx.$$
(6)

Applying Hölder's inequality on the right side of the above inequality, we obtain

$$B_k \leqslant C \left(\int_0^1 |f_u(x)|^{p+q} \, dx \right)^{\frac{2}{p+q}}.$$

Multiplying above inequality by λ_{u+1}^{-1} and, after that, summing the resulting inequality over $u = 0, 1, 2, \dots, m_k - 1$, we can write

$$B_k \leqslant C\left(\frac{1}{(\Lambda_{m_k})^{\frac{2}{p+q}}}\left(\int_0^1 \sum_{u=0}^{m_k-1} \frac{|f_u(x)|^{p+q}}{\lambda_{u+1}} dx\right)^{\frac{2}{p+q}}\right),$$

where $\Lambda_{m_k} = \sum_{u=0}^{m_k-1} \frac{1}{\lambda_{u+1}}$. Since $|f_u(x)| \leq \omega_k(f)_{\infty}$, we have

$$B_k \leqslant C\left(\left(\frac{\omega_k^q(f)_{\infty}}{\Lambda_{m_k}}\right)^{\frac{2}{p+q}} \left(\int_0^1 \sum_{u=0}^{m_k-1} \frac{|f_u(x)|^p}{\lambda_{u+1}} dx\right)^{\frac{2}{p+q}}\right),$$

where

$$\sum_{u=0}^{m_k-1} \frac{|f_u(x)|^p}{\lambda_{u+1}} = O(1) \text{ as } f \in \Lambda Fl^{(p)}[0,1).$$

Hence,

$$B_k \leqslant C \left(\frac{\omega_k^q(f)_{\infty}}{\Lambda_{m_k}}\right)^{\frac{2}{p+q}}.$$
(7)

If $0 < \beta < 2$, then $1 = \frac{\beta}{2} + \frac{2-\beta}{2}$ and, in view of (7) and Hölder's inequality, we have

$$\sum_{r=m_k}^{m_{k+1}-1} \gamma_r |\hat{f}(r)|^{\beta} \leqslant \left(\sum_{r=m_k}^{m_{k+1}-1} \gamma^{2/(2-\beta)}\right)^{(2-\beta)/2} B_k^{\beta/2}$$
$$\leqslant C m_k^{-\beta/2} \Gamma_k \left(\frac{\omega_k^q(f)_{\infty}}{\Lambda_{m_k}}\right)^{\frac{\beta}{p+q}}.$$

Summing over $k \in \mathbb{Z}_+$, we have

$$\sum_{r=1}^{\infty} \gamma_r |\hat{f}(r)|^{\beta} \leqslant C \sum_{k=0}^{\infty} m_k^{-\beta/2} \Gamma_k \left(\frac{\omega_k^q(f)_{\infty}}{\Lambda_{m_k}} \right)^{\frac{\beta}{p+q}}.$$

For $\beta = 2$, the argument is similar. The theorem is proved. \Box

In the case when p = q = 1 in Theorem 1, we have the following result proved by Kuznetsova [7, Theorem 1, p. 306].

COROLLARY 1. Let $f \in \Lambda Fl^{(1)}[0,1) \cap C^*[0,1)$. If the series

$$\sum_{k=0}^{\infty} m_k^{-\beta/2} \Gamma_k \left(\frac{\omega_k(f)_{\infty}}{\Lambda_{m_k}} \right)^{\frac{\beta}{2}}$$

is converges, then the series (4) also converges, where β and $\gamma = \{\gamma_r\}_{r=1}^{\infty}$ are as in *Theorem* 1.

In the case when q = 2 - p and $\Lambda = \{1\}$ in Theorem 1, we have the following result.

COROLLARY 2. Let $f \in Fl^{(p)}[0,1) \cap C^*[0,1)$. If the series

$$\sum_{k=0}^{\infty} m_k^{-\beta} \Gamma_k \left(\omega_k(f)_{\infty} \right)^{\frac{(2-p)\beta}{2}}$$

is converges, then the series (4) also converges, where β and $\gamma = {\gamma_r}_{r=1}^{\infty}$ are as in *Theorem* 1.

Corollary 2 is the multiplicative analogue of result proved by Móricz [8, Theorem 3, p. 281].

