lournal of
|assical
nalysis

Volume 25, Number 2 (2025), 117-136 doi:10.7153/jca-2025-25-08

HANKEL DETERMINANTS FOR LOGARITHMIC AND
LOGARITHMIC INVERSE COEFFICIENTS FOR THE CLASS 7% (1)

RAJIB MANDAL AND SUDIP KUMAR GUIN*

Abstract. Let 7/ (A1) be the class of analytic functions f in the open unit disc D with the
2

(m) f’(z)flr <Afor0<A<1.In

this paper, we obtain the sharp bounds of the second Hankel determinant of logarithmic and

logarithmic inverse coefficients, and the sharp bounds of the first three logarithmic coefficients

for fe % (A).

normalization f(0) =0 and f'(0) =1 satisfying

1. Introduction, definitions and results
Let <7 denote the class of analytic functions f in the unitdisk D:={z€ C: |z] <

1} such that £(0) =0 and f'(0) = 1. Let . be the subclass of functions f € <7 that
are univalent in D and has the form

For 0 < A < 1, consider the class

n=2
70 <A in ID)}.

In [1, 2, 26], it is known that every f € % (A) is univalent in I, and hence % (1) C
. Set % =7/ (1) and let .* denote the class of starlike functions. In [31], an
interesting fact is given that neither %/ is included in .”* nor includes .’*. This rare
property of 7/ attracts huge attention in the past decades. In [24], authors obtained
that the class % (A) is preserved under rotation, conjugation, dilation and omitted-
value transformations. For quite sometimes, the class % (1) together with its various
generalizations have been studied extensively. See for example, [12, 21].
The logarithmic coefficients 7y, associated with each f € . are defined by

Fy(z) :=log @ =2 i 17" for z€D. 2)

n=1

f(z)zz—i—ianz" for z € D. (1)
2
wi) = {f(z) et ‘(i) £ -1
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The logarithmic coefficients 7, play a central role in the theory of univalent functions,
for intriguing perspective, we refer to the reader [1 1, Chapter 5]. The problem of find-
ing the sharp bounds of |y,| for the class . and its various subclasses are studied
recently by several authors (see [3, 4, 13, 17, 34, 36]) in different contexts. In [6, 22],
coefficients criteria have been established for %/, and partial sums for functions from
7 are discussed in [23].

Differentiating (2) and using (1), we obtain

1
N = §a27

Sl

as —

a3).

as —araz+ x a2) 3)

I\)I'—‘

=

12 1.4
a5—a2a4+a2a3 705 _Za2)7

=

(
(
(
(

1
5 (a6 —axas —azas + a2a3 + a2a4 — a2a3 —|— )

If f €., then by the Bieberbach’s theorem, we have |ay| < 2 and hence |y;]| <
Using the Fekete- Szego inequality [11, Theorem 3.8] for functions in ., we have
Ipl=13 |az — —azl 1+e2=0.635.... For n >3, the problem seems much harder
and no significant bound for |y, is obtalned when f € .7.

Let f € & and n,q € N. Then the Hankel determinant H, ,(f) of Taylor’s coef-
ficients of f is defined by

dp  Ap+1 " pyg—1
An+1 Apy2 *°° dptg

Hyn(f) =
Antq—1 An+q *** Api2(g—1)

The Hankel determinants play an important role, for instance, in the study of singulari-
ties [ 10, Chapter X] and in the study of power series with integral coefficients [8]. For
more general results and applications of Hankel determinants, we refer [27, 28].

In 2022, Kowalczyk and Lecko [14] proposed the study of the Hankel determinant
whose entries are logarithmic coefficients of f € ., which is given by

Yoo Yo+l ot Yatg-l

Yt Va2 oo Yo+q
Hyn (Fy/2) = : .

