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STATISTICAL AND ROUGH STATISTICAL

CONVERGENCE IN AN S–METRIC SPACE

SUKILA KHATUN ∗ AND AMAR KUMAR BANERJEE

Abstract. In this paper, using the concept of natural density, we have introduced the ideas of
statistical and rough statistical convergence in an S -metric space. We have investigated some
of their basic properties. We have defined statistical Cauchyness and statistical boundedness of
sequences and then some results related to these ideas have been studied. We have defined the
set of rough statistical limit points of a sequence in an S -metric space and have proved some
relevant results associated with such type of convergence.

1. Introduction

The notion of statistical convergence is a generalization of ordinary convergence.
The definition of statistical convergence was introduced by H. Fast [17] and H. Stein-
haus [25] independently in the year of 1951. The formal definitions are as follows:

For B ⊂ N let Bn = {k ∈ B : k � n} . Then the natural density of B , denoted by

δ (B) , is defined by δ (B) = limn→∞
|Bn|
n , if the limit exists, where |Bn| stands for the

cardinality of Bn . A real sequence {ξn} is said to be statistically convergent to ξ if
for every ε > 0 the set B(ε) = {k ∈ N : |ξn − ξ | � ε} has natural density zero. In this
case, ξ is called the statistical limit of the sequence {ξn} and we write st-lim ξn =
ξ . In many directions works were done on statistical convergence by many authors
[1, 12, 13, 14, 20, 27].

Many authors tried to give generalization of the concept of metric spaces in several
ways. For example probabilistic metric spaces [15], C∗ -algebra valued metric spaces
[16] etc. and related works were carried out by several authors [4, 7, 8]. In 2012, Sedghi
et al. [26] introduced the idea of S -metric spaces as a new structure of metric spaces.

The idea of rough convergence of sequences in a normed linear space was intro-
duced by H. X. Phu [23] in 2001. Also, Phu [24] extended this concept in an infinite
dimensional normed space in 2003. After that several works [2, 3, 18, 19, 21] were
done in many generalized spaces. For example the idea of rough convergence in a met-
ric space was studied by S. Debnath and D. Rakhshit [11], in a cone metric space it was
studied by A. K. Banerjee and R. Mondal [6] and in a partial metric space by A. K.
Banerjee and S. Khatun [9, 10].
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In this paper, we have introduced the idea of statistical convergence in an S -metric
space. We have investigated some basic properties of statistical convergence in this
space. We have defined statistical Cauchyness and statistical boundedness. Also we
have introduced the idea of rough statistical convergence which is an extension work
of rough convergence in the S -metric space. We have defined the rough limit set of a
sequence and investigated some basic properties of rough limit set in this space. Also
we have proved some relevant theorems in this space.

2. Preliminaries

DEFINITION 1. [26] In a non-empty set X , a function S : X3 −→ [0,∞) is said to
be an S -metric on X , if the following three conditions hold for every x,y,z,a ∈ X :

(i) S(x,y,z) � 0,
(ii) S(x,y,z) = 0 if and only if x = y = z ,
(iii) S(x,y,z) � S(x,x,a)+S(y,y,a)+S(z,z,a) .
Then the pair (X ,S) is said to be an S -metric space.

Properties and examples of S -metric spaces have been thoroughly discussed in [26].

DEFINITION 2. [26] In an S -metric space (X ,S) the open and closed ball of
radius r > 0 and center x ∈ X respectively are as follows:

BS(x,r) = {y ∈ X : S(y,y,x) < r} ,
BS[x,r] = {y ∈ X : S(y,y,x) � r} .

In an S -metric space (X ,S) the collection τ of all open balls in X forms a base
of a topology on X called topology induced by the S -metric. The open ball BS(x,r) of
radius r and centre x is an open set in X .

DEFINITION 3. [26] In an S -metric space (X ,S) a subset A of X is said to be
S -bounded if there exists r > 0 such that S(x,x,y) < r for every x,y ∈ A .

DEFINITION 4. [26] In an S -metric space (X ,S) a sequence {xn} is said to be
convergent to x in X if for every ε > 0 there exists a natural number k such that
S(xn,xn,x) < ε for every n � k .

DEFINITION 5. [26] In an S -metric space (X ,S) a sequence {xn} is said to be
a Cauchy sequence in X if for every ε > 0 there exists a natural number k such that
S(xn,xn,xm) < ε for every n,m � k .

DEFINITION 6. [26] The S -metric space (X ,S) is said to be complete if every
Cauchy sequence is convergent.

LEMMA 1. [26] In an S-metric space (X ,S) , we have S(x,x,y) = S(y,y,x) for
every x,y ∈ X .
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DEFINITION 7. [21] A sequence {xn} in an S -metric space (X ,S) is said to be
rough convergent or simply r -convergent to p if for every ε > 0 there exists a natural
number k such that S(xn,xn, p) < r+ ε holds for all n � k .

Here r is called the roughness degree of a sequence {xn} . Note that rough limit
of a sequence may not be unique. The set of all rough limits of a sequence {xn} is
denoted by LIMrxn . If r = 0, then the idea of rough convergence reduces to ordinary
convergence.