3. Results for functions of two variables

The system $\{\chi_i(x)\chi_j(y)\}_{i,j=0}^{\infty}$ is also orthonormal and complete in $L^1[0,1)^2$ and, therefore, for $f \in L^1[0,1)^2$, we can find the Fourier coefficients

$$\hat{f}(i,j) = \int_0^1 \int_0^1 f(x,y) \ \overline{\chi_i(x)\chi_j(y)} \ dx \ dy, \quad i,j \in \mathbb{Z}_+.$$

We note that the space $L^p[0,1)^2$, $1 \le p < \infty$, is endowed with the standard norm

$$||f||_p = \left(\int_0^1 \int_0^1 |f(x,y)|^p \, dx \, dy\right)^{1/p}$$

Let

$$\Delta_{uv}f(x,y) = f(x \oplus u, y \oplus v) - f(x \oplus u, y) - f(x, y \oplus v) + f(x, y).$$

It follows from the condition $f \in L^p[0,1)^2$ that $\|\Delta_{uv}f(x,y)\|_p \to 0$ as $u, v \to 0$. Therefore, we can introduce the discrete modulus of continuity of a function $f \in L^p[0,1)^2$, $1 \leq p < \infty$, as the double sequence

$$\omega_{kl}(f)_p = \sup\{\|\Delta_{uv}f(x,y)\|_p : u \in I_1^k, v \in I_1^l\}, \ k, l \in \mathbb{Z}_+.$$

The space $C^*[0,1)^2$ with the corresponding norm

$$||f||_{\infty} = \sup_{(x,y)\in[0,1)^2} |f(x,y)|$$

is the closure of the set of polynomials in the system $\{\chi_k(x)\chi_j(y)\}_{k=0}^{\infty}$ in the norm $\|.\|_{\infty}$. For $f \in C^*[0,1)^2$, we put, by definition,

$$\begin{split} \omega_{kl}(f)_{\infty} &= \sup \left\{ |f(x,y) - f(x,v) - f(u,y) + f(u,v)| : \\ & x, y, u, v \in [0,1), \ \rho(x,u) < \frac{1}{m_k}, \ \rho(y,v) < \frac{1}{m_l} \right\}, \quad k, l \in \mathbb{Z}_+ \end{split}$$

Móricz and Veres [10] defined a two-dimensional analog of the class $A^*(\alpha)$. Their variant is a particular case of the following definition for $m_n = 2^n$. Let $\{\gamma_{ij}\}_{i=1}^{\infty}$ be a double sequence of positive numbers and $\alpha \ge 1$. If, for all $k, l \in \mathbb{N}$,

$$\left(\sum_{i=m_k}^{m_{k+1}-1}\sum_{j=m_l}^{m_{l+1}-1}\gamma_{ij}^{\alpha}\right)^{1/\alpha} \leqslant C(m_k m_l)^{(1-\alpha)/\alpha}\sum_{i=m_{k-1}}^{m_k-1}\sum_{j=m_{l-1}}^{m_l-1}\gamma_{ij} =: C(m_k m_l)^{(1-\alpha)/\alpha}\Gamma_{kl},$$

then $\{\gamma_{ij}\}_{i,j=1}^{\infty}$ belongs to the class $A^*(\alpha) = A^*(\alpha, 2) = A^*(\alpha, 2, \mathbf{P})$. A double sequence $\{\gamma_{ij}\}_{i,j=1}^{\infty}$ belongs to the class $A^*(\infty, 2)$, if $\gamma_{ij} > 0$ for all i, jand

$$\max_{m_k \leqslant i < m_{k+1}, \ m_l \leqslant j < m_{l+1}} \gamma_{ij} \leqslant C(m_k m_l)^{-1} \Gamma_{kl}, \ k, l \in \mathbb{N}.$$

Let $\Lambda^1 = \{\lambda_i^1\}_{i=1}^{\infty}, \Lambda^2 = \{\lambda_i^2\}_{i=1}^{\infty} \in \mathbb{L}$ and $p \ge 1$. Let $k, l \in \mathbb{Z}_+$ be fixed, and let f(x, y)be bounded on $[0,1)^2$. If $i \in [1,m_k] \cap \mathbb{Z}$ and $j \in [1,m_l] \cap \mathbb{Z}$, then we denote

$$\begin{split} osc(f, I_{ij}^{kl}) &= \sup\{|f(x, y) - f(x, v) - f(u, y) + f(u, v)| : x, u \in I_i^k, y, v \in I_j^l\}\\ & \mathfrak{w}_{kl}(f, p, \Lambda^1, \Lambda^2) = \sup\sum_{i=1}^{m_k} \sum_{j=1}^{m_l} \frac{osc^p(f, I_{\alpha_i, \beta_j}^{kl})}{\lambda_i^1 \lambda_j^2}, \end{split}$$