Yatg—1 Yat+q - Yn+2(q—1)

Also, authors [14] obtained the sharp bound of second Hankel determinant H> ; (F ¢/ 2)
for starlike and convex functions. The problem of computing the sharp bounds of
Hy,1 (Ff/2) has been considered by many authors (see [7, 5, 14, 15, 16, 20, 30, 32, 33])
for various subclasses of .#. Inspite this, the sharp bound of Hankel determinants of
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logarithmic coefficients remains relatively unknown, prompting the need for extensive
studies for various function classes. Suppose that f € .7 is given by (1). Then the
second Hankel determinant of Fr/2 is given by

Y v 1 1
H F 2 = = — — — _ 4
2.1 (Fr/2) . nB—" 1 (612614 a3+ 12“2) @
Further, H; (Fy/2) is invariant under rotation since for fp(z) = e~ f(¢'z), we have
416

Hy (Ffe/z) =

1
) <a2a4—a3+ 12a2) =%, (F/2), fe¥(X),0 €R.

Let g be the inverse function of f € ./, which is defined by the Taylor series expansion

s = W) = wt Y A 5)

n=2

in a neighbourhood of the origin, where we may choose |w| < 1/4, as we know from
Koebe’s one-fourth theorem that for each univalent function f defined in ID, it’s inverse
f —1 exists at least on a disc of radius 1/4. Lowner [19] obtained the sharp bound
|A,| < K, for each n € N, where K, = (2n)!/(n!(n+1)!). Since f(f~")(w) =w,
from (1) and (5), we have

Ay = —ay,
A3 =—a3+ 2a%,
(6)

Ay = —ag+Saraz — 561%7

As = —as + bagay — 21a3a% + 3a§ + 14a3.

Ponnusamy er al. [29] proposed the notion of logarithmic inverse coefficients. The
logarithmic inverse coefficients I',,,n € N, of f are defined by the equation

_1 o 1
Fra(w):= logf W(W) =2 Z L', w| < e 7

Differentiating (7) and using (6), we obtain

1
I =—3a,

1 3
l"gz—iag—i—zag,

@)

I3 =—Ltag+2aa; — 3a3
3= —3d44 axds — 343,
I'y= a5—|— a4a2—§a3ag+ia%+385a‘2‘
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Then the second Hankel determinant of F- /2 is given by
Hy, (Fffl/z) S ) .
1 1
=7 <A2A4 A3+ ZAE‘)
1
=1 (13a3 — 12a3a3 — 1243 + 12aza4) . 9)

Let A be the class of Schwarz functions, i.e., analytic functions  : D — ID such
that @(0) = 0. The function @ € % can be written as a power series ®(z) =X, cn2".
Also, forany ¢ € R, w(z) € %, if and only if w(ze'?) € %y.

The main aim of this paper is to establish the sharp bounds of the logarithmic coef-
ficients 71,7, 73, the second Hankel determinants |H,; (Fy/2)| and )Hzﬁl <Ff—1 / 2)‘

for functions belonging to % (1), where 0 < A < 1.

2. Main results

The following four results establish the sharp bounds of |H271 (Ff/2)| and
‘H%l <Ff"/2>) for functions f € % (1), for some A € (0,1].

THEOREM 1. Let f € % () be of the form (1). Then for |(a3 —a3)/A| =1 and
0 <A <0.225906...,
(14+2)* =122
Hy  (Ff/2)| < ———F————.
| 271( f/ )| 48
The inequality is sharp.

THEOREM 2. Let f € % () be of the form (1). Then for |2(aj—a3)| =1 and
A=1

2

v 11.012265...

|H271 (Ff/z)} < 48

The inequality is sharp.

THEOREM 3. Let f € % (A) be of the form (1). Then for |a%—a3| =1 and
A=1,

|21 (Fr/2)] <

N

The inequality is sharp.
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THEOREM 4. Let f € % (L) be of the form (1). Then for |(a3 —a3)/A| =1 and
0<A<l,

)Hllcy%/2>wg(P+Af+42a§_%ay_4213

The inequality is sharp.

