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HANKEL DETERMINANTS FOR LOGARITHMIC AND

LOGARITHMIC INVERSE COEFFICIENTS FOR THE CLASS U (λ )

RAJIB MANDAL AND SUDIP KUMAR GUIN ∗

Abstract. Let U (λ) be the class of analytic functions f in the open unit disc D with the

normalization f (0) = 0 and f ′(0) = 1 satisfying

∣∣∣∣( z
f (z)

)2
f ′(z)−1

∣∣∣∣ < λ for 0 < λ � 1 . In

this paper, we obtain the sharp bounds of the second Hankel determinant of logarithmic and
logarithmic inverse coefficients, and the sharp bounds of the first three logarithmic coefficients
for f ∈ U (λ) .

1. Introduction, definitions and results

Let A denote the class of analytic functions f in the unit disk D := {z∈ C : |z| <
1} such that f (0) = 0 and f ′(0) = 1. Let S be the subclass of functions f ∈ A that
are univalent in D and has the form

f (z) = z+
∞

∑
n=2

anz
n for z ∈ D. (1)

For 0 < λ � 1, consider the class

U (λ ) =

{
f (z) ∈ A :

∣∣∣∣∣
(

z
f (z)

)2

f ′(z)−1

∣∣∣∣∣ < λ in D

}
.

In [1, 2, 26], it is known that every f ∈ U (λ ) is univalent in D , and hence U (λ ) ⊂
S . Set U := U (1) and let S ∗ denote the class of starlike functions. In [31], an
interesting fact is given that neither U is included in S ∗ nor includes S ∗ . This rare
property of U attracts huge attention in the past decades. In [24], authors obtained
that the class U (λ ) is preserved under rotation, conjugation, dilation and omitted-
value transformations. For quite sometimes, the class U (λ ) together with its various
generalizations have been studied extensively. See for example, [12, 21].

The logarithmic coefficients γn associated with each f ∈ S are defined by

Ff (z) := log
f (z)
z

= 2
∞

∑
n=1

γnz
n for z ∈ D. (2)
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The logarithmic coefficients γn play a central role in the theory of univalent functions,
for intriguing perspective, we refer to the reader [11, Chapter 5]. The problem of find-
ing the sharp bounds of |γn| for the class S and its various subclasses are studied
recently by several authors (see [3, 4, 13, 17, 34, 36]) in different contexts. In [6, 22],
coefficients criteria have been established for U , and partial sums for functions from
U are discussed in [23].

Differentiating (2) and using (1), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1 = 1
2a2,

γ2 = 1
2

(
a3− 1

2a2
2

)
,

γ3 = 1
2

(
a4−a2a3 + 1

3a3
2

)
,

γ4 = 1
2

(
a5−a2a4 +a2

2a3− 1
2a2

3− 1
4a4

2

)
,

γ5 = 1
2

(
a6−a2a5−a3a4 +a2a2

3 +a2
2a4−a3

2a3 + 1
5a5

2

)
.

(3)

If f ∈ S , then by the Bieberbach’s theorem, we have |a2| � 2 and hence |γ1| � 1.
Using the Fekete-Szegö inequality [11, Theorem 3.8] for functions in S , we have
|γ2| = 1

2

∣∣a3− 1
2a2

2

∣∣ � 1
2 + e−2 = 0.635 . . . . For n � 3, the problem seems much harder

and no significant bound for |γn| is obtained when f ∈ S .
Let f ∈ A and n,q ∈ N . Then the Hankel determinant Hq,n( f ) of Taylor’s coef-

ficients of f is defined by

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
. . .

...
an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣
.

The Hankel determinants play an important role, for instance, in the study of singulari-
ties [10, Chapter X] and in the study of power series with integral coefficients [8]. For
more general results and applications of Hankel determinants, we refer [27, 28].

In 2022, Kowalczyk and Lecko [14] proposed the study of the Hankel determinant
whose entries are logarithmic coefficients of f ∈ S , which is given by

Hq,n
(
Ff /2

)
:=

∣∣∣∣∣∣∣∣∣

γn γn+1 · · · γn+q−1

γn+1 γn+2 · · · γn+q
...

...
. . .

...
γn+q−1 γn+q · · · γn+2(q−1)

∣∣∣∣∣∣∣∣∣
.

