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UNIQUENESS RESULTS FOR DIFFERENTIAL POLYNOMIALS

WEIGHTED SHARING A VALUE OR A SET OF ROOTS OF UNITY

JAYANTA ROY ∗ AND DILIP CHANDRA PRAMANIK

Abstract. We study the uniqueness results of meromorphic functions f and g if differential
polynomials of the type (P( f )n)(k) and (P(g)n)(k) weighted share a set of roots of unity or a
value, where P is a polynomial of one variable. The results of the paper generalize some earlier
results due to Khoai and An [Advanced Studies Euro-Tbilisi Math. J., 15 (2022), 39–51] and
Sahoo and Sultana [An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LXX, 2024, f.1].

1. Introduction and main results

In this paper, by meromorphic function we shall always mean a meromorphic
function in the complex plane. We adopt the standard notations in the Nevanlinna
Theory of meromorphic functions as explained in [2, 16, 17]. It will be convenient to
let E denote any set of positive real numbers of finite linear measure, not necessarily
the same at each occurrence.

For any non-constant meromorphic function f , we denote by S(r, f ) any quantity
satisfying S(r, f ) = ◦(T (r, f )) as r → ∞, r �∈ E . A meromorphic function a is said to
be small with respect to f if T (r,a) = S(r, f ) . We denote by S( f ) the collection of all
small functions with respect to f . Clearly C∪{∞} ⊂ S( f ) and S( f ) is a field over the
set of complex numbers.

For any two non-constant meromorphic functions f and g , and a ∈ S( f )∩S(g) ,
we say that f and g share a CM(IM) provided that f − a and g− a have the same
zeros counting (ignoring) multiplicities.

In 1997 Yang and Hua [3] studied the uniqueness problem for meromorphic func-
tions when ( f n)′ and (gn)′ share a non-zero value. Bhoosnurmath and Dyavanal [1]
extended the Yang-Hua’s [3] result and proved the following theorem.

THEOREM 1. [1] Let f and g be two non-constant meromorphic functions and
n, k be positive integers with n > 3k+8 . If ( f n)(k) and (gn)(k) share 1 CM, then one
of the following holds:

1. f (z) = c1ecz , g(z) = c2e−cz , where c1, c2 and c are three non-zero constants
such that (−1)k(c1c2)n(nc)2k = 1 .

2. f = tg for some t ∈ C such that tn = 1 .
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To state the next result we need the following set sharing concept of functions.
For a set S ⊆C and a meromorphic function f , we define Ef (S) =

⋃
a∈S{z| f (z)−

a = 0,counting multiplicities} , E f (S) =
⋃

a∈S{z| f (z)−a = 0, ignoring multiplicities} .
If Ef (S) = Eg(S)

(
E f (S) = Eg(S)

)
, then we say that f and g share S CM (IM). Ap-

parently, if S contains only one element, then it coincides with the standard definition
of CM (respectively, IM) shared value.

In 2018, An and Khoai [6] extended the result of Yang and Hua [3] by considering
set sharing instead of value sharing and proved the following theorem for uniqueness
of meromorphic functions.

THEOREM 2. [6] Let f and g be two non-constant meromorphic functions. Let
k , d , n be three positive integers with n > 2k+ 2k+8

d , d � 2 and S = {a∈ C : ad = 1} .
If ( f n)(k) and (gn)(k) share S CM, then one of the following holds:

1. f (z) = c1ecz , g(z) = c2e−cz , where c1, c2 and c are three non-zero constants
such that (−1)kd(c1c2)nd(nc)2kd = 1 .

2. f = tg for some t ∈ C such that tnd = 1 .

Regarding Theorem 2, a natural question to ask is the following:

QUESTION 1. Can CM be replace by IM keeping the same conclusion?

In 2020 Dilip et al. [12] answer the Question 1 positively and proved the following
theorem.

THEOREM 3. [12] Let f and g be two non-constant meromorphic functions. Let
k , d , n be three positive integers with n > 2k+ 8k+14

d , d � 2 and S = {a∈C : ad = 1} .
If ( f n)(k) and (gn)(k) share S IM, then one of the following holds:

1. f (z) = c1ecz , g(z) = c2e−cz , where c1, c2 and c are three non-zero constants
such that (−1)kd(c1c2)nd(nc)2kd = 1 .

2. f = tg for some t ∈ C such that tnd = 1 .

Now, we recall the idea of weighted sharing, which appeared in the literature in
([8, 9]). This concept encourages more open discussions about sharing. We explain this
in the following definition.

DEFINITION 1. [8, 9] Let m be a non-negative integer or infinity and a ∈ S( f ) .
We denote by Em(a, f ) the set of all zeros of f − a , where a zero of multiplicity k is
counted k times if k � m and m+ 1 times if k > m . If Em(a, f ) = Em(a,g) , we say
that f , g share the function a with weight m and we write f and g share (a,m) . Since
Em(a, f ) = Em(a,g) implies that Es(a, f ) = Es(a,g) for any integer s (0 � s < m) , if
f , g share (a,m) , then f , g share (a,s) , (0 � s < m) . Moreover, we note that f
and g share the function a IM or CM if and only if f and g share (a,0) or (a,∞)
respectively.
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DEFINITION 2. Let S be a set of distinct elements of C∪{∞} and m be a non-
negative integer. We denote by Ef (S,m) the set Ef (S,m) =

⋃
a∈S Em(a, f ) . We say that

f and g share the set S with weight m if Ef (S,m) = Eg(S,m) and we write f and g
share (S,m) .

The following theorem was established in 2020 by Lahiri and Sinha [11], who also
addressed some gaps in Theorems 2.