In the following result, we establish the sharp bounds of the logarithmic coeffi-
cients 71,7 and s for functions f € Z (1), 0 <A < 1.

THEOREM 5. Let f € % (L) be of the form (1). Then for (a3 —a3)/A =1 and
0<A<l,

1+ 14+ A2 14+ A3

> Il < and |p| < e

Inl <

Each inequality is sharp.

3. Lemmas

The following lemmas are necessary for this paper and will be used to prove the
main results.

LEMMA 1. [9, 18, 25, 35] For each function f € % (L), 0 <A < 1, there exists
function ®(z) = caz+ 32> +c42> + -+, analytic in D such that |w(z)| < |z| < 1, and
|0'(2)| <1 forall z€ D, with

% =1—az+Az0() = 1 - az+Awi(2), (10)
where @)(z) = i ¢t € By.

Additional}lq;2|za)’(z)| = |c2z+2c322 +3ca +-+-| < 1 forall z€ D gives
lea| <1,

le3| < 5(1—eaf?),

4]cx|?
e < 5 (1=l - 2557).

|C§| < ‘ll (1 — |02‘2 —4‘C3|2) .

LEMMA 2. [24, 35] Let f € % (ML) be such that f(z) =z+ Yo ,an?", where
0< A< 1. Then |lap| < 1+ A. If |ay| = 1 + A, then f must be of the form

fo(2) =

Z
1= (1 +A)ei9z+ ez’

for some ¢ € [0,27).
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LEMMA 3. Let f(z) be of the form

Z

f(Z) - 1 —ayz+ A%’

where a; = 1e'® with |a;| =1 and @ € R. Thenfor 1 —A <1< 1+2A, f(z) € %(A)
if and only if
P(1+A%)—(1-A%)72
2012
Also, for I< 1 =4, f(z) e % ().

<cos20 < 1.

Proof. Following the proof of Obradovic et al. [24, Theorem 4], let g be a func-
tion given by

—— =1l-ax+A?=1—(1+Ae")z4+ 122, (11)
8(2)

where a, = 1 + L7,
It is clear that functions of the type g given by (11) belong to % (A) if and only if

0#1—(1+Ae%)z417%, zeD. (12)

Let us suppose
14 Ae™ =1+ Ae'7|e®.
Then it follows that
(1+Ae")z— A7

= |1+ Ae"|e®7 — 12

— 120 <|1 +Aeir|e—iez_le—i2ez2> )
Thus, (12) holds if and only if

e 20 £ (11+ e |u— 7Lu2) , ue.

Next we assume [ = |ap| = [1 +AeF| € [l =4, 1+A], u=e* and x+iy = le!* — L%,
Then we obtain

x—A=cosa(l —2Acosa) and y=sino(l —2Acos ). (13)

This is the parametric equation of a Limacgon (see Figure 1 for the graph of some
Limacons parameterized by (13) for different values of A and 7). The implicit equation
of (13) is given by

(x2_|_y2_12)2:12(x2—|—y2—|—12—21x). (14)
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The intersection points (x,y) of the unit circle and (14) is

CP(14AY)—(1-2A%)?
N 2112

Hence, for
P1+A%)—(1-2%?
2012
the functions g defined by (11) belong to % ().

<cos20 < 1,

10 -85 00 05 10

=
=
-
H
g

s

-0 ~0.5 00 05 Lo 15 -10 -05 00 03 10

Figure 1: The graph of some Limacons parameterized by (14) for some different values of A and
1 ((A,1)=1(0.25,0.75),(0.25,1.25),(0.5,0.5),(0.5,1),(0.75,0.25),(0.75,1.75) respectively) to-
gether with unit circle.

Observe that for / =1+ A, 6 =0 is the only one that produces a function belong-
ing to % (A) in (11), whereas for / = 1 — A, all functions defined by (11) are in the
class Z (1).
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Also, the condition 1 — axz+ Az% # 0 is satisfied if laz] < 1—A, as
11 —apz+ A2 > 1— |AZ%| — |apz| > O for |as| < 1—A.