Also, authors [14] obtained the sharp bound of second Hankel determinant H2,1
(
Ff /2

)
for starlike and convex functions. The problem of computing the sharp bounds of
H2,1

(
Ff /2

)
has been considered by many authors (see [7, 5, 14, 15, 16, 20, 30, 32, 33])

for various subclasses of S . Inspite this, the sharp bound of Hankel determinants of
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logarithmic coefficients remains relatively unknown, prompting the need for extensive
studies for various function classes. Suppose that f ∈ S is given by (1). Then the
second Hankel determinant of Ff /2 is given by

H2,1
(
Ff /2

)
:=

∣∣∣∣ γ1 γ2

γ2 γ3

∣∣∣∣ = γ1γ3 − γ2
2 =

1
4

(
a2a4−a2

3 +
1
12

a4
2

)
. (4)

Further, H2,1
(
Ff/2

)
is invariant under rotation since for fθ (z) = e−iθ f (eiθ z) , we have

H2,1
(
Ffθ /2

)
=

e4iθ

4

(
a2a4−a2

3 +
1
12

a4
2

)
= e4iθ H2,1

(
Ff/2

)
, f ∈ U (λ ),θ ∈ R.

Let g be the inverse function of f ∈S , which is defined by the Taylor series expansion

g(w) = f−1(w) = w+
∞

∑
n=2

Anw
n (5)

in a neighbourhood of the origin, where we may choose |w| < 1/4, as we know from
Köebe’s one-fourth theorem that for each univalent function f defined in D , it’s inverse
f−1 exists at least on a disc of radius 1/4. Löwner [19] obtained the sharp bound
|An| � Kn for each n ∈ N , where Kn = (2n)!/(n!(n+ 1)!) . Since f ( f−1)(w) = w ,
from (1) and (5), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2 = −a2,

A3 = −a3 +2a2
2,

A4 = −a4 +5a2a3−5a3
2,

A5 = −a5 +6a4a2−21a3a2
2 +3a2

3 +14a4
2.

(6)

Ponnusamy et al. [29] proposed the notion of logarithmic inverse coefficients. The
logarithmic inverse coefficients Γn,n ∈ N , of f are defined by the equation

Ff−1(w) := log
f−1(w)

w
= 2

∞

∑
n=1

Γnw
n, |w| < 1

4
. (7)

Differentiating (7) and using (6), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ1 = − 1
2a2,

Γ2 = − 1
2a3 + 3

4a2
2,

Γ3 = − 1
2a4 +2a2a3− 5

3a3
2,

Γ4 = − 1
2a5 + 5

2a4a2− 15
2 a3a2

2 + 5
4a2

3 + 35
8 a4

2.

(8)
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Then the second Hankel determinant of Ff−1/2 is given by

H2,1

(
Ff−1/2

)
= Γ1Γ3−Γ2

2

=
1
4

(
A2A4 −A2

3 +
1
4
A4

2

)

=
1
48

(
13a4

2−12a2
2a3−12a2

3 +12a2a4
)
. (9)

Let B0 be the class of Schwarz functions, i.e., analytic functions ω : D→ D such
that ω(0)= 0. The function ω ∈B0 can be written as a power series ω(z) = ∑∞

n=1 cnzn.
Also, for any φ ∈ R , ω(z) ∈ B0 if and only if ω(zeiφ ) ∈ B0 .

The main aim of this paper is to establish the sharp bounds of the logarithmic coef-

ficients γ1,γ2,γ3 , the second Hankel determinants
∣∣H2,1

(
Ff /2

)∣∣ and
∣∣∣H2,1

(
Ff−1/2

)∣∣∣
for functions belonging to U (λ ) , where 0 < λ � 1.

2. Main results

The following four results establish the sharp bounds of
∣∣H2,1

(
Ff /2

)∣∣ and∣∣∣H2,1

(
Ff−1/2

)∣∣∣ for functions f ∈ U (λ ) , for some λ ∈ (0,1] .

THEOREM 1. Let f ∈ U (λ ) be of the form (1). Then for
∣∣(a2

2−a3)/λ
∣∣ = 1 and

0 < λ � 0.225906 . . .,

∣∣H2,1
(
Ff/2

)∣∣ � (1+ λ )4−12λ 2

48
.

The inequality is sharp.

THEOREM 2. Let f ∈ U (λ ) be of the form (1). Then for
∣∣2(a2

2−a3)
∣∣ = 1 and

λ = 1
2 ,

∣∣H2,1
(
Ff /2

)∣∣ �
√

11.012265 . . .

48
.

The inequality is sharp.

THEOREM 3. Let f ∈ U (λ ) be of the form (1). Then for
∣∣a2

2−a3
∣∣ = 1 and

λ = 1 ,

∣∣H2,1
(
Ff /2

)∣∣ � 1
4
.

The inequality is sharp.
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THEOREM 4. Let f ∈ U (λ ) be of the form (1). Then for
∣∣(a2

2−a3)/λ
∣∣ = 1 and

0 < λ � 1 , ∣∣∣H2,1

(
Ff−1/2

)∣∣∣ � (1+ λ )4 +12λ (1+ λ )2−12λ 2

48
.

The inequality is sharp.

In the following result, we establish the sharp bounds of the logarithmic coeffi-
cients γ1,γ2 and γ3 for functions f ∈ U (λ ) , 0 < λ � 1.

