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ON GENERALIZED β –ABSOLUTE CONVERGENCE OF SINGLE

AND DOUBLE SERIES IN MULTIPLICATIVE SYSTEMS

KIRAN N. DARJI

Abstract. In this paper, we obtain sufficient conditions for the generalized β -absolute conver-
gence (0 < β � 2) of single and double series in multiplicative systems of functions of general-
ized bounded fluctuation.

1. Introduction

Concerning the absolute convergence of Fourier series, the theorem of Bernstein
[1, Vol. II, Theorem 2 of Bernstein, p. 154], the theorem of Szász [1, Vol. II, Szász
Theorem, p. 155], and the theorem of Zygmund [1, Vol. II, p. 160] are classical. Gogo-
ladze and Meskhia [3] generalized β -absolute convergence (0 < β < 2) of the Fourier
trigonometric series with gaps for some classes of functions, also, it was proved that
these conditions are unimprovable in a certain sense. Similar problems are also studied
in the papers [4] and [11]. In 2010, Móricz [8] obtained sufficient conditions for gen-
eralized β -absolute convergence of single Walsh-Fourier series. In 2011, Móricz and
Veres [9] proved analogues of the results proved in [8] for the double Walsh-Fourier
series. In 2012, Golubov and Volosivets [6] obtained several sufficient conditions for
generalized β -absolute convergence of single and double series in multiplicative sys-
tems. Those conditions gave a multiplicative analogue of results due to Gogoladze and
Meskhia [3]. They noticed that their results are analogous of the results obtained by
Móricz in [8], and Móricz and Veres in [9]. Generalizing the results of Golubov and
Volosivets [6], in 2017, Kuznetsova [7] obtained sufficient conditions for generalized
β -absolute convergence of single series in multiplicative systems. Extending some of
these results of Kuznetsova, Volosivets and Kuznetsova [13] obtained sufficient condi-
tion for generalized β -absolute convergence of double series in multiplicative systems.
In this paper, generalizing the result of Kuznetsova [7, Theorem 1, p. 306] and Volo-
sivets and Kuznetsova [13, Theorem 5, p. 227], we obtain sufficient conditions for
generalized β -absolute convergence of single and double series in multiplicative sys-
tems. In particular case, our condition for single and double series are multiplicative
analogue of the result obtained by Móricz [8, Theorem 3, p. 281] and Móricz and Veres
[9, Theorem 3, p. 129], respectively.

Throughout the paper, C represents a constant vary time to time.
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2. Results for functions of one variable

Let P = {p j}∞
j=1 be a sequence of natural numbers such that 2 � p j � N for all

j ∈ N and Z j = {0,1, . . . , p j −1} . Consider the sequence {mj}∞
j=0 defined as follows:

m0 = 1, mn = mn−1pn for n ∈ N . Then any number x ∈ [0,1) can be represented as

x =
∞

∑
j=1

x jm
−1
j , x j ∈ Z j, (1)

and every k ∈ Z+ is uniquely represented as

k =
∞

∑
j=1

k jmj−1, k j ∈ Z j. (2)

The expression (1) is also uniquely determined if, for x = s/mn , 0 < s < mn , s ∈ Z , a
finite number of nonzero x j is taken.

For numbers x ∈ [0,1) and k ∈ Z+ with expansions (1) and (2), we set, by defini-
tion,

χk(x) = exp

(
2π i

(
∞

∑
j=1

x jk j

p j

))
.

The system {χk(x)}∞
k=0 of functions is called a multiplicative system. It is known that

it is orthonormal and complete in L1[0,1) (see [5, Chap. 1, Sec. 1.5]). It is easy to see
that, for 0 � n < mk, the function χn(x) is constant on

Ik
j =
[

j−1
mk

,
j

mk

)
, 1 � j � mk, k ∈ Z+.