This completes the proof. [l

REMARK 1. From (10), we have for ;(z) = ¥ 7",
=

Z
= 15
@) l—axz+Aw(z) (>
Comparing the coefficients on both sides of (15), we get
az = a% — A,
as = a% —2Aaycr — c3A,
(16)

as = a2 37La202 + 12 —2Aaycz — Acy,

ag = ag — 47La%cQ — 3la%03 + 3l2azc% +2A2%¢ac3 — 2Aascs — Acs.
4. Proof of the main results

Proof of Theorem 1. Let f(z) = z+ E a,7" be a function in % (A). Then using
n=2
Lemma 1, we have

m = l—a22+lw1(Z)7

where w(z) = Z cn"
Now substltutlng the expressions for a3 and a4 from (16) in (4), we get
48H, (Ff/Z) = 12aza4 — 12a3 +a2

= 12a, (a2 2Aarcr — 031) —12 ( — Cg?L)z —l—ag
= a3 — 12ayAc; — 12302

It follows from Lemma 1 that

48|Hy, (Fy/2)| = |a3 — 12azAc3 — 12657
}a‘zt - 120%12| + 124 az||c3)
|a3 — 126322 |+ 6A|az| (1 — |ea|?).

In view of the first equation of (16), we have |c2| = |(a3 —a3)/A| = 1, and since % (1)
and H; ; (F v/ 2) are invariant under rotations, we may assume ¢, = 1. Hence

48 |Ho1 (Fr/2)| < |a3 — 12A7. (17)
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Let us assume a, = le'®, where |ay| =1 and 6 € R. Then
48|Hy, (Fy/2)| < |1e? — 1227
= VI8~ 241402 cos 46 + 14404

= /I8 £ 241402 + 14424 — 481422 cos2 20
= /g(l,cos20),

where
g(x,y) = x5 +2422x* — 482242 + 14424,
In view of Lemma 3, now we will find out the maximum value of g(x,y) in the region

2(1422) — (1-A%)?
2Ax2

Qz{()@y):l—?t<x<l—|—l7 <y<l}.

Note that %{g()@y)} =0 and a%{g(x, ¥)} = 0 together imply that it has no solution in
the interior of Q. Hence g(x,y) attains its maximum on the boundary of Q. Thus for
—1 <y <1, on the boundary of Q, we have

g(1—=A,y) = (1= A)84240%(1 — A)* —48(1 — 1)*A2%y% + 1442,

Note that for A =1, g(1 —2,y) = 1442% = 144. Also, for 0 <A < 1, g'(1—A,y) =
—96(1—2)*A%y =0 implies y=0. Now g"(1 —2,y) = —96(1 —1)*A? <0 at y=0,
which shows g(1 — A4,y) attains its maximum at y = 0. Thus,

g(1—2,y) < (1—2) +242%(1 - 1)* + 1441*
= ((1=2)* 412422 (18)
Now for 1 —A <x < 1+ A, on the boundary of Q, we have
g(x, 1) =x® —240%¢* + 14414 = (x* — 1242)> = 1} (x), say,

where h; (x) =x* — 1242, Then k) (x) =4x> >0 for 1 =4 <x < 1+4A implies /; (x)
is an increasing function for | —A <x< 14+ A. Hencefor | —A <x<1+A,

max /iy (x) = (1+A)* — 1222
and minfy (x) = (1—24)*— 1242
Note that
(14+2)*=122%)2 > ((1 = A)* = 124%)?, whenever 0 <A <V2—1
and ((14+A)*—1242%)2 < (1 —2)*—1242)?, whenever V2—1<A < 1.
Hence

(14+2)*—121%)% for 0 <A <V2—1,
1

_
maxg(x, 1) = { (1—2A)*—1242)% for VZ—1< A < L. (19)
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Next for 1 —A <x < 14+ A, on the boundary of Q, we have
F(1+2A%) - (1-A%)2
& (x, 2Ax2 )
= B 242%¢ — 12 {21+ A2) — (1 - A2)2)° + 14424 (20)
=1,(x), say.