THEOREM 4. [11] Let f and g be two non-constantmeromorphic functions shar-
ing (∞,0) . Let k , d , n be three positive integers with n > max{3,2k+ 2k+8

d } , d � 2
and S = {a∈C : ad = 1} . If ( f n)(k) and (gn)(k) share (S,2) , then one of the following
holds:

1. f (z) = c1ecz , g(z) = c2e−cz , where c1, c2 and c are three non-zero constants
satisfying (−1)kd(c1c2)nd(nc)2kd = 1 .

2. f = tg for some t ∈ C such that tnd = 1 .

The scenario where two differential polynomials share the set of roots of unity
with relax weighted sharing was explored in 2022 by Pramanik and Roy [13]. They
demonstrated the following theorem.

THEOREM 5. [13] Let f and g be two non-constantmeromorphic functions shar-
ing (∞,0) . Let k (� 1) , m (� 0) , d (� 2) , n (� 1) be integers, and S = {a ∈ C : ad =
1} . If ( f n)(k) and (gn)(k) share (S,m) with one of the following conditions:

(i) m � 2 and

n > max

{
3,2k+

2k+8
d

}
,

(ii) m = 1 and

n > max

{
3,2k+

3k+9
d

}
,

(iii) m = 0 and

n > max

{
3,2k+

8k+14
d

}
,

then one of the following holds:
1. f (z) = c1ecz , g(z) = c2e−cz , where c1, c2 and c are three non-zero constants

such that (−1)kd(c1c2)nd(nc)2kd = 1 .
2. f = tg for some t ∈ C such that tnd = 1 .

Let P be a polynomial of degree q ,

P(z) = (z−a1)m1(z−a2)m2 . . . . . .(z−al)ml , (1)

where a1,a2, . . . ,al are distinct zeros of P , and m1 +m2 + . . . +ml = q .
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DEFINITION 3. [5] A polynomial P(z) is called a strong uniqueness polynomial
for meromorphic (entire) functions if for any two non-constant meromorphic (entire)
functions f and g , and a non-zero constant c , the condition P( f ) = cP(g) implies
f = g .

The following findings were recently proved by Khoai and An [7], who did not
accept the premise that f and g share ∞ , as suggested by [11].

THEOREM 6. [7] Let f and g be two non-constant meromorphic functions, P be
a polynomial of degree q (> 0) of the form (1) and n (� 1) , k (� 1) be integers with
n > 3k + 4l+4

q . If (P( f )n)(k) and (P(g)n)(k) share 1 CM, then one of the following
holds:

1. l = 1 ; f = a1 +c1ecz and g = a1 +c2e−cz for three non-zero constants c1,c2,c
such that (−1)k(c1c2)nq(nqc)2k = 1 .

2. l = 1 ; f −a1 = t(g−a1) with tnq = 1 , t ∈ C .
3. l � 2 ; P( f ) = tP(g) with tn = 1 , t ∈ C . Further if P is a strong uniqueness

polynomial then, f = g.
In particular, when P(z) = zq +azq−p +b with a,b �= 0 and q � 2p+9 , we have

g = h f for a constant h such that hq = 1 and hp = 1 if p � 2 ; f = g if p � 2 ,
(q, p) = 1 .

THEOREM 7. [7] Let f and g be two non-constant meromorphic functions, P be
a polynomial of degree q (> 0) of the form (1). Let n (� 1) , k (� 1) be integers with
n > max{ 4k+5l−2

2q ,2k+ 4l+4+2kq
qd } , d � 2 , and S = {a∈ C : ad = 1} . If (P( f )n)(k) and

(P(g)n)(k) share S CM then one of the following holds:
1. l = 1 ; f = a1 +c1ecz and g = a1 +c2e−cz for three non-zero constants c1,c2,c

such that (−1)k(c1c2)nq(nqc)2k = 1 .
2. l = 1 ; f −a1 = t(g−a1) with tnq = 1 , t ∈ C .
3. l � 2 ; P( f ) = tP(g) with tn = 1 , t ∈ C . Further if P is a strong uniqueness

polynomial then, f = g.
In particular, when P(z) = zq +azq−p +b with a,b �= 0 and q � 2p+9 , we have

g = h f for a constant h such that hq = 1 and hp = 1 if p � 2 ; f = g if p � 2 ,
(q, p) = 1 .

Sahoo and Sultana [14] investigated the uniqueness problem of meromorphic func-
tions in 2024, when two differential polynomials share a value or a set of roots of unity
with finite weight. The outcomes of Sahoo and Sultana are listed below.

THEOREM 8. [14] Let f and g be two non-constant meromorphic functions, P
be a polynomial of degree q (> 0) of the form (1) and n (� 1) , k (� 1) be integers
with n > 3k+ 4l+4

q . If (P( f )n)(k) and (P(g)n)(k) share (1,2) , then one of the following
holds:

1. l = 1 ; f = a1 +c1ecz and g = a1 +c2e−cz for three non-zero constants c1,c2,c
such that (−1)k(c1c2)nq(nqc)2k = 1 .

2. l = 1 ; f −a1 = t(g−a1) with tnq = 1 , t ∈ C .
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3. l � 2 ; P( f ) = tP(g) with tn = 1 , t ∈ C . Further if P is a strong uniqueness
polynomial then, f = g.

In particular, when P(z) = zq +azq−p +b with a,b �= 0 and q � 2p+9 , we have
g = h f for a constant h such that hq = 1 and hp = 1 if p � 2 ; f = g if p � 2 ,
(q, p) = 1 .

