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ON GENERALIZED -ABSOLUTE CONVERGENCE OF SINGLE
AND DOUBLE SERIES IN MULTIPLICATIVE SYSTEMS

KIRAN N. DARIJI

Abstract. In this paper, we obtain sufficient conditions for the generalized f-absolute conver-
gence (0 < 8 <2) of single and double series in multiplicative systems of functions of general-
ized bounded fluctuation.

1. Introduction

Concerning the absolute convergence of Fourier series, the theorem of Bernstein
[1, Vol. II, Theorem 2 of Bernstein, p. 154], the theorem of Szdsz [1, Vol. II, Szdsz
Theorem, p. 155], and the theorem of Zygmund [ 1, Vol. II, p. 160] are classical. Gogo-
ladze and Meskhia [3] generalized f3 -absolute convergence (0 < 8 < 2) of the Fourier
trigonometric series with gaps for some classes of functions, also, it was proved that
these conditions are unimprovable in a certain sense. Similar problems are also studied
in the papers [4] and [11]. In 2010, Méricz [8] obtained sufficient conditions for gen-
eralized B -absolute convergence of single Walsh-Fourier series. In 2011, Méricz and
Veres [9] proved analogues of the results proved in [8] for the double Walsh-Fourier
series. In 2012, Golubov and Volosivets [0] obtained several sufficient conditions for
generalized P -absolute convergence of single and double series in multiplicative sys-
tems. Those conditions gave a multiplicative analogue of results due to Gogoladze and
Meskhia [3]. They noticed that their results are analogous of the results obtained by
Moricz in [8], and Mdricz and Veres in [9]. Generalizing the results of Golubov and
Volosivets [6], in 2017, Kuznetsova [7] obtained sufficient conditions for generalized
B -absolute convergence of single series in multiplicative systems. Extending some of
these results of Kuznetsova, Volosivets and Kuznetsova [13] obtained sufficient condi-
tion for generalized J3 -absolute convergence of double series in multiplicative systems.
In this paper, generalizing the result of Kuznetsova [7, Theorem 1, p. 306] and Volo-
sivets and Kuznetsova [13, Theorem 5, p. 227], we obtain sufficient conditions for
generalized P -absolute convergence of single and double series in multiplicative sys-
tems. In particular case, our condition for single and double series are multiplicative
analogue of the result obtained by Moricz [8, Theorem 3, p. 281] and Moricz and Veres
[9, Theorem 3, p. 129], respectively.

Throughout the paper, C represents a constant vary time to time.
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2. Results for functions of one variable

Let P={p; -1 be a sequence of natural numbers such that 2 < p; < N for all
j€Nand Z;j={0,1,...,p;j—1}. Consider the sequence {m;}7_, defined as follows:
mo =1, my, =m,_p, for n € N. Then any number x € [0, 1) can be represented as

x:z{xjmjfl, xj € Zj, (D)
J=1
and every k € Z. is uniquely represented as
k=Y kimj_1, kj€Zj. 2)
j=1

The expression (1) is also uniquely determined if, for x = s/m,, 0 <s <my, s€Z,a
finite number of nonzero x; is taken.
For numbers x € [0,1) and k € Z, with expansions (1) and (2), we set, by defini-

tion,
xe(x) =exp | 2mi | Y L] .
j=1 Pi

The system {x(x)};_, of functions is called a multiplicative system. It is known that
it is orthonormal and complete in L'[0,1) (see [5, Chap. 1, Sec. 1.5]). It is easy to see
that, for 0 < n < my, the function ), (x) is constant on

If: [Q7L>, I<j<m, kel
mi  my

Let G(P) be the group consisting of sequences of the form X = (x1,x2,...), x; € Z,

0 < xj < pj, with the operation X@®y =z, where z; = x;+y;(mod p;), j € N. The

inverse operation X¥©y is defined in a similar way. The mapping Ap(X) = X7_; x jmjfl

of the group G(P) to [0,1) is not bijective, because each number of the form

k
x=—, kleN, k<my, 3)
m

is the image of two different elements from G(P). Let us define an inverse mapping
Ap . For x € [0,1) of the form (3), we set x; = [m;x](mod p;), j € N. Then A, ' (x) =
(x1,...,x7,0,...). For any other x € [0,1), there exists a unique element x € G(P) with
the property Ap(¥) = x, and, in that case, we set Ap ' (x) = X. We define the generalized
distance

p(xy) =2p(Ap ' (x) © A5 ()
and the addition
x@y=2te(Ap ' ()@ Ap ()
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on [0,1). Note that x@®y is not defined if A, ' (x) ®Ap ' (y) =7, where z; = p; — 1 for
J = Jjo,ie., x®y is defined for almost all x € [0,1) for a fixed ye [0,1). It is easy to

see that x® /myy 1, k € Z4 , is always defined and that p (x@ T x) <

In the same way, we also define
xoy=2p(Ap' (004" ()

with constrains similar to those in the case x®y.
For f € L'[0,1), the Fourier coefficients in the system {y; (x)}7_¢ are given by
the formula