THEOREM 5. Let f ∈ U (λ ) be of the form (1). Then for (a2
2 − a3)/λ = 1 and

0 < λ � 1 ,

|γ1| � 1+ λ
2

, |γ2| � 1+ λ 2

4
and |γ3| � 1+ λ 3

6
.

Each inequality is sharp.

3. Lemmas

The following lemmas are necessary for this paper and will be used to prove the
main results.

LEMMA 1. [9, 18, 25, 35] For each function f ∈ U (λ ) , 0 < λ � 1 , there exists
function ω(z) = c2z+ c3z2 + c4z3 + · · · , analytic in D such that |ω(z)| � |z| < 1 , and
|ω ′(z)| � 1 for all z ∈ D , with

z
f (z)

= 1−a2z+ λ zω(z) = 1−a2z+ λ ω1(z), (10)

where ω1(z) =
∞
∑

n=2
cnzn ∈ B0 .

Additionally, |zω ′(z)| = |c2z+2c3z2 +3c4z3 + · · · | < 1 for all z ∈ D gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|c2| � 1,

|c3| � 1
2 (1−|c2|2),

|c4| � 1
3

(
1−|c2|2− 4|c3|2

1+|c2|
)

,

|c5| � 1
4

(
1−|c2|2−4|c3|2

)
.

LEMMA 2. [24, 35] Let f ∈ U (λ ) be such that f (z) = z + ∑∞
n=2 anzn , where

0 < λ � 1 . Then |a2| � 1+ λ . If |a2| = 1+ λ , then f must be of the form

fφ (z) =
z

1− (1+ λ )eiφz+ λe2iφz2 ,

for some φ ∈ [0,2π) .
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LEMMA 3. Let f (z) be of the form

f (z) =
z

1−a2z+ λ z2 ,

where a2 = leiθ with |a2| = l and θ ∈ R . Then for 1−λ < l � 1+ λ , f (z) ∈ U (λ )
if and only if

l2(1+ λ 2)− (1−λ 2)2

2λ l2
� cos2θ � 1.

Also, for l � 1−λ , f (z) ∈ U (λ ) .

Proof. Following the proof of Obradović et al. [24, Theorem 4], let g be a func-
tion given by

z
g(z)

= 1−a2z+ λ z2 = 1− (1+ λeiτ)z+ λ z2, (11)

where a2 = 1+ λeiτ .
It is clear that functions of the type g given by (11) belong to U (λ ) if and only if

0 �= 1− (1+ λeiτ)z+ λ z2, z ∈ D. (12)

Let us suppose

1+ λeiτ = |1+ λeiτ |eiθ .

Then it follows that

(1+ λeiτ)z−λ z2

= |1+ λeiτ |eiθ z−λ z2

= ei2θ
(
|1+ λeiτ |e−iθ z−λe−i2θ z2

)
.

Thus, (12) holds if and only if

e−i2θ �= (|1+ λeiτ |u−λu2) , u ∈ D.

Next we assume l = |a2|= |1+λeiτ | ∈ [1−λ ,1+λ ] , u = eiα and x+ iy = leiα −λe2iα .
Then we obtain

x−λ = cosα(l−2λ cosα) and y = sinα(l−2λ cosα). (13)

This is the parametric equation of a Limaçon (see Figure 1 for the graph of some
Limaçons parameterized by (13) for different values of λ and l ). The implicit equation
of (13) is given by

(x2 + y2−λ 2)2 = l2(x2 + y2 + λ 2−2λx). (14)
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The intersection points (x,y) of the unit circle and (14) is

x =
l2(1+ λ 2)− (1−λ 2)2

2λ l2
.

Hence, for

l2(1+ λ 2)− (1−λ 2)2

2λ l2
� cos2θ � 1,

the functions g defined by (11) belong to U (λ ).

Figure 1: The graph of some Limaçons parameterized by (14) for some different values of λ and
l ((λ , l) = (0.25,0.75),(0.25,1.25),(0.5,0.5),(0.5,1),(0.75,0.25),(0.75,1.75) respectively) to-
gether with unit circle.

Observe that for l = 1+λ , θ = 0 is the only one that produces a function belong-
ing to U (λ ) in (11), whereas for l = 1− λ , all functions defined by (11) are in the
class U (λ ) .
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Also, the condition 1−a2z+ λ z2 �= 0 is satisfied if |a2| � 1−λ , as

|1−a2z+ λ z2| � 1−|λ z2|− |a2z| > 0 for |a2| � 1−λ .

This completes the proof. �

REMARK 1. From (10), we have for ω1(z) =
∞
∑

n=2
cnzn ,

f (z) =
z

1−a2z+ λ ω1(z)
. (15)

Comparing the coefficients on both sides of (15), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 = a2
2− c2λ ,

a4 = a3
2−2λa2c2− c3λ ,

a5 = a4
2−3λa2

2c2 + λ 2c2
2−2λa2c3−λc4,

a6 = a5
2−4λa3

2c2−3λa2
2c3 +3λ 2a2c2

2 +2λ 2c2c3−2λa2c4−λc5.