Let G(P) be the group consisting of sequences of the form x̃ = (x1,x2, . . . ), x j ∈ Z+ ,
0 � x j < p j, with the operation x̃⊕ ỹ = z̃, where z j = x j + y j(mod p j), j ∈ N . The
inverse operation x̃� ỹ is defined in a similar way. The mapping λP(x̃) = ∑∞

j=1 x jm
−1
j

of the group G(P) to [0,1) is not bijective, because each number of the form

x =
k
ml

, k, l ∈ N, k < ml, (3)

is the image of two different elements from G(P) . Let us define an inverse mapping
λ−1

P . For x∈ [0,1) of the form (3), we set x j = [mjx](mod p j), j ∈N . Then λ−1
P (x) =

(x1, . . . ,xl,0, . . . ) . For any other x ∈ [0,1) , there exists a unique element x̃∈G(P) with
the property λP(x̃) = x , and, in that case, we set λ−1

P (x) = x̃ . We define the generalized
distance

ρ(x,y) = λP(λ−1
P (x)�λ−1

P (y))

and the addition
x⊕ y = λP(λ−1

P (x)⊕λ−1
P (y))
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on [0,1) . Note that x⊕ y is not defined if λ−1
P (x)⊕λ−1

P (y) = z̃ , where z j = p j −1 for
j � j0 , i.e., x⊕ y is defined for almost all x ∈ [0,1) for a fixed y ∈ [0,1) . It is easy to

see that x⊕/mk+1 , k ∈ Z+ , is always defined and that ρ
(
x⊕ 1

mk+1
,x
)

< 1
mk

.

In the same way, we also define

x� y = λP(λ−1
P (x)�λ−1

P (y))

with constrains similar to those in the case x⊕ y .
For f ∈ L1[0,1) , the Fourier coefficients in the system {χ j(x)}∞

j=0 are given by
the formula

f̂ ( j) =
∫ 1

0
f (x) χ j(x) dx, j ∈ Z+.

We note that the space Lp[0,1) , 1 � p < ∞ , is endowed with the standard norm

‖ f‖p =
(∫ 1

0
| f (x)|p dx

)1/p

.

Let
Δu f (x) = f (x⊕u)− f (x).

It follows from the condition f ∈ Lp[0,1) that ‖Δu f (x)‖p → 0 as u→ 0. Therefore, we
can introduce the discrete modulus of continuity of a function f ∈ Lp[0,1) , 1 � p < ∞ ,
as the sequence

ωk( f )p = sup{‖Δu f (x)‖p : u ∈ Ik
1}, k ∈ Z+.

The space C∗[0,1) with the corresponding norm

‖ f‖∞ = sup
x∈[0,1)

| f (x)|

is the closure of the set of polynomials in the system {χk(x)}∞
k=0 in the norm ‖.‖∞ . For

f ∈C∗[0,1) , we put, by definition,

ωk( f )∞ = sup

{
| f (x)− f (y)| : x,y ∈ [0,1), ρ(x,y) <

1
mk

}
, k ∈ Z+.

Let α � 1. We say that a sequence γ = {γi}∞
i=0 belongs to the class A∗(α) = A∗(α,2) =

A∗(α,2,P) , if γi > 0 for all i and(
mk+1−1

∑
i=mk

γα
i

)1/α

� Cm(1−α)/α
k

mk−1

∑
i=mk−1

γi =: Cm(1−α)/α
k Γk, k ∈ N.

For k = 0, we assume that a similar inequality is valid for Γ0 = γ0 . This definition is
given in the paper of L. Gogoladze [2] and also in the paper of Gogoladze and Meskhia
[3] for mk = 2k .

A sequence γ = {γi}∞
i=0 belongs to the class A∗(∞,2) , if γi > 0 for all i and

max
mk�i<mk+1

γi � Cm−1
k Γk, k ∈ N.
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We say that a non-decreasing sequences Λ = {λk}∞
k=1 of positive numbers belongs to

the class L if limn→∞ Λn = ∞ , where Λn = ∑n
k=1 λ−1

k .
Let Λ = {λi}∞

i=1 ∈ L and p � 1. Let k ∈ Z+ be fixed, and let f (x) be bounded
on [0,1) . If i ∈ [1,mk]∩Z , then we denote