Then

It (x)
ox

We wish to find out the range of A for which g, (x) > 0. Observe that ¢} (x) =0
implies x> = v/2+2A%. Clearly ¢/ (x) > 0 at x* = v/2+2A*. Hence the minimum
value of g (x), which attains at x> = v/2 + 2244 is

6— 642 +6A° — 42/ 1+ A4 =203 +2V2V 1+ A%),

which will be > 0 if 0 < 4 < 0.225906.... Thus,

It (x)
ox

for | —A <x< 1424 and 0 <A <0.225906.... Hence, 1, (x) being an increasing
function for 1 — A <x <1+ A and 0 < A < 0.225906..., attains its maximum at
x=1+A. Thus for 0 < A <0.225906..., we have

g(x’x2(1+/12)—(1—x2)2)

= 8x(6 — 6A% 4+ 6A° —6x% +x° — 6A*(1 4+ 1)) = ¢ (x), say.

=0

2Ax2
< (TH+A)P+2422(1+ ) — 12{(1+ A)2(1+A2) — (1 — AH)2}° + 1442%
= {(1+21)*~ 1227} 1)
Therefore for 0 < A < 0.225906... and 1 — A < |ap| < 1 + A, combining (18), (19)
and (21), we get

glry) < {(1+2)" - 1222},
which implies

(1+21)*—12A2

’szl (Ff/z)’ < 48

(22)

From (17), now for |a;| < 1—A, we have

48 |Hy1 (Fr/2)| < a3 — 1242
< Jao)* + 1222
<

(1-2A)*+1242 (23)
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for0< A <1.
Hence (22) and (23) imply that for 0 < A < 0.225906.. .,

4_1992
|1 (Fr/2)] < A

To prove the sharpness, we consider the functions f(z) =z+ 3, ,an2" =z/(1 —
(14 2A)z+4+Az%) for 0 < A < 0.225906.... It is easy to see that f(z) € % (A) and in
viewof ap =1+ A,a3=14+A+A% a3 =14+A1+ A2+ 13, we get

(14+2)*—1242

}H271 (Ff/z)} = 48

This completes the proof. [l

Proof of Theorem 2. We consider A = 1/2 and 1/2 < |ap| < 3/2. Then as in the
proof of Theorem 1, we obtain from (18) on the boundary of Q that

1 49\
4 <§7Y> < (E) = (3.0625)2 for —1<y<1.

Now on the boundary of €, (19) implies

47

2
E) =(2.9375)% for 1/2 <x<3/2.

8(x,1) < (
Next on the boundary of Q, for 1/2 < x < 3/2, (20) implies

g(x,x2(1+x2>—(1—x2>2)

2Ax2
= B 242%¢ — 12 {21+ A2) — (1 - A2)2)° + 14424
51, 135, 333

s 214 o0

4 8 64
= h(x), say.

Then for 1/2 < x < 3/2, H(x) = 8x —51x* + 33x = 0 implies x = 0.84877...,
1.44443.... Now as h"”(0.84877...) <0 and h"(1.44443...) > 0, h(x) is an increas-
ing function for 1/2 < x < 0.84877... and 1.44443... < x < 3/2, and is an decreas-
ing function for 0.84877... < x < 1.44443.... Clearly, h(x) attains its maximum at
x=0.84877.... Thus,

2(1422) — (1-A%)
§ (x, 2Ax2

) < 11.012265....