THEOREM 9. [14] Let f and g be two non-constant meromorphic functions, P
be a polynomial of degree q (> 0) of the form (1). Let n (� 1) , k (� 1) be integers
with n > max{ 2k+2l−1

q ,2k+ 4l+4+2kq
qd } , d � 2 , and S = {a∈ C : ad = 1} . If (P( f )n)(k)

and (P(g)n)(k) share (S,2) , then one of the following holds:
1. l = 1 ; f = a1 +c1ecz and g = a1 +c2e−cz for three non-zero constants c1,c2,c

such that (−1)k(c1c2)nq(nqc)2k = 1 .
2. l = 1 ; f −a1 = t(g−a1) with tnq = 1 , t ∈ C .
3. l � 2 ; P( f ) = tP(g) with tn = 1 , t ∈ C . Further if P is a strong uniqueness

polynomial then, f = g.
In particular, when P(z) = zq +azq−p +b with a,b �= 0 and q � 2p+9 , we have

g = h f for a constant h such that hq = 1 and hp = 1 if p � 2 ; f = g if p � 2 ,
(q, p) = 1 .

Regarding Theorems 6–9, it is natural to ask the following question:

QUESTION 2. Is it possible to relax the nature of sharing of value or set?

We establish the following theorems in order to respond the Question 2.

THEOREM 10. Let f and g be two non-constant meromorphic functions and P
be a polynomial of degree q (> 0) of the form (1). Let n (� 1) , k (� 1) be integers
and m be non-negative integer or ∞ . If (P( f )n)(k) and (P(g)n)(k) share (1,m) with
one of the following conditions:

(i) m � 2 and

n > 3k+
4l +4

q
, (2)

(ii) m = 1 and

n >
7k
2

+
k+9l +15

2q
, (3)

(iii) m = 0 and

n > 6k+
3k+7l +7

q
, (4)

then one of the following holds:
1. l = 1 ; f = a1 +c1ecz and g = a1 +c2e−cz for three non-zero constants c1,c2,c

such that (−1)k(c1c2)nq(nqc)2k = 1 .
2. l = 1 ; f −a1 = t(g−a1) with tnq = 1 , t ∈ C .
3. l � 2 ; P( f ) = tP(g) with tn = 1 , t ∈ C . Further if P is a strong uniqueness

polynomial then, f = g.
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In particular, when P(z) = zq +azq−p +b with a,b �= 0 and q � 2p+9 , we have
g = h f for a constant h such that hq = 1 and hp = 1 if p � 2 ; f = g if p � 2 ,
(q, p) = 1 .

THEOREM 11. Let f and g be two non-constant meromorphic functions and P
be a polynomial of degree q (> 0) of the form (1). Let n (� 1) , k (� 1) be integers, m
be non-negative integer or ∞ , and S = {a ∈ C : ad = 1} . If (P( f )n)(k) and (P(g)n)(k)

share (S,m) with one of the following conditions:
(i) m � 2 and

n > max

{
2k+

4l +4+2kq
qd

,
2k+2l−1

q

}
, (5)

(ii) m = 1 and

n > max

{
2k+

3kq+ k+9l+9
2dq

,
2k+2l−1

q

}
, (6)

(iii) m = 0 and

n > max

{
2k+

5kq+3k+7l+7
dq

,
2k+2l−1

q

}
, (7)

then one of the following holds:
1. l = 1 ; f = a1 +c1ecz and g = a1 +c2e−cz for three non-zero constants c1,c2,c

such that (−1)k(c1c2)nq(nqc)2k = 1 .
2. l = 1 ; f −a1 = t(g−a1) with tnq = 1 , t ∈ C .
3. l � 2 ; P( f ) = tP(g) with tn = 1 , t ∈ C . Further if P is a strong uniqueness

polynomial then, f = g.
In particular, when P(z) = zq +azq−p +b with a,b �= 0 and q � 2p+9 , we have

g = h f for a constant h such that hq = 1 and hp = 1 if p � 2 ; f = g if p � 2 ,
(q, p) = 1 .

REMARK 1. We can easily see that Theorem 10 and Theorem 11 generalize and
improve Theorem 6, Theorem 8 and Theorem 7, Theorem 9 respectively.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F , G , F̃ and G̃ be non-constant meromorphic functions and H , H̃ be two functions
which are defined as follows:

H :=

(
F (2)

F (1) −2
F (1)

F −1

)
−
(

G(2)

G(1) −2
G(1)

G−1

)
(8)

and

H̃ :=

(
F̃ (2)

F̃ (1) −2
F̃(1)

F̃ −1

)
−
(

G̃(2)

G̃(1) −2
G̃(1)

G̃−1

)
.
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LEMMA 1. [15, 17] Let f be a non-constant meromorphic function and let
a0,a1, . . . ,an (�≡ 0) be small functions with respect to f . Then

T
(
r,an f n +an−1 f n−1 + . . . +a0

)
= nT (r, f )+S(r, f ).

LEMMA 2. [17] Let f be a non-constant meromorphic function and let k be a
positive integer. Then

T (r, f (k)) � (k+1)T(r, f )+S(r, f ).

LEMMA 3. [14] Let f be a non-constant meromorphic function and k , n be
positive integers with n � k + 2 , and let P(z) be a polynomial of degree q (> 0) . If
a ∈ C\ {0} , then

n− k−2
n+ k

T (r, f ) � N

(
r,

1

(P( f )n)(k) −a

)
+S(r, f ).

LEMMA 4. [7] Let f be a non-constant meromorphic function and k , n be posi-
tive integers with n > 2k , and let P(z) be a polynomial of degree q (> 0) . Then

(i)

(n−2k)qT(r, f )+ kN(r,P( f ))+N

(
r,

P( f )n−k

(P( f )n)(k)

)
� T

(
r,(P( f )n)(k)

)
+S(r, f ).

(ii)

N

(
r,

P( f )n−k

(P( f )n)(k)

)
� kqT (r, f )+ kN(r,P( f ))+S(r, f )

= kqT (r, f )+ kN(r, f )+S(r, f ).