osc( f , Ik
i ) = sup{| f (x)− f (y)| : x,y ∈ Ik

i },

æk( f , p,Λ) = sup
mk

∑
i=1

oscp( f , Ik
αi

)
λi

,

where the supremum in the formula for æk is taken over all permutations {αi}mk
i=1 of

the index set {1,2, . . . ,mk} . If

V p
Λ ( f ) = sup{æk( f , p,Λ) : k ∈ Z+} < ∞,

then f belongs to the class ΛFl(p)[0,1) of functions of p -Λ-bounded fluctuation.
Note that, for p = 1, the class ΛFl(p)[0,1) reduce to the class ΛFl(1)[0,1) of

functions of Λ-bounded fluctuation and for Λ = {1} , the class ΛFl(p)[0,1) reduce to
the class Fl(p)[0,1) of functions of p -bounded fluctuation.

We prove the following results.

THEOREM 1. Let f ∈ ΛFl(p)[0,1)∩C∗[0,1) (p � 1), and let 0 < β < 2 , γ =
{γr}∞

r=1 ∈ A∗(2/(2−β ),2) or β = 2 , γ ∈ A∗(∞,2) . If the series

∞

∑
k=0

m−β/2
k Γk

(
ωq

k ( f )∞

Λmk

) β
p+q

converges, then the series
∞

∑
r=1

γr| f̂ (r)|β (4)

also converges, where q � 1.

Proof. For k ∈ Z+ , consider g(x) = f
(
x⊕m−1

k+1

)− f (x) . Then, for each r ∈ Z+ ,

ĝ(r) =
(
χr(m−1

k+1)−1
)

f̂ (r). In view of Parseval’s equality, we get

∞

∑
r=0

∣∣∣ f̂ (r)(χr(m−1
k+1)−1

)∣∣∣2 =
∫ 1

0
|g(x)|2dx =

∫ 1

0
| fu(x)|2 dx,

where fu(x) = f
(
x⊕ (upk+1 +1)m−1

k+1

)− f
(
x⊕um−1

k

)
for 0 � u < mk .

Since, for r ∈ [mk,mk+1) ,

|χr(m−1
k+1)−1|=

∣∣∣∣exp

(
2π i j
pk+1

)
−1

∣∣∣∣= 2sin

(
π j

pk+1

)
� 2sin

(π
N

)
, (5)
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where N is the majorant of the generating sequence {p j}∞
j=1 and j = [r/mk] ∈ [1, pk+1

−1] , it follows that

Bk :=
mk+1−1

∑
r=mk

| f̂ (r)|2 � C
∫ 1

0
| fu(x)|2 dx. (6)

Applying Hölder’s inequality on the right side of the above inequality, we obtain

Bk � C

(∫ 1

0
| fu(x)|p+q dx

) 2
p+q

.

Multiplying above inequality by λ−1
u+1 and, after that, summing the resulting inequality

over u = 0,1,2, . . . .,mk −1, we can write

Bk � C

⎛⎝ 1

(Λmk )
2

p+q

(∫ 1

0

mk−1

∑
u=0

| fu(x)|p+q

λu+1
dx

) 2
p+q
⎞⎠ ,

where Λmk = ∑mk−1
u=0

1
λu+1

. Since | fu(x)| � ωk( f )∞ , we have

Bk � C

⎛⎝(ωq
k ( f )∞

Λmk

) 2
p+q
(∫ 1

0

mk−1

∑
u=0

| fu(x)|p
λu+1

dx

) 2
p+q
⎞⎠ ,

where
mk−1

∑
u=0

| fu(x)|p
λu+1

= O(1) as f ∈ ΛFl(p)[0,1).

Hence,

Bk � C

(
ωq

k ( f )∞

Λmk

) 2
p+q

. (7)

If 0 < β < 2, then 1 = β
2 + 2−β

2 and, in view of (7) and Hölder’s inequality, we have

mk+1−1

∑
r=mk

γr| f̂ (r)|β �
(

mk+1−1

∑
r=mk

γ2/(2−β )

)(2−β )/2

Bβ/2
k

� Cm−β/2
k Γk

(
ωq

k ( f )∞

Λmk

) β
p+q

.