Hence combining the above cases, for 1/2 < |az| < 3/2, we have

|Hyy (Fp/2)| < Y026
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Now for |as| < 1/2, using (23), we get

49
48 |Ha, (Fr/2)| < g = 3:0625.
Therefore, combining all the cases, we obtain
v11.012265... 1
Hy  (Fr/2)| < —————— fi = _.
a1 (Fr/2)] 13 or & =3

To prove the sharpness, we consider the functions f(z) = z+ X, s axz" =z/(1 -
arz+ %zz), where ay = le® with [ ~ 0.84877 and c0s26 ~ 0.46919. Then in view of
Lemma 3, f(z) € % (A). Also,

v 11.012265...

|21 (Fr/2)| = ——¢

This completes the proof. [l

Proof of Theorem 3. We consider A =1 and 0 < |a2| < 2. Then as in the proof
of Theorem 1, we obtain from (18) on the boundary of € that

g(0,y) <144 for —1<y<1.
Now on the boundary of €, (19) implies
g(x,1) < 144 for 0 <x<2.

Next on the boundary of Q, for 0 < x < 2, (20) implies
2 2\ (1 72\2
p x7x(l+7t) (I1-2%)
2Ax2
= 2422 14420 — 12021+ A7) — (1-A2)2)
= (x* —12)? < 144.

Hence combining the above cases, for 0 < |ay| < 2, we have

|Ha1 (Fr/2)] <

=

Now for |az| = 0, using (23), we get
48 |Hy,1 (Fr/2)| < 12

Thus combining all the cases, for A = 1, we obtain

1
Ha (7 /2) < 2.
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To prove the sharpness, we consider the functions f(z) = z/(1+2%). Itis easy to
see that f(z) € #(A) and

Haa (57/2)] = 5

This completes the proof. [

Proof of Theorem 4. Let f(z) =z+ i a,7" be afunctionin % (1) given by (10).
n=2
Then using (16) in (9), we have

48ty (Fy1/2)
= 13a‘2‘ — 1261%613 — 12a§ + 12asa4
= 13a3 — 12d3(a3 — coA) — 12(d3 — c2A)? 4 12a3(a3 — ¢34 — 2Aaacy)
= a3+ 12Ad5cy — 122 azcs — 120763,

Then it follows from Lemma 1 that,
48 ‘Hm (Ff,l/z)’ < |+ 1243cr — 12A2¢3| + 124 |as 3]
< ’ag +12Ad3¢; — 12120%| +6Aaz|(1—|c2]?).
In view of the first equation of (16), we have |c2| = |(a3 —a3)/A| =1, and since % (1)
and H» (F = / 2) are invariant under rotations, we may assume ¢, = 1. Hence
48‘H271 (Ff,l/z)) < Jad+ 1223 — 1227]. 24)

Let us assume a, = le'®, where |ay| =1 and 6 € R. Then

48 )H27 L (Fra/2) )
< |46 +1201%6%9 — 122
= /I3 24A16c0s26 — 24A21% cos460 — 2884312 cos 26 + 1441214 + 14424

= /g(l,c0s20),

where

g(x,y) = x® 4+ 242x% — 482 %x*y? — 288A3x%y + 168 %" + 1441%,
In view of Lemma 3, now we will find out the maximum value of g(x,y) in the region

K(1+A%) —(1-1%)2
2Ax2

Q:{(x,y):l—?t<x<1—|—7t, gygl}.
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Note. that %{g(x, ¥)} =0 and a%{g()@y)} = 0 together imply it has no solution in the
interior of Q. Thus for —1 <y < 1, on the boundary of Q, we have

g(1=A,y) = (1= 2)8424A(1 — 1)6y —482%(1 — )%
—288A3(1 — )%y + 168A%(1 — A)* + 1442%
= h(y), say.