(16)

4. Proof of the main results

Proof of Theorem 1. Let f (z) = z+
∞
∑

n=2
anzn be a function in U (λ ) . Then using

Lemma 1, we have

z
f (z)

= 1−a2z+ λ ω1(z),

where ω1(z) =
∞
∑

n=2
cnzn .

Now substituting the expressions for a3 and a4 from (16) in (4), we get

48H2,1
(
Ff /2

)
= 12a2a4−12a2

3 +a4
2

= 12a2
(
a3

2−2λa2c2− c3λ
)−12

(
a2

2− c2λ
)2

+a4
2

= a4
2−12a2λc3−12c2

2λ 2.

It follows from Lemma 1 that

48
∣∣H2,1

(
Ff /2

)∣∣ =
∣∣a4

2−12a2λc3−12c2
2λ 2

∣∣
�

∣∣a4
2−12c2

2λ 2
∣∣+12λ |a2||c3|

�
∣∣a4

2−12c2
2λ 2

∣∣+6λ |a2|(1−|c2|2).
In view of the first equation of (16), we have |c2|= |(a2

2−a3)/λ |= 1, and since U (λ )
and H2,1

(
Ff /2

)
are invariant under rotations, we may assume c2 = 1. Hence

48
∣∣H2,1

(
Ff /2

)∣∣ � |a4
2−12λ 2|. (17)
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Let us assume a2 = leiθ , where |a2| = l and θ ∈ R . Then

48
∣∣H2,1

(
Ff /2

)∣∣ � |l4e4iθ −12λ 2|
=

√
l8−24l4λ 2 cos4θ +144λ 4

=
√

l8 +24l4λ 2 +144λ 4−48l4λ 2 cos2 2θ
=

√
g(l,cos2θ),

where

g(x,y) = x8 +24λ 2x4 −48λ 2x4y2 +144λ 4.

In view of Lemma 3, now we will find out the maximum value of g(x,y) in the region

Ω =
{

(x,y) : 1−λ < x � 1+ λ ,
x2(1+ λ 2)− (1−λ 2)2

2λx2 � y � 1

}
.

Note that ∂
∂x{g(x,y)} = 0 and ∂

∂y{g(x,y)} = 0 together imply that it has no solution in
the interior of Ω . Hence g(x,y) attains its maximum on the boundary of Ω . Thus for
−1 � y � 1, on the boundary of Ω , we have

g(1−λ ,y) = (1−λ )8 +24λ 2(1−λ )4−48(1−λ )4λ 2y2 +144λ 4.

Note that for λ = 1, g(1−λ ,y) = 144λ 4 = 144. Also, for 0 < λ < 1, g′(1−λ ,y) =
−96(1−λ )4λ 2y = 0 implies y = 0. Now g′′(1−λ ,y) =−96(1−λ )4λ 2 < 0 at y = 0,
which shows g(1−λ ,y) attains its maximum at y = 0. Thus,

g(1−λ ,y) � (1−λ )8 +24λ 2(1−λ )4 +144λ 4

= ((1−λ )4 +12λ 2)2. (18)

Now for 1−λ < x � 1+ λ , on the boundary of Ω , we have

g(x,1) = x8−24λ 2x4 +144λ 4 = (x4 −12λ 2)2 = h2
λ (x), say,

where hλ (x) = x4−12λ 2 . Then h′λ (x) = 4x3 � 0 for 1−λ < x � 1+λ implies hλ (x)
is an increasing function for 1−λ < x � 1+ λ . Hence for 1−λ < x � 1+ λ ,

maxhλ (x) = (1+ λ )4−12λ 2

and minhλ (x) = (1−λ )4−12λ 2.

Note that

((1+ λ )4−12λ 2)2 � ((1−λ )4−12λ 2)2, whenever 0 < λ �
√

2−1

and ((1+ λ )4−12λ 2)2 < ((1−λ )4−12λ 2)2, whenever
√

2−1 < λ � 1.

Hence

maxg(x,1) =
{

((1+ λ )4−12λ 2)2 for 0 < λ �
√

2−1,

((1−λ )4−12λ 2)2 for
√

2−1 < λ � 1.
(19)
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Next for 1−λ < x � 1+ λ , on the boundary of Ω , we have

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)

= x8 +24λ 2x4 −12
{
x2(1+ λ 2)− (1−λ 2)2}2

+144λ 4 (20)

= tλ (x), say.

Then

∂ tλ (x)
∂x

= 8x(6−6λ 2 +6λ 6−6x2 + x6−6λ 4(1+ x2)) = qλ (x), say.