1
F(j) = ; () x(x) dx, jeZy.

We note that the space L”[0,1), 1 < p < «, is endowed with the standard norm

£l = ( [ dx) "

Auf(x) = flx@u) = f(x).
It follows from the condition f € LP[0, 1) that ||A,f(x)||, — 0 as u — 0. Therefore, we
can introduce the discrete modulus of continuity of a function f € LP[0,1), 1 < p < e,
as the sequence

Let

ax(f)p = sup{ | Auf )|, :u € If}, kEZy.

The space C*[0,1) with the corresponding norm

£l = sup | (x)]

x€[0,1)

is the closure of the set of polynomials in the system { yx(x)}7_, in the norm ||.||... For
f€C*0,1), we put, by definition,

o(f)- =sup{|f<x>—f<y>| ey el00), play) < mik} kezZ,.

Let oo > 1. We say that a sequence y = {y;}7, belongs to the class A*(a) =A*(et,2) =
A*(e,2,P),if %> 0 forall i and

myy1—1 1/a mi—1
( Y yf‘) <em"" ¥ y—om"YTy, kel

i=my, i=my_

For k =0, we assume that a similar inequality is valid for I’y = 9. This definition is
given in the paper of L. Gogoladze [2] and also in the paper of Gogoladze and Meskhia
[3] for my, = 2.

A sequence Y= {7}, belongs to the class A*(e0,2), if %; > 0 for all i and

max % <Cmy Ty, keN.

my<i<myey |
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We say that a non-decreasing sequences A = {A¢};_, of positive numbers belongs to
the class L if lim,—. A, = oo, Where A, =Y}, /lk_l.

Let A={A}7, €L and p > 1. Let k € Z be fixed, and let f(x) be bounded
on [0,1).If i € [1,m] NZ, then we denote

ose(f,If) = sup{|f(x) = f()] :x,y € If},

" oscP f7Ik)
f7p7 - Sup

where the supremum in the formula for & is taken over all permutations {c}, of
the index set {1,2,...,my}. If

VA(f) = sup{ee(f,p,A) k€ Zy} <o,

then f belongs to the class AFI(P) [0,1) of functions of p-A-bounded fluctuation.
Note that, for p = 1, the class AFI(?)[0,1) reduce to the class AFI(V[0,1) of
functions of A-bounded fluctuation and for A = {1}, the class AFI(P)[0,1) reduce to
the class FI(P)[0,1) of functions of p-bounded fluctuation.
We prove the following results.

THEOREM 1. Let f € AFIP)[0,1)NC*[0,1) (p = 1), and let 0 < B <2, y=
{y}2,€A"(2/(2—B),2) or B =2, y€A*(0,2). If the series

B
o q 7
m]:p/zrk ( @ (f)eo )
=0 Ay

%l f ()P (4)

converges, then the series

M s

r=1

also converges, where g > 1.

Proof. For k € ., consider g(x)=f (x®my),) — f(x). Then, foreach r € Z,
8(r) = (x-(m!}) = 1) f(r). In view of Parseval’s equality, we get

3 [70) Gty = [ letoPas= [P

where f,(x) = f (x® (upgr1 + D)m ) — f (x@umy ') for 0 <u <my.
Since, for r € [mg,mpy1),

- 27fij> ' . ( Tj ) (T

1

rlm 1| = eXxpl| — —1|=2sin| —— 228111 -, (5)
2 mice) = 11 ‘ (Pk+1 Pi+1 <N>
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where N is the majorant of the generating sequence {p;}7_; and j = [r/my] € [1, pis1
— 1], it follows that '

M=l 1
B= 3 |f(nP<c /O )P dx. ©)

r=my,

Applying Holder’s inequality on the right side of the above inequality, we obtain

<c( A |fu<x>”+qu)””

Multiplying above mequahty by 7Lu 11 and, after that, summing the resulting inequality
overu=0,1,2,.....,m;— 1, we can write