Then
B (y) =24A(1—2)°—961%(1 — 1)*y—28813(1— 1) >0
whenever 0 < A <4 —+/15. Also, for 4 —v/15 < A <2 —+/3, h(y) attains its max-

. _ 2 3
imum at y = %. Furthermore, //(y) < 0 whenever 2—+/3 <1 < 1

Hence
(14+81—30A2+ 813 +1%)? for 0 < A <4 —/15,
g(1—2,y) < 4(1 =44+ 1822 —4A3 4+ A%2 for 4 —V15< A <23, (25)
(1—164+ 1822 — 1643 +21%)? for 2—3 <A < 1.
Now for 1 — A <x < 14 A, on the boundary of Q, we have
g(x,1) = x® 424200 — 482 %x* — 2884317 4+ 1682 %x* + 14424
= (x* 4 12452 — 121%)2,
which attains its maximum at x = 1+ A . Hence
g, 1) < (L4 M) 4+ 120 (1+1)2 = 1242)% (26)
Next for 1 — A <x < 1+ A, on the boundary of Q, we have
2 2 2\2
g(x’x (1+/12))L;2(1—x ) )
= S 12¢ (2 (1+ A7) — (1= A2} — 12{2(1+22) — (1- 222}
— 14407 [P (1+2A%) — (1 - A%)?} + 1682 %% + 14424,

which attains its maximum at x = 1 + A . Hence
R(1HA2) = (1—22)?
§ (x’ 2Ax2 )
< (AT 16A% + 1842+ 16A +1)°
= {1+ )" + 122 (14 1) — 1242)7. 27

Therefore for 1 —A < |az] <1+ A and 0 < A < 1, combining (25), (26) and (27), we
get

g(e,y) < {(1+A)* + 1221+ 2)2— 1242},
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which shows that

11 (F/2)| < (1+A)*+ 12/14(; LAy N

From (24), now for |ay| < 1—A, we have

48 ’H271 (Fffl/z)’ < |ad+ 12243 — 1222

< Jaa)* + 122 |as|?* + 1212
S(I=A)*+120(1—21)*+124°% for 0<A < 1.  (29)

Hence (28) and (29) imply that

4 2 2
[t (Fr1/2)| < S +1u4(;”) A e 0<a<1

In order to prove the sharpness, we consider the function f(z) =z/(1—(14+1)z+
Az?) for 0 < A < 1. Then f(z) € % (A) and it is easy to see that

’H2,1 (Ff*1/2>’ _ (1+2A)*+ 127L4(81 FA)2— 1212'

This completes the proof. [

Proof of Theorem 5. Let f(z) =z+ Z a,Z" be a function in % (1). We consider
=2

the following cases to determine the sharp bounds for 7,7, and 73 respectively.

Case 1. Applying Lemma 2 to the first equation of (3), we get

1 1+2
nl= E\a2| S5
In order to prove the sharpness of the bound, we consider the function f(z) =
7/(1—(1+2A)z+Az7%) for 0 < A < 1. Then f(z) € % (1) and it is easy to check that
nl=01+24)/2.

Case 2. The second equation of (3) and the first equation of (16) yield

1
a3 —coh — Ea% =

1, 1
a3—=a)| = = =
3T % 2(2

Bl =1
nl=3

‘ —a3—Aeal.
In view of the first equation of (16), we have ¢y = (a3 —a3)/A = 1. Hence

pl <
nis3713

la%—l'.
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Let us assume a, = le'® , where |az| =1 and O € R. Then, we have

W2‘ < _’ll2e2i9_l’

1
212

1 1
== ’512c0s29 —i—iil2 sin20 —JL’

DN | =

1
\/Zl“ — Al%2cos20 + A2

_— N =

= —+/g(l,cos20),

[\

where
1
glry) = 22 = Axly+ 22
In view of Lemma 3, now we will find out the maximum value of g(x,y) in the region

R(14+22) — (1—A22
2Ax2

Q:{(x,y):l—?t<x<1—|—7t, gygl}.

Note. that %{g(x, y)} =0 and %{g(x, ¥)} = 0 together imply it has no solution in the
interior of Q. Thus for —1 <y < 1, on the boundary of Q, we have

g -Ay) = 7(1-A) = A~ A)y+ A2

which attains its maximum at y = —1. Hence

—_—

(1+22)% for —1<y<1.