We wish to find out the range of λ for which qλ (x) � 0. Observe that q′λ (x) = 0

implies x2 =
√

2+2λ 4 . Clearly q′′λ (x) > 0 at x2 =
√

2+2λ 4 . Hence the minimum

value of qλ (x) , which attains at x2 =
√

2+2λ 4 is

6−6λ 2 +6λ 6−4
√

2
√

1+ λ 4−2λ 4(3+2
√

2
√

1+ λ 4),

which will be � 0 if 0 < λ � 0.225906 . . .. Thus,

∂ tλ (x)
∂x

� 0

for 1− λ < x � 1 + λ and 0 < λ � 0.225906 . . .. Hence, tλ (x) being an increasing
function for 1− λ < x � 1 + λ and 0 < λ � 0.225906 . . ., attains its maximum at
x = 1+ λ . Thus for 0 < λ � 0.225906 . . ., we have

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)

� (1+ λ )8 +24λ 2(1+ λ )4−12
{
(1+ λ )2(1+ λ 2)− (1−λ 2)2}2

+144λ 4

=
{
(1+ λ )4−12λ 2}2

. (21)

Therefore for 0 < λ � 0.225906 . . . and 1− λ < |a2| � 1 + λ , combining (18), (19)
and (21), we get

g(x,y) �
{
(1+ λ )4−12λ 2}2

,

which implies

∣∣H2,1
(
Ff /2

)∣∣ � (1+ λ )4−12λ 2

48
. (22)

From (17), now for |a2| � 1−λ , we have

48
∣∣H2,1

(
Ff/2

)∣∣ � |a4
2−12λ 2|

� |a2|4 +12λ 2

� (1−λ )4 +12λ 2 (23)
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for 0 < λ � 1.
Hence (22) and (23) imply that for 0 < λ � 0.225906 . . .,

∣∣H2,1
(
Ff /2

)∣∣ � (1+λ )4−12λ 2

48 .

To prove the sharpness, we consider the functions f (z) = z+ ∑∞
n=2 anzn = z/(1−

(1+ λ )z+ λ z2) for 0 < λ � 0.225906 . . .. It is easy to see that f (z) ∈ U (λ ) and in
view of a2 = 1+ λ ,a3 = 1+ λ + λ 2,a4 = 1+ λ + λ 2 + λ 3 , we get

∣∣H2,1
(
Ff /2

)∣∣ =
(1+ λ )4−12λ 2

48
.

This completes the proof. �

Proof of Theorem 2. We consider λ = 1/2 and 1/2 < |a2| � 3/2. Then as in the
proof of Theorem 1, we obtain from (18) on the boundary of Ω that

g

(
1
2
,y

)
�

(
49
16

)2

= (3.0625)2 for −1 � y � 1.

Now on the boundary of Ω , (19) implies

g(x,1) �
(

47
16

)2

= (2.9375)2 for 1/2 < x � 3/2.

Next on the boundary of Ω , for 1/2 < x � 3/2, (20) implies

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)

= x8 +24λ 2x4 −12
{
x2(1+ λ 2)− (1−λ 2)2}2

+144λ 4

= x8− 51
4

x4 +
135
8

x2 +
333
64

= h(x), say.

Then for 1/2 < x � 3/2, h′(x) = 8x7 − 51x3 + 135
4 x = 0 implies x = 0.84877 . . . ,

1.44443 . . .. Now as h′′(0.84877 . . .) < 0 and h′′(1.44443 . . .) > 0, h(x) is an increas-
ing function for 1/2 < x � 0.84877 . . . and 1.44443 . . . < x � 3/2, and is an decreas-
ing function for 0.84877 . . . < x � 1.44443 . . .. Clearly, h(x) attains its maximum at
x = 0.84877 . . .. Thus,

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)
� 11.012265 . . ..

Hence combining the above cases, for 1/2 < |a2| � 3/2, we have

∣∣H2,1
(
Ff /2

)∣∣ �
√

11.012265...
48 .
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Now for |a2| � 1/2, using (23), we get

48
∣∣H2,1

(
Ff /2

)∣∣ � 49
16

= 3.0625.

Therefore, combining all the cases, we obtain

∣∣H2,1
(
Ff /2

)∣∣ �
√

11.012265 . . .

48
for λ =

1
2
.

To prove the sharpness, we consider the functions f (z) = z+ ∑∞
n=2 anzn = z/(1−

a2z+ 1
2 z2) , where a2 = leiθ with l ≈ 0.84877 and cos2θ ≈ 0.46919. Then in view of

Lemma 3, f (z) ∈ U (λ ) . Also,

∣∣H2,1
(
Ff /2

)∣∣ ≈
√

11.012265 . . .

48
.

This completes the proof. �

Proof of Theorem 3. We consider λ = 1 and 0 < |a2| � 2. Then as in the proof
of Theorem 1, we obtain from (18) on the boundary of Ω that

g(0,y) � 144 for −1 � y � 1.