LEMMA 5. [10] Let f and g be two non-constant meromorphic functions and let
n , k be integers with n > 2k . If ( f n)(k).(gn)(k) = 1 , then f and g are transcendental
entire functions such that f (z) = c1ecz , g(z) = c2e−cz , where c1, c2 and c are three
non-zero constants such that (−1)k(c1c2)n(nc)2k = 1 .

LEMMA 6. [13] Let m be a non-negative integer or ∞ . F and G be non-constant
meromorphic functions sharing (1,m) and H as defined in (8) such that H �≡ 0 .

(i) If m � 2 , then

T (r,F) � 2N(r,F)+2N(r,G)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+S(r,F)+S(r,G).

(ii) If m = 1 , then

T (r,F) � 5
2
N(r,F)+2N(r,G)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)

+
1
2
N

(
r,

1
F

)
+S(r,F)+S(r,G).
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(iii) If m = 0 , then

T (r,F) � 4N(r,F)+3N(r,G)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)

+2N

(
r,

1
F

)
+N

(
r,

1
G

)
+S(r,F)+S(r,G).

The same inequality holds for T (r,G) .

LEMMA 7. [14] Let f and g be two non-constant meromorphic functions, and
P(z) be a polynomial of degree q (> 0) of the form (1), and k , n be positive integers
with n > 2k+2l−1

q . If (P( f )n)(k) = (P(g)n)(k) , then P( f ) = tP(g) with tn = 1 .

LEMMA 8. [4] Let p,q be positive integer, c,d,e,u,v,t ∈ C be non-zero con-
stants, and let q � 2p + 4 , and either p � 2 , (p,q) = 1 , or q � 4 . Suppose that
( f ,g) is a non-constant meromorphic solution of the equation

c f q +d f q−p + e = ugq + vgq−p + t.

Then t = e and there exist a non-zero constant h, such that g = h f , with hq = c
u ,

hq−p = d
v .

3. Proof of the Main Theorems

Proof of Theorem 10. Let

F1 := P( f ), F := (P( f )n)(k) and G1 := P(g), G := (P(g)n)(k).

Then we have (P( f )n)(k) = P( f )n−kL( f ) and (P(g)n)(k) = P(g)n−kL(g) , where L is a
differential polynomial. By Lemmas 1, 2 and 4, we have

(n−2k)qT(r, f ) � T (r,F)+S(r, f ) � (k+1)nqT(r, f )+S(r, f ),

and
(n−2k)qT(r,g) � T (r,G)+S(r,g) � (k+1)nqT(r,g)+S(r,g).

Therefore S(r,F) = S(r, f ) and S(r,G) = S(r,g) .
We see that, each pole of F is of order � n+ k � 2, because it is a pole of P( f ).

By (ii) of Lemma 4 we get

N2(r,F) = 2N(r, f ) � 2T (r, f )+S(r, f ),

and

N

(
r,

1
F1

)
�

l

∑
i=1

N

(
r,

1
f −ai

)
� lT (r, f )+S(r, f ), (9)
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N2

(
r,

1
F

)
� N2

(
r,

1

Fn−k
1

)
+N

(
r,

1
L( f )

)

� 2N

(
r,

1
F1

)
+N

(
r,

1
L( f )

)
+S(r, f )

� 2lT (r, f )+ kN(r,F1)+ kqT(r, f )+S(r, f )
= (kq+2l)T(r, f )+ kN(r,F1)+S(r, f ). (10)

N

(
r,

1
F

)
� N

(
r,

1

Fn−k
1

)
+N

(
r,

1
L( f )

)

� N

(
r,

1
F1

)
+N

(
r,

1
L( f )

)
+S(r, f )

� lT (r, f )+ kN(r,F1)+ kqT(r, f )+S(r, f )
= (kq+ l)T (r, f )+ kN(r,F1)+S(r, f ). (11)

Similarly,

N2

(
r,

1
G

)
� 2lT (r,g)+N

(
r,

1
L(g)

)
+S(r,g)

� (kq+2l)T(r,g)+ kN(r,G1)+S(r,g), (12)

N

(
r,

1
G

)
� (kq+ l)T (r,g)+ kN(r,G1)+S(r,g). (13)

Case 1: H �≡ 0. Next, using Lemma 6, we obtain the subsequent subcases:

Subcase 1.1: If m � 2, then

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+2N (r,F)

+2N (r,G)+S (r,F)+S (r,G) . (14)

By using (9)–(13) in (14) we get

T (r,F) � (kq+2l +2)T(r, f )+ kN(r,F1)+ (2l +2)T(r,g)+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g). (15)

Similarly,

T (r,G) � (kq+2l +2)T(r,g)+ kN(r,G1)+ (2l +2)T (r, f )+N

(
r,

1
L( f )

)
+S(r, f )+S(r,g). (16)
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Adding (15) and (16) we obtain

T (r,F)+T(r,G) � (kq+4l +4)(T (r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g). (17)

By Lemma 4 we get

(n−2k)qT(r, f )+ kN(r,F1)+N

(
r,

1
L( f )

)
� T (r,F)+S(r, f ), (18)

and

(n−2k)qT(r,g)+ kN(r,G1)+N

(
r,

1
L(g)

)
� T (r,G)+S(r,g). (19)

From (17), (18) and (19) we get

q(n−2k)(T(r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
� (kq+4l +4)(T (r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g).

Moreover, N(r,F1)+N(r,G1) � N(r,F1)+N(r,G1). Therefore (n−2k)q � kq+4l+4
⇒ n � 3k+ 4l+4

q , which contradicts (2).