where the supremum in the formula for x_{kl} is taken over all permutations $\{\alpha_i\}_{i=1}^{m_k}$ and $\{\beta_j\}_{i=1}^{m_l}$ of the index sets $\{1, 2, \dots, m_k\}$ and $\{1, 2, \dots, m_l\}$. If

$$V^p_{\Lambda^1,\Lambda^2}(f) = \sup\{\mathfrak{a}_{kl}(f,p,\Lambda^1,\Lambda^2): k,l\in\mathbb{Z}_+\} < \infty,$$

then f belongs to the class $(\Lambda^1, \Lambda^2) Fl^{(p)}[0,1)^2$ of functions of $p \cdot (\Lambda^1, \Lambda^2)$ -bounded fluctuation.

Note that, for p = 1, the class $(\Lambda^1, \Lambda^2) F l^{(p)}[0, 1)^2$ reduce to the class $(\Lambda^1, \Lambda^2) F l^{(1)}$ $[0,1)^2$ of functions of (Λ^1,Λ^2) -bounded fluctuation and for $\Lambda^1 = \Lambda^2 = \{1\}$, the class $(\Lambda^1,\Lambda^2)Fl^{(p)}[0,1)^2$ reduce to the class $Fl^{(p)}[0,1)^2$ of functions of *p*-bounded fluctuation.

We prove the following results.

THEOREM 2. Let
$$f \in (\Lambda^1, \Lambda^2) Fl^{(p)}[0, 1)^2 \cap C^*[0, 1)^2$$
 $(p \ge 1)$, and let $0 < \beta < 2$, $\gamma = \{\gamma_{rs}\}_{r,s=1}^{\infty} \in A^*(2/(2-\beta), 2)$ or $\beta = 2$, $\gamma \in A^*(\infty, 2)$. If the series

$$\sum_{k=0}^{\infty}\sum_{l=0}^{\infty} (m_k m_l)^{-\beta/2} \Gamma_{kl} \left(\frac{\omega_{kl}^q(f)_{\infty}}{\Lambda_{m_k}^1 \Lambda_{m_l}^2}\right)^{\frac{p}{p+\epsilon}}$$

converges, then the series

$$\sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \gamma_{rs} |\hat{f}(r,s)|^{\beta}$$
(8)

also converges, where $q \ge 1$.

Proof. For $k, l \in \mathbb{Z}_+$, consider

$$g(x,y) = f\left(x \oplus m_{k+1}^{-1}, y \oplus m_{l+1}^{-1}\right) - f\left(x \oplus m_{k+1}^{-1}, y\right) - f\left(x, y \oplus m_{l+1}^{-1}\right) + f\left(x, y\right).$$

Then, for each $r, s \in \mathbb{Z}_+$, $\widehat{g}(r, s) = (\chi_r(m_{k+1}^{-1}) - 1) (\chi_s(m_{l+1}^{-1}) - 1) \widehat{f}(r, s)$. In view of Parseval's equality, we get

$$\begin{split} &\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \left| \widehat{f}(r,s) \left(\chi_r(m_{k+1}^{-1}) - 1 \right) \left(\chi_s(m_{l+1}^{-1}) - 1 \right) \right|^2 \\ &= \int_0^1 \int_0^1 |g(x,y)|^2 dx \, dy \\ &= \int_0^1 \int_0^1 |f_{uv}(x,y)|^2 \, dx \, dy, \end{split}$$

where

$$f_{uv}(x,y) = f\left(x \oplus um_k^{-1}, y \oplus vm_l^{-1}\right) - f\left(x \oplus (up_{k+1}+1)m_{k+1}^{-1}, y \oplus vm_l^{-1}\right) -f\left(x \oplus um_k^{-1}, y \oplus (vp_{l+1}+1)m_{l+1}^{-1}\right) +f\left(x \oplus (up_{k+1}+1)m_{k+1}^{-1}, y \oplus (vp_{l+1}+1)m_{l+1}^{-1}\right)$$

for $0 \leq u < m_k$ and $0 \leq v < m_l$.