Now on the boundary of Ω , (19) implies

g(x,1) � 144 for 0 < x � 2.

Next on the boundary of Ω , for 0 < x � 2, (20) implies

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)

= x8 +24λ 2x4 +144λ 4−12
{
x2(1+ λ 2)− (1−λ 2)2}2

= (x4 −12)2 � 144.

Hence combining the above cases, for 0 < |a2| � 2, we have

∣∣H2,1
(
Ff /2

)∣∣ � 1
4
.

Now for |a2| = 0, using (23), we get

48
∣∣H2,1

(
Ff /2

)∣∣ � 12.

Thus combining all the cases, for λ = 1, we obtain

∣∣H2,1
(
Ff /2

)∣∣ � 1
4
.
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To prove the sharpness, we consider the functions f (z) = z/(1+ z2) . It is easy to
see that f (z) ∈ U (λ ) and

∣∣H2,1
(
Ff /2

)∣∣ =
1
4
.

This completes the proof. �

Proof of Theorem 4. Let f (z) = z+
∞
∑

n=2
anzn be a function in U (λ ) given by (10).

Then using (16) in (9), we have

48H2,1

(
Ff−1/2

)
= 13a4

2−12a2
2a3−12a2

3 +12a2a4

= 13a4
2−12a2

2(a
2
2− c2λ )−12(a2

2− c2λ )2 +12a2(a3
2− c3λ −2λa2c2)

= a4
2 +12λa2

2c2 −12λa2c3−12λ 2c2
2.

Then it follows from Lemma 1 that,

48
∣∣∣H2,1

(
Ff−1/2

)∣∣∣ �
∣∣a4

2 +12λa2
2c2−12λ 2c2

2

∣∣+12λ |a2||c3|
�

∣∣a4
2 +12λa2

2c2−12λ 2c2
2

∣∣+6λ |a2|(1−|c2|2).

In view of the first equation of (16), we have |c2|= |(a2
2−a3)/λ |= 1, and since U (λ )

and H2,1

(
Ff−1/2

)
are invariant under rotations, we may assume c2 = 1. Hence

48
∣∣∣H2,1

(
Ff−1/2

)∣∣∣ �
∣∣a4

2 +12λa2
2−12λ 2

∣∣ . (24)

Let us assume a2 = leiθ , where |a2| = l and θ ∈ R . Then

48
∣∣∣H2,1

(
Ff−1/2

)∣∣∣
� |l4e4iθ +12λ l2e2iθ −12λ 2|
=

√
l8 +24λ l6 cos2θ −24λ 2l4 cos4θ −288λ 3l2 cos2θ +144λ 2l4 +144λ 4

=
√

g(l,cos2θ ),

where

g(x,y) = x8 +24λx6y−48λ 2x4y2−288λ 3x2y+168λ 2x4 +144λ 4.

In view of Lemma 3, now we will find out the maximum value of g(x,y) in the region

Ω =
{

(x,y) : 1−λ < x � 1+ λ ,
x2(1+ λ 2)− (1−λ 2)2

2λx2 � y � 1

}
.
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Note that ∂
∂x{g(x,y)} = 0 and ∂

∂y{g(x,y)} = 0 together imply it has no solution in the
interior of Ω . Thus for −1 � y � 1, on the boundary of Ω , we have

g(1−λ ,y) = (1−λ )8 +24λ (1−λ )6y−48λ 2(1−λ )4y2

−288λ 3(1−λ )2y+168λ 2(1−λ )4 +144λ 4

= h(y), say.

Then
h′(y) = 24λ (1−λ )6−96λ 2(1−λ )4y−288λ 3(1−λ )2 � 0

whenever 0 < λ � 4−√
15. Also, for 4−√

15 < λ � 2−√
3, h(y) attains its max-

imum at y = 1−4λ−6λ 2−4λ 3+c4

4λ (1−λ )2 . Furthermore, h′(y) � 0 whenever 2−√
3 < λ � 1.

Hence

g(1−λ ,y) �

⎧⎪⎪⎨
⎪⎪⎩

(1+8λ −30λ 2 +8λ 3 + λ 4)2 for 0 < λ � 4−√
15,

4(1−4λ +18λ 2−4λ 3 + λ 4)2 for 4−√
15 < λ � 2−√

3,

(1−16λ +18λ 2−16λ 3 + λ 4)2 for 2−√
3 < λ � 1.