Subcase 1.2: m = 1, then

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+

5
2
N (r,F)

+2N (r,G)+
1
2
N

(
r,

1
F

)
+S (r,F)+S (r,G) . (20)

By using (9)–(13) in (20), we get

T (r,F) � (kq+2l)T(r, f )+ kN(r,F1)+2lT(r,g)+N

(
r,

1
L(g)

)

+
5
2
N(r, f )+2N(r,g)+

(kq+ l)
2

T (r, f )+
k
2
N(r,F1)+S(r, f )+S(r,g)

� (3kq+ k+5l+5)
2

T (r, f )+ kN(r,F1)+ (2l +2)T (r,g)+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g). (21)

Similarly,

T (r,G) � (3kq+ k+5l+5)
2

T (r,g)+ kN(r,G1)+ (2l +2)T (r, f )+N

(
r,

1
L( f )

)
+S(r, f )+S(r,g). (22)
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Adding (21) and (22) we obtain

T (r,F)+T(r,G) �
(

(3kq+ k+5l+5)
2

+2l +2

)
(T (r, f )+T (r,g))

+k(N(r,F1)+N(r,G1))+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g). (23)

From (18), (19) and (23) we get

q(n−2k)(T(r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)

�
(

(3kq+ k+5l+5)
2

+2l +2

)
(T (r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g)

⇒ (n−2k)q{T(r, f )+T (r,g)} �
(

(3kq+ k+5l+5)
2

+2l +2

)
{T (r, f )+T (r,g)}

+S(r, f )+S(r,g).

Therefore (n−2k)q �
(

(3kq+k+5l+5)
2 +2l +2

)
⇒ n � 7k

2 + k+9l+15
2q , which contradicts

(3).

Subcase 1.3: m = 0, then

T (r,F) � 4N(r,F)+3N(r,G)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+2N

(
r,

1
F

)

+N

(
r,

1
G

)
+S(r,F)+S(r,G) (24)

By using (9)–(13) in (20) we get

T (r,F) � (3kq+4l+2k+4)T(r, f )+ kN(r,F1)+ (3+3l+ kq+ k)T(r,g)

+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g). (25)

Similarly,

T (r,G) � (3kq+4l +2k+4)T(r,g)+ kN(r,G1)+ (3+3l+ kq+ k)T(r, f )

+N

(
r,

1
L( f )

)
+S(r, f )+S(r,g). (26)
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Adding (25) and (26) we obtain

T (r,F)+T (r,G) � (4kq+3k+7l+7)(T(r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g). (27)

From (18), (19) and (27) we get

q(n−2k)(T(r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
� (4kq+3k+7l+7)(T(r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g),

⇒ (n−2k)q{T(r, f )+T (r,g)}� (4kq+3k+7l+7){T(r, f )+T (r,g)}+S(r, f )+S(r,g).

Therefore (n−2k)q � (4kq+3k+7l+7) ⇒ n � 6k+ 3k+7l+7
q , which contradicts (4).

Case 2: H ≡ 0. So on integrating twice we get

1
G−1

=
A

F −1
+B,

where A (�= 0) and B are constants.
Thus

G =
(B+1)F +(A−B−1)

BF +(A−B)
, (28)

and

F =
(B−A)G+(A−B−1)

BG− (B+1)
. (29)

Next we consider the following three subcases:

Subcase 2.1: B �= 0,−1. Then from (29) we have

N

(
r,

1

G− B+1
B

)
= N(r,F).

By Nevanlinna second fundamental theorem

T (r,G) � N(r,G)+N

(
r,

1
G

)
+N

(
r,

1

G− B+1
B

)
+S(r,G)

� N(r,G)+N

(
r,

1
G

)
+N(r,F)+S(r,G)

⇒ T (r,G) � (l +1)T(r,g)+N

(
r,

1
L(g)

)
+T (r, f )+S(r, f )+S(r,g). (30)
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If A−B−1 �= 0, then it follows from (28) that

N

(
r,

1

F − −A+B+1
B+1

)
= N

(
r,

1
G

)
.

Again by Nevanlinna second fundamental theorem we have

T (r,F) � N(r,F)+N

(
r,

1
F

)
+N

(
r,

1

F − −A+B+1
B+1

)
+S(r,F)

� N(r,F)+N

(
r,

1
F

)
+N

(
r,

1
G

)
+S(r,F)+S(r,G),

⇒ T (r,F) � (l +2)T(r, f )+N

(
r,

1
L( f )

)
+ kN(r,G1)

+(kq+ l)T(r,g)+S(r, f )+S(r,g). (31)

By (18), (19), (30) and (31) we get

q(n−2k)(T(r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
� (l +3)T (r, f )+ (qk+2l+1)T (r,g)+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g),

which gives(
n−2k− l +3

q

)
T (r, f )+

(
n−3k− 2l +1

q

)
T (r,g) � S(r, f )+S(r,g)

⇒
(

n−3k− 2l +1
q

)
(T (r, f )+T (r,g)) � S(r, f )+S(r,g),

which contradicts our assumptions (2)–(4).
Therefore A−B−1 = 0. Then by (28)

N

(
r,

1

F + 1
B

)
= N(r,G).

By Nevanlinna second fundamental theorem and Lemma 4 we get

T (r,F) � N(r,F)+N

(
r,

1
F

)
+N

(
r,

1

F + 1
B

)
+S(r,F)

� N(r,F)+N

(
r,

1
F

)
+N(r,G)+S(r,F)
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⇒ T (r,F) � N(r, f )+ lT (r, f )+N

(
r,

1
L( f )

)
+N(r,g)

+S(r, f )+S(r,g). (32)

Adding (18), (19) and using (32), (30) we get

q(n−2k)(T(r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
� (l +2)(T (r, f )+T (r,g))+ k(N(r,F1)+N(r,G1))

+N

(
r,

1
L( f )

)
+N

(
r,

1
L(g)

)
+S(r, f )+S(r,g).