Summing over k ∈ Z+ , we have

∞

∑
r=1

γr| f̂ (r)|β � C
∞

∑
k=0

m−β/2
k Γk

(
ωq

k ( f )∞

Λmk

) β
p+q

.

For β = 2, the argument is similar. The theorem is proved. �
In the case when p = q = 1 in Theorem 1, we have the following result proved by

Kuznetsova [7, Theorem 1, p. 306].



112 K. N. DARJI

COROLLARY 1. Let f ∈ ΛFl(1)[0,1)∩C∗[0,1). If the series

∞

∑
k=0

m−β/2
k Γk

(
ωk( f )∞

Λmk

) β
2

is converges, then the series (4) also converges, where β and γ = {γr}∞
r=1 are as in

Theorem 1.

In the case when q = 2− p and Λ = {1} in Theorem 1, we have the following
result.

COROLLARY 2. Let f ∈ Fl(p)[0,1)∩C∗[0,1). If the series

∞

∑
k=0

m−β
k Γk (ωk( f )∞)

(2−p)β
2

is converges, then the series (4) also converges, where β and γ = {γr}∞
r=1 are as in

Theorem 1.

Corollary 2 is the multiplicative analogue of result proved by Móricz [8, Theorem
3, p. 281].

3. Results for functions of two variables

The system {χi(x)χ j(y)}∞
i, j=0 is also orthonormal and complete in L1[0,1)2 and,

therefore, for f ∈ L1[0,1)2 , we can find the Fourier coefficients

f̂ (i, j) =
∫ 1

0

∫ 1

0
f (x,y) χi(x)χ j(y) dx dy, i, j ∈ Z+.

We note that the space Lp[0,1)2 , 1 � p < ∞ , is endowed with the standard norm

‖ f‖p =
(∫ 1

0

∫ 1

0
| f (x,y)|p dx dy

)1/p

.

Let
Δuv f (x,y) = f (x⊕u,y⊕ v)− f (x⊕u,y)− f (x,y⊕ v)+ f (x,y).

It follows from the condition f ∈ Lp[0,1)2 that ‖Δuv f (x,y)‖p → 0 as u,v→ 0. There-
fore, we can introduce the discrete modulus of continuity of a function f ∈ Lp[0,1)2 ,
1 � p < ∞ , as the double sequence

ωkl( f )p = sup{‖Δuv f (x,y)‖p : u ∈ Ik
1 ,v ∈ Il

1}, k, l ∈ Z+.

The space C∗[0,1)2 with the corresponding norm

‖ f‖∞ = sup
(x,y)∈[0,1)2

| f (x,y)|
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is the closure of the set of polynomials in the system {χk(x)χ j(y)}∞
k, j=0 in the norm

‖.‖∞ . For f ∈C∗[0,1)2 , we put, by definition,

ωkl( f )∞ = sup
{
| f (x,y)− f (x,v)− f (u,y)+ f (u,v)| :

x,y,u,v ∈ [0,1), ρ(x,u) <
1
mk

, ρ(y,v) <
1
ml

}
, k, l ∈ Z+.

Móricz and Veres [10] defined a two-dimensional analog of the class A∗(α) . Their
variant is a particular case of the following definition for mn = 2n. Let {γi j}∞

i, j=1 be a
double sequence of positive numbers and α � 1. If, for all k, l ∈ N ,(

mk+1−1

∑
i=mk

ml+1−1

∑
j=ml

γα
i j

)1/α

� C(mkml)(1−α)/α
mk−1

∑
i=mk−1

ml−1

∑
j=ml−1

γi j =: C(mkml)(1−α)/αΓkl,

then {γi j}∞
i, j=1 belongs to the class A∗(α) = A∗(α,2) = A∗(α,2,P) .