(25)

Now for 1−λ < x � 1+ λ , on the boundary of Ω , we have

g(x,1) = x8 +24λx6−48λ 2x4 −288λ 3x2 +168λ 2x4 +144λ 4

= (x4 +12λx2−12λ 2)2,

which attains its maximum at x = 1+ λ . Hence

g(x,1) � ((1+ λ )4 +12λ (1+ λ )2−12λ 2)2. (26)

Next for 1−λ < x � 1+ λ , on the boundary of Ω , we have

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)

= x8 +12x4{
x2(1+ λ 2)− (1−λ 2)2}−12

{
x2(1+ λ 2)− (1−λ 2)2}2

−144λ 2{
x2(1+ λ 2)− (1−λ 2)2}+168λ 2x4 +144λ 4,

which attains its maximum at x = 1+ λ . Hence

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)
� (λ 4 +16λ 3 +18λ 2 +16λ +1)2

=
{
(1+ λ )4 +12λ (1+ λ )2−12λ 2}2

. (27)

Therefore for 1−λ < |a2| � 1+ λ and 0 < λ � 1, combining (25), (26) and (27), we
get

g(x,y) �
{
(1+ λ )4 +12λ (1+ λ )2−12λ 2}2

,
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which shows that

∣∣∣H2,1

(
Ff−1/2

)∣∣∣ � (1+ λ )4 +12λ (1+ λ )2−12λ 2

48
. (28)

From (24), now for |a2| � 1−λ , we have

48
∣∣∣H2,1

(
Ff−1/2

)∣∣∣ �
∣∣a4

2 +12λa2
2−12λ 2

∣∣
� |a2|4 +12λ |a2|2 +12λ 2

� (1−λ )4 +12λ (1−λ )2+12λ 2 for 0 < λ � 1. (29)

Hence (28) and (29) imply that

∣∣∣H2,1

(
Ff−1/2

)∣∣∣ � (1+ λ )4 +12λ (1+ λ )2−12λ 2

48
for 0 < λ � 1.

In order to prove the sharpness, we consider the function f (z) = z/(1−(1+λ )z+
λ z2) for 0 < λ � 1. Then f (z) ∈ U (λ ) and it is easy to see that

∣∣∣H2,1

(
Ff−1/2

)∣∣∣ =
(1+ λ )4 +12λ (1+ λ )2−12λ 2

48
.

This completes the proof. �

Proof of Theorem 5. Let f (z) = z+
∞
∑

n=2
anzn be a function in U (λ ) . We consider

the following cases to determine the sharp bounds for γ1,γ2 and γ3 respectively.

Case 1. Applying Lemma 2 to the first equation of (3), we get

|γ1| = 1
2
|a2| � 1+ λ

2
.

In order to prove the sharpness of the bound, we consider the function f (z) =
z/(1− (1+ λ )z+ λ z2) for 0 < λ � 1. Then f (z) ∈ U (λ ) and it is easy to check that
|γ1| = (1+ λ )/2.

Case 2. The second equation of (3) and the first equation of (16) yield

|γ2| = 1
2

∣∣∣∣a3− 1
2
a2

2

∣∣∣∣ =
1
2

∣∣∣∣a2
2− c2λ − 1

2
a2

2

∣∣∣∣ =
1
2

∣∣∣∣12a2
2−λc2

∣∣∣∣ .
In view of the first equation of (16), we have c2 = (a2

2−a3)/λ = 1. Hence

|γ2| � 1
2

∣∣∣∣12a2
2−λ

∣∣∣∣ .
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Let us assume a2 = leiθ , where |a2| = l and θ ∈ R . Then, we have

|γ2| � 1
2

∣∣∣∣12 l2e2iθ −λ
∣∣∣∣

=
1
2

∣∣∣∣12 l2 cos2θ + i
1
2
l2 sin2θ −λ

∣∣∣∣
=

1
2

√
1
4
l4−λ l2 cos2θ + λ 2

=
1
2

√
g(l,cos2θ ),

where

g(x,y) =
1
4
x4−λx2y+ λ 2.

In view of Lemma 3, now we will find out the maximum value of g(x,y) in the region

Ω =
{

(x,y) : 1−λ < x � 1+ λ ,
x2(1+ λ 2)− (1−λ 2)2

2λx2 � y � 1

}
.

Note that ∂
∂x{g(x,y)} = 0 and ∂

∂y{g(x,y)} = 0 together imply it has no solution in the
interior of Ω . Thus for −1 � y � 1, on the boundary of Ω , we have

g(1−λ ,y) =
1
4
(1−λ )4−λ (1−λ )2y+ λ 2,

which attains its maximum at y = −1. Hence

g(1−λ ,y) � 1
4
(1−λ )4 + λ (1−λ )2 + λ 2 =

1
4

(
1+ λ 2)2

for −1 � y � 1.

Now for 1−λ < x � 1+ λ , on the boundary of Ω , we have

g(x,1) =
1
4
x4−λx2 + λ 2,

which attains its maximum at x = 1+ λ . Hence for 1−λ < x � 1+ λ , we have

g(x,1) � 1
4
(1+ λ )4−λ (1+ λ )2 + λ 2 =

1
4

(
1+ λ 2)2

.