Therefore we obtain(
n−2k− l +2

q

)
{T (r, f )+T (r,g)} � S(r, f )+S(r,g),

which violates assumptions (2)–(4).

Subcase 2.2: B = −1. Then

G =
A

A+1−F
,

and

F =
(1+A)G−A

G
.

If A+1 �= 0,

N

(
r,

1
F − (A+1)

)
= N(r,G),

N

(
r,

1

G− A
A+1

)
= N

(
r,

1
F

)
.

By similar argument as Subcase 2.1 we have a contradiction.
Therefore A+1 = 0 then FG = 1. and so we get (P( f )n)(k).(P(g)n)(k) = 1. Let

l = 1, then P(z) = (z−a1)q . Therefore we have

(( f −a1)nq)(k).((g−a1)nq)(k) = 1.

Using Lemma 5 and noting that n > 2k , we obtain f = a1 + c1ecz and g = a1 + c2e−cz

for three non-zero constants c1,c2,c such that (−1)k(c1c2)nq(nqc)2k = 1, which is (i).
Next suppose that l � 2 and since n > 2k , by Lemma 5, we obtain P( f ) = c1ecz and
P(g) = c2e−cz for three non-zero constants c1,c2,c such that (−1)k(c1c2)nq(nqc)2k =
1. From this it follows that f and g are entire function. Since P(z) = (z− a1)

m1
1 (z−

a2)m2 . . . (z− al)ml for l � 2, by Picard’s theorem P( f ) and P(g) must have a zero,
which is a contradiction.
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Subcase 2.3: B = 0. Then (28) and (29) gives G = F+A−1
A and F = AG+1−A .

If A− 1 �= 0, N
(
r, 1

A−1+F

)
= N

(
r, 1

G

)
and N

(
r, 1

G− A−1
A

)
= N(r, 1

F ) . Proceeding

similarly as in Subcase 2.1, we get a contradiction.
Therefore, A− 1 = 0 then F ≡ G i.e., (P( f )n)(k) = (P(g)n)(k) . Using Lemma

7 and n > 2k+2l−1
q , we obtain P( f ) = tP(g) with tn = 1. Further, if P is a strong

uniqueness polynomial then, f = g . If l = 1, then ( f − a1) = t1(g− a1) with tnq
1 =

1,t1 ∈ C .
We now consider the case when P(z) = zq + azq−p + b with a,b �= 0. By the

similar argument as in Lemma 7, we see that there exist a t such that P( f ) = tP(g) , i.e.

f q +a f q−p +b = t(gq +agq−p +b).

Applying Lemma 8 and using the similar argument as in the proof of Theorem 1 [7],
we get f = g . This completes the proof. �

Proof of Theorem 11. Let

F := (P( f )n)(k), F1 := P( f ), F̃ := Fd and G := (P(g)n)(k), G1 := P(g), G̃ := Gd .

Then we have (P( f )n)(k) = P( f )n−kL( f ) and (P(g)n)(k) = P(g)n−kL(g) , where L is a
differential polynomial.

Since
E(F ;1) = ∪d−1

j=0E((P( f )n)(k));u j),

where 1,u1,u2, . . . ,ud−1 are distinct roots of zd = 1, from Lemma 3 with the value 1, it
implies that {(P( f )n)(k)}d = 1 has infinitely many solutions. Therefore E(S,(P( f )n)(k))
�= φ and E(S,(P(g)n)(k)) �= φ . Since (P( f )n)(k) and (P(g)n)(k) , share (S,m) , we see
that F̃ and G̃ share (1,m) .

We see that, each pole of F is of order � n+ k � 2, because it is a pole of P( f ).
Now, if a is a zero of ( f n)(k) then F(a) = 0 with multiplicity of zero � 2.

By (ii) of Lemma 4 we get

N2(r, F̃) = 2N(r, f ) � 2T (r, f )+S(r, f ),

and

N

(
r,

1
F1

)
�

l

∑
i=1

N

(
r,

1
f −ai

)
� lT (r, f )+S(r, f ), (33)

N2

(
r,

1

F̃

)
= 2N

(
r,

1

F̃

)
= 2N

(
r,

1
F

)

� 2N

(
r,

1

Fn−k
1

)
+2N

(
r,

1
L( f )

)

� 2N

(
r,

1
F1

)
+2N

(
r,

1
L( f )

)
+S(r, f )

� 2lT (r, f )+2N

(
r,

1
L( f )

)
+S(r, f ). (34)
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Similarly,

N2

(
r,

1

G̃

)
= 2N

(
r,

1

G̃

)
= 2N

(
r,

1
G

)

� 2lT (r,g)+2N

(
r,

1
L(g)

)
+S(r,g). (35)

Case 1: H̃ �≡ 0. Then by Lemma 6, we get following subcases:

Subcase 1.1: If m � 2, then

T (r, F̃) � N2

(
r,

1
F̃

)
+N2

(
r,

1

G̃

)
+2N

(
r, F̃
)

+2N
(
r,G̃
)
+S
(
r, F̃
)
+S
(
r,G̃
)
. (36)

From Lemmas 1, 2 and 4, we have S(r, F̃) = S(r, f ) and S(r,G̃) = S(r,g) . Using (33)–
(35) in (36) we get

T (r, F̃) � (2l +2)T (r, f )+2N

(
r,

1
L( f )

)
+(2l +2)T(r,g)

+2kqT(r,g)+2kN(r,g)+S(r, f )+S(r,g). (37)

Similarly,

T (r,G̃) � (2l +2)T(r,g)+2N

(
r,

1
L(g)

)
+(2l +2)T(r, f )

+2kqT (r, f )+2kN(r, f )+S(r, f )+S(r,g). (38)

Adding (37) and (38), we get

T (r, F̃)+T(r,G̃) � (4l +2kq+4)(T(r, f )+T (r,g))

+2N

(
r,

1
L(g)

)
+2N

(
r,

1
L( f )

)
+2kN(r, f )+2kN(r,g)+S(r, f )+S(r,g). (39)

Since n > 2k and d � 2. Using (18), (19) and (39), we have

qd(n−2k)(T(r, f )+T (r,g))
� (4l +2kq+4)(T(r, f )+T (r,g))+2kN(r, f )+2kN(r,g)

−dk(N(r,F1)+N(r,G1))+S(r, f )+S(r,g)
� (4l +2+2kq)(T(r, f )+T (r,g))+S(r, f )+S(r,g).