Since, for $r \in [m_k, m_{k+1})$, in view of (5), $|\chi_r(m_{k+1}^{-1}) - 1| \ge 2 \sin(\frac{\pi}{N})$, and similar inequality is valid for $|\chi_s(m_{l+1}^{-1}) - 1|$, it follows that

$$B_{kl} := \sum_{r=m_k}^{m_{k+1}-1} \sum_{s=m_l}^{m_{l+1}-1} |\widehat{f}(r,s)|^2 \leq C \int_0^1 \int_0^1 |f_{uv}(x,y)|^2 \, dx \, dy$$

Applying Hölder's inequality on the right side of the above inequality, we obtain

$$B_{kl} \leq C\left(\int_0^1 \int_0^1 |f_{uv}(x,y)|^{p+q} dx dy\right)^{\frac{2}{p+q}}.$$

Multiplying above inequality by $(\lambda_{u+1}^1 \lambda_{v+1}^2)^{-1}$ and, after that, summing the resulting inequality over $u = 0, 1, 2, \dots, m_k - 1$ and $v = 0, 1, 2, \dots, m_l - 1$, we can write

$$B_{kl} \leqslant C\left(\frac{1}{(\Lambda_{m_k}^1 \Lambda_{m_l}^2)^{\frac{2}{p+q}}} \left(\int_0^1 \int_0^1 \sum_{u=0}^{m_k-1} \sum_{v=0}^{m_l-1} \frac{|f_{uv}(x,y)|^{p+q}}{\lambda_{u+1}^1 \lambda_{v+1}^2} dx \, dy\right)^{\frac{2}{p+q}}\right),$$

where $\Lambda_{m_k}^1 = \sum_{u=0}^{m_k-1} \frac{1}{\lambda_{u+1}}$ and $\Lambda_{m_l}^2 = \sum_{v=0}^{m_l-1} \frac{1}{\lambda_{v+1}}$. Since $|f_{uv}(x,y)| \leq \omega_{kl}(f)_{\infty}$, we have

$$B_{kl} \leqslant C\left(\left(\frac{\omega_{kl}^{q}(f)_{\infty}}{\Lambda_{m_{k}}^{1}\Lambda_{m_{l}}^{2}}\right)^{\frac{2}{p+q}} \left(\int_{0}^{1}\int_{0}^{1}\sum_{u=0}^{m_{k}-1}\sum_{v=0}^{m_{l}-1}\frac{|f_{uv}(x,y)|^{p}}{\lambda_{u+1}^{1}\lambda_{v+1}^{2}}dx\,dy\right)^{\frac{2}{p+q}}\right),$$

where

$$\sum_{u=0}^{m_k-1} \sum_{v=0}^{m_l-1} \frac{|f_{uv}(x,y)|^p}{\lambda_{u+1}^1 \lambda_{v+1}^2} = O(1) \text{ as } f \in (\Lambda^1, \Lambda^2) Fl^{(p)}[0,1)^2.$$

Hence,

$$B_{kl} \leqslant C \left(\frac{\omega_{kl}^q(f)_{\infty}}{\Lambda_{m_k}^1 \Lambda_{m_l}^2}\right)^{\frac{2}{p+q}}.$$
(9)

0

If $0 < \beta < 2$, then $1 = \frac{\beta}{2} + \frac{2-\beta}{2}$ and, in view of (9) and Hölder's inequality, we have

$$\sum_{r=m_{k}}^{m_{k+1}-1} \sum_{s=m_{l}}^{m_{l+1}-1} \gamma_{rs} |\hat{f}(r,s)|^{\beta} \leq \left(\sum_{r=m_{k}}^{m_{k+1}-1} \sum_{s=m_{l}}^{m_{l+1}-1} \gamma^{2/(2-\beta)} \right)^{(2-\beta)/2} B_{kl}^{\beta/2}$$
$$\leq C(m_{k}m_{l})^{-\beta/2} \Gamma_{kl} \left(\frac{\omega_{kl}^{q}(f)_{\infty}}{\Lambda_{m_{k}}^{1}\Lambda_{m_{l}}^{2}} \right)^{\frac{\beta}{p+q}}.$$

Summing over $k, l \in \mathbb{Z}_+$, we have

$$\sum_{r=1}^{\infty}\sum_{s=1}^{\infty}\gamma_{rs}|\hat{f}(r,s)|^{\beta} \leqslant C\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}(m_{k}m_{l})^{-\beta/2}\Gamma_{kl}\left(\frac{\omega_{kl}^{q}(f)_{\infty}}{\Lambda_{m_{k}}^{1}\Lambda_{m_{l}}^{2}}\right)^{\frac{p}{p+q}}$$

For $\beta = 2$, the argument is similar. The theorem is proved. \Box

In the case when p = q = 1 in Theorem 2, we have the following result proved by Volosivets and Kuznetsova [13, Theorem 5, p. 227].