B

g(1-2A, )< ~(1-A)*+A(1-1)2+ A% =

N

Now for 1 —A <x < 14 A, on the boundary of Q, we have
gnmziﬁ—xﬁ+a%
which attains its maximum at x =1+ A. Hence for 1 — A <x <1+ A, we have
g(x71)<%(1+7t)4—x(1+/1) o 4(1+7L ).

Next for 1 —A <x < 1+ A, on the boundary of Q, we have

. X1+ —(1-212)? - lx“ . 2 2
g(, )- { (1+A1%) — 2L+ 22,

2Ax2 4

which attains its maximum at x = 1 + A. Hence

2 2y (19222
g(x,x(l—i_l) (1 )L>) %(14—12) for 1 —A<x<1+A4.

2Ax2
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Also, for |a;| < 1—A, we obtain

|a2|2+27L 1 2
<=L T
i< 222 L),

Thus combining all the cases, we obtain

1+ 22
< .
17| < 2

In order to prove the sharpness of the bound, we consider the function

Z
—(1+A)z+ Az
(1402 + (T4+A+A) 2+ (L +A+AT+27) 2+

f2) =5

for 0 < A < 1. Then f(z) € % (1) and it is easy to check that || = (1+A2)/4.

Case 3. The third equation of (3), (16) and Lemma 1 yield

1 1,
Iyl = 3 a4—a2a3+§a2

1 2 !
=3 —Zlazcz—C3X—a2(a2—czl)+§a2
:% éaz laQCQ—QX‘
<l laz Aarer |+ = M03|

213
< 3 |58~ Aacs|+ ZA(- leal)

213

In view of the first equation of (16), we have ¢y = (a3 —a3)/A = 1. Hence

1
lys| < —a2 Aay)|.

N =

Let us assume a, = le'®, where |ay| =1 and 6 € R. Then

1)1 : ;
|Y3| < 5‘5136319_11619
1)1, . .
=5 §l (cos360 +isin30) — Al(cosO +isin0)
1 /1 2
N i [ 212 _Z )4 2
2\/91 +2 37Ll cos26
1

= >v8x),

[\S]

133
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where
1 2
g(xy) = gx°+ A% — Sy,

with x =1/ and y = cos26. In view of Lemma 3, now we will find out the maximum
value of g(x,y) in the region

) (14242 —(1-22)?
Q—{()@y).l—?t<x<l—|—l7 i

<y<l}

Note that %{g(x, y)} =0 and %{g(x, ¥)} = 0 together imply it has no solution in the
interior of Q. Thus for —1 < y < 1, on the boundary of €, we have

e(1—y) = é(1 AP A1 —A)— %m _)Yy

which attains its maximum at y = —1. Hence for —1 <y < 1, we obtain

801 -2.0) < g (1= A4 421 AP+ 220~ A)*

N

1
§U—AVU+A+A%2
1
= —(1-2%%
512
Now for 1 —A <x < 1+ A, on the boundary of Q, we have
1 2
glx,1)= §x6+12x2 - §Xx4,

which attains its maximum at x = 14+ 24,1 for 0 < A < 1,4 =1 respectively. Hence
for 1 —A <x <1+ A, we obtain

1
g(x, 1)< 6(134—1)2.
Next for 1 —A < x < 14 A, on the boundary of Q, we have

xx2(1+x2)—(1—/12)2 1o 202 xz 2 2y (1222
g<7 . ) + A% {P(1+A%)—(1-2%%,

2Ax2 9"

which attains its maximum at x = v/1 —A +A2. Hence for 1 —A <x < 1+A, we

obtain
2 2\ (1_722\2
g<x7x(1+/l) (1 k)) 3(134‘1)

2Ax2
Also, for |ap] < 1— A, we have

3
- laa|” + 3 az) <l

_ 133
il < R <),
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Thus combining all the cases, we obtain

14+ A3
-

73] <

In order to prove the sharpness of the bound, we consider the function f(z) =
7/(1—(1+2A)z+Az7%) for 0 < A < 1. Then f(z) € % (1) and it is easy to check that
Bl=(1+4%/6. O
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