Therefore, (n− 2k)dq � 2kq + 4l + 4 ⇒ n � 2k + 4l+4+2kq
qd , which contradicts

(5).



UNIQUENESS RESULTS FOR DIFFERENTIAL POLYNOMIALS. . . 153

Subcase 1.2: m = 1, then

T (r, F̃) � N2

(
r,

1

F̃

)
+N2

(
r,

1

G̃

)
+

5
2
N
(
r, F̃
)

+2N
(
r,G̃
)
+

1
2
N

(
r,

1

F̃

)
+S
(
r, F̃
)
+S
(
r,G̃
)
. (40)

By using (33)–(35) in (40), we get

T (r, F̃) � 2lT (r, f )+2N

(
r,

1
L( f )

)
+2lT (r,g)+2kqT(r,g)+2kN(r,g)

+
5
2
N(r, f )+2N(r,g)+

(kq+ l)
2

T (r, f )+
k
2
N(r,F1)+S(r, f )+S(r,g)

� (kq+ k+5l+5)
2

T (r, f )+2N

(
r,

1
L( f )

)
+(2l +2+2kq)T(r,g)

+2kN(r,g)+S(r, f )+S(r,g). (41)

Similarly,

T (r,G̃) � (kq+ k+5l+5)
2

T (r,g)+2N

(
r,

1
L(g)

)
+(2l +2+2kq)T(r, f )

+2kN(r, f )+S(r, f )+S(r,g). (42)

Adding (41) and (42) we obtain

T (r, F̃)+T(r,G̃) � (3kq+ k+9l+9)
2

(T (r, f )+T (r,g))+2k(N(r, f )+N(r,g))

+2N

(
r,

1
L( f )

)
+2N

(
r,

1
L(g)

)
+S(r, f )+S(r,g). (43)

For n > 2k and d � 2. From (18), (19) and (43) we get

dq(n−2k)(T(r, f )+T (r,g))+dk(N(r,F1)+N(r,G1))

+dN

(
r,

1
L( f )

)
+dN

(
r,

1
L(g)

)

� (3kq+ k+9l+9)
2

(T (r, f )+T (r,g))+2k(N(r, f )+N(r,g))

+2N

(
r,

1
L( f )

)
+2N

(
r,

1
L(g)

)
+S(r, f )+S(r,g),

⇒ (n−2k)dq{T(r, f )+T (r,g)} �
(

(3kq+ k+5l+9)
2

+2l +4

)
{T (r, f )+T (r,g)}

+S(r, f )+S(r,g).

Therefore, (n−2k) � (3kq+k+9l+9)
2dq ⇒ n � 2k+ 3kq+k+9l+9

2dq , which contradicts (6).
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Subcase 1.3: m = 0, then

T (r, F̃) � 4N(r, F̃)+3N(r,G̃)+N2

(
r,

1

F̃

)
+N2

(
r,

1

G̃

)
+2N

(
r,

1

F̃

)

+N

(
r,

1

G̃

)
+S(r, F̃)+S(r,G̃). (44)

By using (33)–(35) in (44), we obtain

T (r, F̃) � (4l +2k+2kq+4)T(r, f )+2N

(
r,

1
L( f )

)
+(3l + k+3)T(r,g)

+3kqT(r,g)+2kN(r,g)+S(r, f )+S(r,g). (45)

Similarly,

T (r,G̃) � (4l +2k+2kq+4)T(r,g)+2N

(
r,

1
L(g)

)
+(3l + k+3)T(r, f )

+3kqT (r, f )+2kN(r, f )+S(r, f )+S(r,g). (46)

Adding (45) and (46) we obtain

T (r, F̃)+T (r,G̃) � (5kq+3k+7l+7)(T (r, f )+T (r,g))+2k(N(r, f )+N(r,g))

+2N

(
r,

1
L( f )

)
+2N

(
r,

1
L(g)

)
+S(r, f )+S(r,g). (47)

From (18), (19) and (47) we get

dq(n−2k)(T(r, f )+T (r,g))+dk(N(r,F1)+N(r,G1))

+dN

(
r,

1
L( f )

)
+dN

(
r,

1
L(g)

)
� (5kq+3k+7l+7)(T (r, f )+T (r,g))+2k(N(r, f )+N(r,g))

+2N

(
r,

1
L( f )

)
+2N

(
r,

1
L(g)

)
+S(r, f )+S(r,g).

⇒ (n−2k)dq{T(r, f )+T (r,g)} � (5kq+3k+7l+7){T(r, f )+T (r,g)}
+S(r, f )+S(r,g).

Therefore (n−2k)dq � (5kq+3k+7l+7) ⇒ n � 2k+ 5kq+3k+7l+7
dq , which contradicts

(7).

Case 2: H̃ ≡ 0. Thus, when we integrate twice, we get

1

G̃−1
=

A

F̃ −1
+B,

where A (�= 0) and B are constants.
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Thus

G̃ =
(B+1)F̃ +(A−B−1)

BF̃ +(A−B)
, (48)

and

F̃ =
(B−A)G̃+(A−B−1)

BG̃− (B+1)
. (49)

Now we consider the following three subcases:

Subcase 2.1: B �= 0,−1. Then from (49) we have

N

(
r,

1

G̃− B+1
B

)
= N(r, F̃).