COROLLARY 3. Let $f \in (\Lambda^1, \Lambda^2) Fl^{(1)}[0, 1)^2 \cap C^*[0, 1)^2$. If the series

$$\sum_{k=0}^{\infty}\sum_{l=0}^{\infty} (m_k m_l)^{-\beta/2} \Gamma_{kl} \left(\frac{\omega_{kl}(f)_{\infty}}{\Lambda_{m_k}^1 \Lambda_{m_l}^2}\right)^{\frac{\beta}{2}}$$

is converges, then the series (8) also converges, where β and $\gamma = {\gamma_{rs}}_{r,s=1}^{\infty}$ are as in Theorem 2.

In the case when q = 2 - p and $\Lambda^1 = \Lambda^2 = \{1\}$ in Theorem 2, we have the following result.

COROLLARY 4. Let $f \in Fl^{(p)}[0,1)^2 \cap C^*[0,1)^2$. If the series

$$\sum_{k=0}^{\infty}\sum_{l=0}^{\infty} (m_k m_l)^{-\beta} \Gamma_{kl} (\omega_{kl}(f)_{\infty})^{\frac{(2-p)\beta}{2}}$$

is converges, then the series (8) also converges, where β and $\gamma = {\gamma_{rs}}_{r,s=1}^{\infty}$ are as in *Theorem 2.*

Corollary 4 is the multiplicative analogue of result proved by Móricz and Veres [9, Theorem 3, p. 129].

REFERENCES

- [1] N. K. BARY, A Treatise on Trigonometric Series, Vols. I and II, Pergamon, New York (1964).
- [2] L. GOGOLADZE, Uniform strong summational multiple trigonometric Fourier series, Reports of the extended session at the seminar of the I.Vekua Institute of Applied Mathematics, 1, 2 (1985), 48–51.
- [3] L. GOGOLADZE AND R. MESKHIA, On the absolute convergence of trigonometric Fourier series, Proc. Razmadze. Math. Inst., 141, (2006), 29–40.
- [4] B. I. GOLUBOV, On Fourier series of continuous functions with respect to a Haar system, Izv. Akad. Nauk SSSR Ser. Mat., 28, (6) (1964), 1271–1296.
- [5] B. GOLUBOV, A. EFIMOV AND V. SKVORTSOV, Walsh Series and Transforms: Theory and Applications, Springer Science+Business Media Dordrecht, 1991.
- [6] B. I. GOLUBOV AND S. S. VOLOSIVETS, Generalized absolute convergence of single and double Fourier series in multiplicative systems, Anal. Math., 38, 2 (2012), 105–122.
- [7] M. A. KUZNETSOVA, Generalized absolute convergence of series with respect to multiplicative systems of functions of generalized bounded variation, Izv. Saratov Univ. Math. Mech. Inform., 17, 3 (2017), 304–312.
- [8] F. MÓRICZ, Absolute convergence of Walsh-Fourier series and related results, Anal. Math., 36, 4 (2010), 275–286.
- [9] F. MÓRICZ AND A. VERES, Absolute convergence of double Walsh-Fourier series and related results, Acta Math. Hungar., 131, 1–2 (2011), 122–137.
- [10] F. MÒRICZ AND A. VERES, Absolute convergence of multiple Fourier series revisited, Anal. Math., 34, (2008), 145–162.
- [11] V. TSAGAREISHVILIAND G. TUTBERIDZE, Absolute convergence factors of Lipschitz class functions for general Fourier series, Georgian Math. J., 29, 2 (2022), 309–315.
- [12] P. L. UL'YANOV, Series with respect to a Haar system with monotone coefficients, Izv. Akad. Nauk. SSSR Ser. Mat., 28, (1964), 925–950.
- [13] S. S. VOLOSIVETS AND M. A. KUZNETSOVA, Generalized absolute convergence of single and double series in multiplicative systems, Math. Notes, 107, 2 (2020), 217–230.

(Received May 12, 2024)

Kiran N. Darji Department of Mathematics Sir P. T. Science College, Modasa Managed by The M. L. Gandhi Higher Education Society Modasa, Arvalli-383315, Gujarat, India e-mail: darjikiranmsu@gmail.com