A double sequence {γi j}∞
i, j=1 belongs to the class A∗(∞,2) , if γi j > 0 for all i, j

and
max

mk�i<mk+1, ml� j<ml+1
γi j � C(mkml)−1Γkl, k, l ∈ N.

Let Λ1 = {λ 1
i }∞

i=1, Λ2 = {λ 2
j }∞

j=1 ∈L and p � 1. Let k, l ∈Z+ be fixed, and let f (x,y)
be bounded on [0,1)2 . If i ∈ [1,mk]∩Z and j ∈ [1,ml]∩Z , then we denote

osc( f , Ikl
i j ) = sup{| f (x,y)− f (x,v)− f (u,y)+ f (u,v)| : x,u ∈ Ik

i ,y,v ∈ Il
j},

ækl( f , p,Λ1,Λ2) = sup
mk

∑
i=1

ml

∑
j=1

oscp( f , Ikl
αi ,β j)

λ 1
i λ 2

j

,

where the supremum in the formula for ækl is taken over all permutations {αi}mk
i=1 and

{β j}ml
j=1 of the index sets {1,2, . . . ,mk} and {1,2, . . . ,ml} . If

V p
Λ1,Λ2( f ) = sup{ækl( f , p,Λ1,Λ2) : k, l ∈ Z+} < ∞,

then f belongs to the class (Λ1,Λ2)Fl(p)[0,1)2 of functions of p -(Λ1,Λ2)-bounded
fluctuation.

Note that, for p = 1, the class (Λ1,Λ2)Fl(p)[0,1)2 reduce to the class (Λ1,Λ2)Fl(1)

[0,1)2 of functions of (Λ1,Λ2)-bounded fluctuation and for Λ1 = Λ2 = {1} , the class
(Λ1,Λ2)Fl(p)[0,1)2 reduce to the class Fl(p)[0,1)2 of functions of p -bounded fluctu-
ation.

We prove the following results.

THEOREM 2. Let f ∈ (Λ1,Λ2)Fl(p)[0,1)2∩C∗[0,1)2 (p � 1), and let 0 < β < 2 ,
γ = {γrs}∞

r,s=1 ∈ A∗(2/(2−β ),2) or β = 2 , γ ∈ A∗(∞,2) . If the series

∞

∑
k=0

∞

∑
l=0

(mkml)
−β/2 Γkl

(
ωq

kl( f )∞

Λ1
mk

Λ2
ml

) β
p+q
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converges, then the series
∞

∑
r=1

∞

∑
s=1

γrs| f̂ (r,s)|β (8)

also converges, where q � 1.

Proof. For k, l ∈ Z+ , consider

g(x,y) = f
(
x⊕m−1

k+1,y⊕m−1
l+1

)− f
(
x⊕m−1

k+1,y
)− f

(
x,y⊕m−1

l+1

)
+ f (x,y) .

Then, for each r,s ∈ Z+ , ĝ(r,s) =
(
χr(m−1

k+1)−1
)(

χs(m−1
l+1)−1

)
f̂ (r,s).

In view of Parseval’s equality, we get

∞

∑
r=0

∞

∑
s=0

∣∣∣ f̂ (r,s)(χr(m−1
k+1)−1

)(
χs(m−1

l+1)−1
)∣∣∣2

=
∫ 1

0

∫ 1

0
|g(x,y)|2dx dy

=
∫ 1

0

∫ 1

0
| fuv (x,y)|2 dx dy,

where

fuv(x,y) = f
(
x⊕um−1

k ,y⊕ vm−1
l

)− f
(
x⊕ (upk+1 +1)m−1

k+1,y⊕ vm−1
l

)
− f
(
x⊕um−1

k ,y⊕ (vpl+1 +1)m−1
l+1

)
+ f
(
x⊕ (upk+1 +1)m−1

k+1,y⊕ (vpl+1 +1)m−1
l+1

)
for 0 � u < mk and 0 � v < ml .

Since, for r ∈ [mk,mk+1) , in view of (5), |χr(m−1
k+1)−1| � 2sin

( π
N

)
, and similar

inequality is valid for |χs(m−1
l+1)−1| , it follows that

Bkl :=
mk+1−1

∑
r=mk

ml+1−1

∑
s=ml

| f̂ (r,s)|2 � C
∫ 1

0

∫ 1

0
| fuv(x,y)|2 dx dy.