2
1m—1 p+q axi
mee( (75 ),
(Amk)m 0 u=0 Pt

where A, = Y%, #ﬂ Since |f,,(x)| < @ (f)w, we have

2

wz<f>m)f+q ST A
¢ ( Amk </0 ué) Au+l dx ’

By <
where X
My — p
) =0(1) as feAFIP)0,1).
u=0 zfu-&-l
Hence, ,
q e
Bkgc:(wk(f)“’)”. (7)
Amk

IfO<B <2 then 1= B + 2B and, in view of (7) and Holder’s inequality, we have
2

my—1 my1—1 (2-p)/2
> n|f<r>|ﬁ<< > pes ﬁ) B

r=my,

s (G2

< cmb! (7) |
Amk

Summing over k € Z , we have
S f S ! o\ PTa
5 0P <03t (L)
r=1 =0 .

For 8 = 2, the argument is similar. The theorem is proved. [

In the case when p = g =1 in Theorem 1, we have the following result proved by
Kuznetsova [7, Theorem 1, p. 306].
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COROLLARY 1. Let f € AFI'V[0,1)NC*(0,1). If the series
9 ()= ®
w2 (5)
k=0 Amk

is converges, then the series (4) also converges, where B and y = {y.};>_, are as in
Theorem 1.

In the case when ¢ =2 — p and A = {1} in Theorem 1, we have the following
result.

COROLLARY 2. Let f € FIPP)[0,1)NC*[0,1). If the series

(2-p)B

3 m P (e (f)e)
k=0

is converges, then the series (4) also converges, where B and y = {y.};>_, are as in
Theorem 1.

Corollary 2 is the multiplicative analogue of result proved by Méricz [8, Theorem
3, p. 281].

3. Results for functions of two variables

The system {i(x)x;(y)}7;—o is also orthonormal and complete in L'[0,1)? and,
therefore, for f € L']0,1)?, we can find the Fourier coefficients

R 1,
7.7 = /0 /O Fy) 20,0 dxdy, i,je .

We note that the space L7|0, 1)2, 1 < p < oo, is endowed with the standard norm

1,1 1/p
||fp=</0 JA f(x,y)”dxdy) .

Awflxy) = fx@uysv) — f(xSu,y) — fxySv) + f(x,y).

It follows from the condition f € LP[0,1)? that ||A,, f(x,y)||, — O as u,v — 0. There-
fore, we can introduce the discrete modulus of continuity of a function f € LP[0,1)?,
1 < p < oo, as the double sequence

Let

wkl(f)p = SUP{”AMVf(an)Hp uc Ii{y" S I{}; k(1 €Z,.

The space C*[0,1)? with the corresponding norm

[Flle =" sup [f(x,y)]

(xy)€l0,1)2
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is the closure of the set of polynomials in the system {)x(x)2;(y)}; ;o in the norm
|||l For f € C*[0,1)?, we put, by definition,

0 () = sup { | (.3) = fx,) = f(u,y) + f(w,v)]

1 1
X, Y, u,v € [071)7 p(xvu) <—, p(yvv) < _}7 kvl €Z+~
mj. my

Moricz and Veres [10] defined a two-dimensional analog of the class A*(o). Their
variant is a particular case of the following definition for m, = 2". Let { )/,-j};?:’jz | bea
double sequence of positive numbers and o« > 1. If, for all £,/ € N,

Mg —1my =1 /e m—1 oy —1
( DAY 7’5) < Clmm)= X X g =2 Clmgamy) 0Ty,
i=my j=my i=my_y j=m_y
then {y;}";,_, belongs to the class A*(a) = A*(t,2) = A*(,2,P).
A double sequence {7;};;_; belongs to the class A*(e,2), if %; > 0 for all 7,
and

max Yij < C(mkml)_ll"kh k,l € N.
MSE<Mye 1, My <F<myy

Let A'= {24!}, A*={A7}7 €L and p> 1. Let k,l € Z; be fixed, and let f(x,y)
be bounded on [0,1)2. If i € [I,m;]NZ and j € [1,my] N Z, then we denote

osc(le-kjl) = sup{|f(x,y) = f(x,v) = flu,y) + f(u,v)] :x,u € IF,y,v € I}},

m e osch(f,18 5 )
olfp ) S § O L)
i=1j=1 i 7Y

where the supremum in the formula for @y, is taken over all permutations {e;}~, and
{ﬁj}'j’ll of the index sets {1,2,...,m} and {1,2,....m;}. If

V/€17A2(f) = Sup{zekl(f7p7AlaA2) kil e Z+} <o
then f belongs to the class (A',A?)FI(P)[0,1)? of functions of p-(A',A?)-bounded
fluctuation.