By Nevanlinna second fundamental theorem

T (r,G̃) � N(r,G̃)+N

(
r,

1

G̃

)
+N

(
r,

1

G̃− B+1
B

)
+S(r,G̃)

� N(r,G̃)+N

(
r,

1

G̃

)
+N(r, F̃)+S(r,G̃),

⇒ T (r,G̃) � (2l +1)T (r,g)+2N

(
r,

1
L(g)

)
+T(r, f )+S(r, f )+S(r,g). (50)

If A−B−1 �= 0, then it follows from (48) that

N

(
r,

1

F̃ − −A+B+1
B+1

)
= N

(
r,

1

G̃

)
.

Again by Nevanlinna second fundamental theorem we have

T (r, F̃) � N(r, F̃)+N

(
r,

1

F̃

)
+N

(
r,

1

F̃ − −A+B+1
B+1

)
+S(r, F̃)

� N(r, F̃)+N

(
r,

1

F̃

)
+N

(
r,

1

G̃

)
+S(r, F̃)+S(r,G̃),

⇒ T (r, F̃) � (2l +1)T(r, f )+2N

(
r,

1
L( f )

)
+2kN(r,g)

+2(kq+ l)T(r,g)+S(r, f )+S(r,g). (51)

Using (18), (19), (50) and (51) we get

dq(n−2k)(T(r, f )+T (r,g))+dk(N(r,F1)+N(r,G1))

+dN

(
r,

1
L( f )

)
+dN

(
r,

1
L(g)

)
� (2l +2)T(r, f )+ (2qk+4l+1)T (r,g)+2kN(r, f )

+2N

(
r,

1
L( f )

)
+2N

(
r,

1
L(g)

)
+S(r, f )+S(r,g). (52)
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For n > 2k , d � 2 and (52), we get(
n−2k− 2l +2

qd

)
T (r, f )+

(
n−2k− 2kq+4l+1

qd

)
T (r,g) � S(r, f )+S(r,g)

⇒
(

n−2k− 2kq+4l+1
qd

)
(T (r, f )+T (r,g)) � S(r, f )+S(r,g),

which contradicts our assumptions (5)–(7).
Therefore A−B−1 = 0. Then by (48)

N

(
r,

1

F̃ + 1
B

)
= N(r,G̃).

By Nevanlinna second fundamental theorem and Lemma 4 we get

T (r, F̃) � N(r, F̃)+N

(
r,

1

F̃

)
+N

(
r,

1

F̃ + 1
B

)
+S(r, F̃)

� N(r, F̃)+N

(
r,

1

F̃

)
+N(r,G̃)+S(r, F̃),

⇒ T (r, F̃) � (2l +1)T(r, f )+2N

(
r,

1
L( f )

)
+N(r,g)+S(r, f )+S(r,g). (53)

Adding (18), (19) and using (53), (30) we get

dq(n−2k)(T(r, f )+T (r,g))+dk(N(r,F1)+N(r,G1))

+dN

(
r,

1
L( f )

)
+dN

(
r,

1
L(g)

)

� (2l +2)(T(r, f )+T (r,g))+2N

(
r,

1
L( f )

)
+2N

(
r,

1
L(g)

)
+S(r, f )+S(r,g).

Therefore we obtain(
n−2k− 2l +2

qd

)
{T (r, f )+T (r,g)} � S(r, f )+S(r,g),

which violates assumptions (5)–(7).

Subcase 2.2: B = −1. Then

G̃ =
A

A+1− F̃
,

and

F̃ =
(1+A)G̃−A

G̃
.
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If A+1 �= 0,

N

(
r,

1

F̃ − (A+1)

)
= N(r,G̃),

N

(
r,

1

G̃− A
A+1

)
= N

(
r,

1

F̃

)
.

By similar argument as Subcase 2.1 we have a contradiction.
Therefore A+1 = 0 then F̃G̃ = 1 and so we get (P( f )n)(k).(P(g)n)(k) = h , with

hd = 1. Let l = 1, then P(z) = (z−a1)q . Therefore we have

(( f −a1)nq)(k).((g−a1)nq)(k) = 1.

Using Lemma 5 and n > 2k , we obtain f = a1 + c1ecz and g = a1 + c2e−cz for three
non-zero constants c1,c2,c such that (−1)k(c1c2)nq(nqc)2k = 1, which is (i). If l � 2,
then proceeding similarly as in the proof of subcase 2.2 of Theorem 10, we obtain a
contradiction.

Subcase 2.3: B = 0. Then (48) and (49) gives G̃ = F̃+A−1
A and F̃ = AG̃+1−A .

If A−1 �= 0, N
(
r, 1

A−1+F̃

)
= N

(
r, 1

G̃

)
and N

(
r, 1

G̃− A−1
A

)
= N(r, 1

F̃
) . Proceeding

similarly as in Subcase 2.1 we get a contradiction.
Therefore, A− 1 = 0 then F̃ ≡ G̃ i.e., (P( f )n)(k) = h(P(g)n)(k) , with hd = 1.

Using Lemma 7 and n > 2k+2l−1
q , we obtain P( f ) = tP(g) with tnd = 1. Further, if

P is a strong uniqueness polynomial then, f = g . If l = 1, then ( f −a1) = t1(g−a1)
with tnqd

1 = 1, t1 ∈ C .
We now consider the case when P(z) = zq + azq−p + b with a,b �= 0. By the

similar argument as in Lemma 7, we see that there exist a t such that P( f ) = tP(g) , i.e.

f q +a f q−p +b = t(gq +agq−p +b).

Applying Lemma 8 and using the similar argument as in the proof of Theorem 10, we
obtain f = g . This completes the proof. �
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