Next for 1−λ < x � 1+ λ , on the boundary of Ω , we have

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)
=

1
4
x4 − 1

2

{
x2(1+ λ 2)− (1−λ 2)2}+ λ 2,

which attains its maximum at x = 1+ λ . Hence

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)
� 1

4
(1+ λ 2)2 for 1−λ < x � 1+ λ .
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Also, for |a2| � 1−λ , we obtain

|γ2| � |a2|2 +2λ
4

� 1
4
(1+ λ 2).

Thus combining all the cases, we obtain

|γ2| � 1+ λ 2

4
.

In order to prove the sharpness of the bound, we consider the function

f (z) =
z

1− (1+ λ )z+ λ z2

= z+(1+ λ )z2 +
(
1+ λ + λ 2)z3 +

(
1+ λ + λ 2 + λ 3)z4 + · · ·

for 0 < λ � 1. Then f (z) ∈ U (λ ) and it is easy to check that |γ2| = (1+ λ 2)/4.

Case 3. The third equation of (3), (16) and Lemma 1 yield

|γ3| =
1
2

∣∣∣∣a4−a2a3 +
1
3
a3

2

∣∣∣∣
=

1
2

∣∣∣∣a3
2−2λa2c2− c3λ −a2(a2

2− c2λ )+
1
3
a3

2

∣∣∣∣
=

1
2

∣∣∣∣13a3
2−λa2c2− c3λ

∣∣∣∣
� 1

2

∣∣∣∣13a3
2−λa2c2

∣∣∣∣+ 1
2

λ |c3|

� 1
2

∣∣∣∣13a3
2−λa2c2

∣∣∣∣+ 1
4

λ (1−|c2|2).

In view of the first equation of (16), we have c2 = (a2
2−a3)/λ = 1. Hence

|γ3| � 1
2

∣∣∣∣13a3
2−λa2

∣∣∣∣ .
Let us assume a2 = leiθ , where |a2| = l and θ ∈ R . Then

|γ3| � 1
2

∣∣∣∣13 l3e3iθ −λ leiθ
∣∣∣∣

=
1
2

∣∣∣∣13 l3(cos3θ + isin3θ)−λ l(cosθ + isinθ )
∣∣∣∣

=
1
2

√
1
9
l6 + λ 2l2− 2

3
λ l4 cos2θ

=
1
2

√
g(x,y),
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where

g(x,y) =
1
9
x6 + λ 2x2− 2

3
λx4y,

with x = l and y = cos2θ . In view of Lemma 3, now we will find out the maximum
value of g(x,y) in the region

Ω =
{

(x,y) : 1−λ < x � 1+ λ ,
x2(1+ λ 2)− (1−λ 2)2

2λx2 � y � 1

}
.

Note that ∂
∂x{g(x,y)} = 0 and ∂

∂y{g(x,y)} = 0 together imply it has no solution in the
interior of Ω . Thus for −1 � y � 1, on the boundary of Ω , we have

g(1−λ ,y) =
1
9
(1−λ )6 + λ 2(1−λ )2− 2

3
λ (1−λ )4y,

which attains its maximum at y = −1. Hence for −1 � y � 1, we obtain

g(1−λ ,y) � 1
9
(1−λ )6 + λ 2(1−λ )2 +

2
3

λ (1−λ )4

� 1
9
(1−λ )2(1+ λ + λ 2)2

=
1
9
(1−λ 3)2.

Now for 1−λ < x � 1+ λ , on the boundary of Ω , we have

g(x,1) =
1
9
x6 + λ 2x2 − 2

3
λx4,

which attains its maximum at x = 1+ λ ,1 for 0 < λ < 1,λ = 1 respectively. Hence
for 1−λ < x � 1+ λ , we obtain

g(x,1) � 1
9
(λ 3 +1)2.

Next for 1−λ < x � 1+ λ , on the boundary of Ω , we have

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)
=

1
9
x6 + λ 2x2 − 1

3
x2 {

x2(1+ λ 2)− (1−λ 2)2} ,

which attains its maximum at x =
√

1−λ + λ 2 . Hence for 1− λ < x � 1 + λ , we
obtain

g

(
x,

x2(1+ λ 2)− (1−λ 2)2

2λx2

)
� 1

9
(λ 3 +1)2.

Also, for |a2| � 1−λ , we have

|γ3| � |a2|3 +3λ |a2|
6

� 1
6
(1−λ 3).
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Thus combining all the cases, we obtain

|γ3| � 1+ λ 3

6
.

In order to prove the sharpness of the bound, we consider the function f (z) =
z/(1− (1+ λ )z+ λ z2) for 0 < λ � 1. Then f (z) ∈ U (λ ) and it is easy to check that
|γ3| = (1+ λ 3)/6. �
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