Note that, for p = 1, the class (A', A2)FI1(P)[0,1)? reduce to the class (A!, A%)FI()
[0,1)? of functions of (A!, A%)-bounded fluctuation and for A' = A% = {1}, the class
(AY, A2)FIP)[0,1)? reduce to the class FI(P)[0,1)? of functions of p-bounded fluctu-
ation.

We prove the following results.

THEOREM 2. Let f € (A, A2)FIP)[0,1)2NC*[0,1)? (p > 1), andlet 0 < B < 2,
V={Vs}rm1 EA"(2/(2—B),2) or B =2, Yy € A¥(x,2). If the series

B

o o q P
SN (mmy) P21y (i]il (i);)

k=01=0
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converges, then the series

> X wlf(rs)P ®)
also converges, where q > 1.

Proof. For k,l € Z, , consider

gey)=fxeml yem) - fxeomly) - fxyem)+f(kxy).

Then, for each 1,5 € Zy., (r,s) = (r(mgl) — 1) (xs(my) — 1) F(r,s).
In view of Parseval’s equality, we get

ZZ‘f”S Xr mk+l) )(Xs(mllll)_l))z

r=0s=

_ /0 /O lg(x,)Pdx dy
-/ 1 / Gy P dy,

where

fwey) = f(x@umc ',y ovm ") = f (x® (upgsr + Dm )y, y @ vmp )
—f(x@um,:17y®(vl?l+1+l)ml:rll)
+f (x® (upgr1 + Dm ) |,y ® (vprgr + Dmy )|

forO<u<mgand 0 <v<my.
Since, for r € [my,my1), in view of (5), |x,(mkj:1) — 1| > 2sin (%), and similar
inequality is valid for |y (m, +1) 1|, it follows that

My —lmp =1 s 1,1 5
Bu= 3 3 |fns)P<c /0 /0 i) dx dy.

r=my s=my

Applying Holder’s inequality on the right side of the above inequality, we obtain

11 . 2
Bkl<C</0 /O |fuv(xay)|p qudy) .

Multiplying above inequality by (A, +1)Lv2+1)_1 and, after that, summing the resulting

inequality over u =0,1,2,.....my—1 and v=20,1,2,....,m; — 1, we can write
Lmy—1 + 73
lmk ml P q rtq
(A,ﬁqkA,%ll f’+q = 0 V= u+l}t’v+l
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where A} —2:;1"01 7. and A2, _2’;161 A}H.
Smce | fiv (0, 3)] < @t (f)eo , We have

2
my—1my—1 p+q
Oy S ] ‘fMV( I
Bu<C <A1 A2> (// 2 a2 ’

myt rmy u= 0 v u+1 v+1

where
mg—1m;— l\fuvxy - .
2 2 AL 22 =0(1) as fe (A, AYFIP[0,1)%,
=0 v= u+1"v+1
Hence,
2
of (= \ 7
By <C kl ) 9
) (Aw, ©

If0<B <2, then 1 = g+ # and, in view of (9) and Holder’s inequality, we have

My —Lmyg—1 (mk+11m1+11
X

(-2
Y X wlfeof < X X ,,2/(2—&) B0/

r=my, s=my r=my S§=my

B
B (Dq f rta
< Clmpmy) Py (A]il(A)z ) :

iy my

Summing over k,l € Z , we have

For B =2, the argument is similar. The theorem is proved. [J

In the case when p = g =1 in Theorem 2, we have the following result proved by
Volosivets and Kuznetsova [ 13, Theorem 5, p. 227].

COROLLARY 3. Let f € (A',A2)FIV[0,1)2NC*[0,1)%. If the series

— ) o
2 memy) P2 Ty (7/\7(2 )

is converges, then the series (8) also converges, where B and y = {y.}>,_, are as in
Theorem 2.

IIMS

In the case when ¢ =2 — p and A' = A? = {1} in Theorem 2, we have the fol-
lowing result.
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is converges, then the series (8) also converges, where B and v = {¥}

K. N. DARJI

COROLLARY 4. Let f € FIP)[0,1)>2NC*[0,1)%. If the series

i i (mgmy) P Ty ((Dld(f)oc)(z;ZM
k=0i=0

rs=1 are as in

Theorem 2.

Corollary 4 is the multiplicative analogue of result proved by Méricz and Veres [9,

Theorem 3, p. 129].
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