Applying Hölder’s inequality on the right side of the above inequality, we obtain

Bkl � C

(∫ 1

0

∫ 1

0
| fuv(x,y)|p+q dx dy

) 2
p+q

.

Multiplying above inequality by (λ 1
u+1λ 2

v+1)
−1 and, after that, summing the resulting

inequality over u = 0,1,2, . . . .,mk −1 and v = 0,1,2, . . . .,ml −1, we can write

Bkl � C

⎛⎝ 1

(Λ1
mk

Λ2
ml

)
2

p+q

(∫ 1

0

∫ 1

0

mk−1

∑
u=0

ml−1

∑
v=0

| fuv(x,y)|p+q

λ 1
u+1λ 2

v+1

dx dy

) 2
p+q
⎞⎠ ,
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where Λ1
mk

= ∑mk−1
u=0

1
λu+1

and Λ2
ml

= ∑ml−1
v=0

1
λv+1

.

Since | fuv(x,y)| � ωkl( f )∞ , we have

Bkl � C

⎛⎝(ωq
kl( f )∞

Λ1
mk

Λ2
ml

) 2
p+q
(∫ 1

0

∫ 1

0

mk−1

∑
u=0

ml−1

∑
v=0

| fuv(x,y)|p
λ 1

u+1λ 2
v+1

dx dy

) 2
p+q
⎞⎠ ,

where
mk−1

∑
u=0

ml−1

∑
v=0

| fuv(x,y)|p
λ 1

u+1λ 2
v+1

= O(1) as f ∈ (Λ1,Λ2)Fl(p)[0,1)2.

Hence,

Bkl � C

(
ωq

kl( f )∞

Λ1
mk

Λ2
ml

) 2
p+q

. (9)

If 0 < β < 2, then 1 = β
2 + 2−β

2 and, in view of (9) and Hölder’s inequality, we have

mk+1−1

∑
r=mk

ml+1−1

∑
s=ml

γrs| f̂ (r,s)|β �
(

mk+1−1

∑
r=mk

ml+1−1

∑
s=ml

γ2/(2−β )

)(2−β )/2

Bβ/2
kl

� C(mkml)−β/2Γkl

(
ωq

kl( f )∞

Λ1
mk

Λ2
ml

) β
p+q

.

Summing over k, l ∈ Z+ , we have

∞

∑
r=1

∞

∑
s=1

γrs| f̂ (r,s)|β � C
∞

∑
k=0

∞

∑
l=0

(mkml)−β/2Γkl

(
ωq

kl( f )∞

Λ1
mk

Λ2
ml

) β
p+q

.

For β = 2, the argument is similar. The theorem is proved. �

In the case when p = q = 1 in Theorem 2, we have the following result proved by
Volosivets and Kuznetsova [13, Theorem 5, p. 227].

COROLLARY 3. Let f ∈ (Λ1,Λ2)Fl(1)[0,1)2∩C∗[0,1)2. If the series

∞

∑
k=0

∞

∑
l=0

(mkml)
−β/2 Γkl

(
ωkl( f )∞

Λ1
mk

Λ2
ml

) β
2

is converges, then the series (8) also converges, where β and γ = {γrs}∞
r,s=1 are as in

Theorem 2.

In the case when q = 2− p and Λ1 = Λ2 = {1} in Theorem 2, we have the fol-
lowing result.
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COROLLARY 4. Let f ∈ Fl(p)[0,1)2∩C∗[0,1)2. If the series

∞

∑
k=0

∞

∑
l=0

(mkml)
−β Γkl (ωkl( f )∞)

(2−p)β
2

is converges, then the series (8) also converges, where β and γ = {γrs}∞
r,s=1 are as in

Theorem 2.

Corollary 4 is the multiplicative analogue of result proved by Móricz and Veres [9,
Theorem 3, p. 129].
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