3. Statistical convergence in an S -metric space

DEFINITION 8. A sequence {xn} in an S -metric space (X ,S) is said to be sta-
tistically convergent to x ∈ X if for any ε > 0, δ (A(ε)) = 0, where A(ε) = {n ∈ N :
S(xn,xn,x) � ε} and we write st-limn→∞xn = x .

THEOREM 1. Every convergent sequence is statistically convergent in an S-metric
space (X ,S) .

Proof. Let (X ,S) be an S -metric space and let {xn} be a convergent sequence
converging to x in X . Then for ε > 0, there exists N ∈ N such that S(xn,xn,x) < ε
∀n � N . We consider the set A(ε) = {n∈ N : S(xn,xn,x) � ε} ⊂ {1,2,3, . . .(N−1)}=
P(say). Since P is a finite set, so δ (P) = 0. Hence δ (A(ε)) = 0. Therefore, {xn} is
statistically convergent to x in (X ,S) . So, st - limn→∞xn = x . �

REMARK 1. The converse of the above theorem may not be true as shown in the
following example.

EXAMPLE 1. Let X = R
2 and ||.|| be the Euclidean norm on X , then S(x,y,z) =

||x− z||+ ||y− z|| , ∀x,y,z ∈ X is an S -metric on X .
Let {xn} be a sequence in R

2 defined by

xn =

{
(k,k) if n = k2 for some k ∈ N,

(0,0) otherwise.

Let ε > 0 be given. Then we will show that {xn} is statistically convergent to x =
(0,0) .

Now, A(ε) = {n ∈ N : S(xn,xn,x) � ε} ⊂ {12,22,32 . . .} = P (say).
As δ (P) = 0, so δ (A(ε)) = 0. Hence st - limn→∞xn = x .
So, {xn} is statistically convergent to x = (0,0) .
If {xn} is bounded, then ∃ B(> 0) ∈ R such that S(xn,xn,xm) < B ∀n,m ∈ N

i.e. 2||xn − xm|| < B ∀n,m ∈ N i.e. ||xn − xm|| < B
2 . . . (1) ∀n,m ∈ N . Choose n = k2

where k > B , k ∈ N and m is any natural number such that m �= k2 for k ∈ N , then
xm = (0,0) and xn = (k,k) . So, ||xn − xm|| =

√
(k−0)2 +(k−0)2 =

√
2k > B > B

2 .
This contradicts (1). So, it is not bounded and hence {xn} is not ordinary convergent.
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By the following theorem we conclude that the statistical limit in an S -metric
space is unique.

THEOREM 2. Let {xn} be a sequence in an S-metric space (X ,S) such that

xn
st−→ x and xn

st−→ y, then x = y.

Proof. Let ε > 0 be arbitrary. Since xn
st−→ x and xn

st−→ y , for ε > 0, δ (A1(ε)) =
0 and δ (A2(ε)) = 0, where A1(ε) = {n ∈ N : S(xn,xn,x) � ε

3} and A2(ε) = {n ∈ N :
S(xn,xn,y) � ε

3} . Let K(ε) = A1(ε)∪A2(ε) , then δ (K(ε)) = 0. Hence δ (K(ε))c = 1.
Suppose k ∈ (K(ε))c = (A1(ε)∪A2(ε))c = (A1(ε))c ∩ (A2(ε))c . Then

S(x,x,y) � S(x,x,xk)+S(x,x,xk)+S(y,y,xk)
= S(xk,xk,x)+S(xk,xk,x)+S(xk,xk,y) (by Lemma 1)

<
ε
3

+
ε
3

+
ε
3

= ε.

Since ε > 0 is arbitrary, we get S(x,x,y) = 0. Therefore, x = y . �

DEFINITION 9. A sequence {xn} in an S -metric space (X ,S) is said to be statis-
tically Cauchy if for any ε > 0, ∃ N ∈ N such that δ (B(ε)) = 0, where B(ε) = {n ∈
N : S(xn,xn,xN) � ε} .

THEOREM 3. Let {xn} be a statistically convergent sequence in an S-metric
space (X ,S) . Then the sequence {xn} is statistically Cauchy sequence in (X ,S) .

Proof. Let the sequence {xn} be statistically convergent to x in (X ,S) . Then
for an arbitrary ε > 0, δ (A(ε)) = 0, where A(ε) = {n ∈ N : S(xn,xn,x) � ε

3} . So,
δ (A(ε))c = 1. Take Nε ∈ A(ε)c . Then S(xNε ,xNε ,x) < ε

3 . Now, we show that

{
n ∈ N : S(xn,xn,x) <

ε
3

}
⊂ {n ∈ N : S(xn,xn,xNε ) < ε}.

Let k ∈ {n ∈ N : S(xn,xn,x) < ε
3} = A(ε)c . Then S(xk,xk,x) < ε

3 . Now,

S(xk,xk,xNε ) � S(xk,xk,x)+S(xk,xk,x)+S(xNε ,xNε ,x)

<
ε
3

+
ε
3

+
ε
3

= ε.

So, k ∈ {n ∈ N : S(xn,xn,xNε ) < ε} . Hence A(ε)c ⊂ B(Nε )c , where B(Nε ) = {n ∈ N :
S(xn,xn,xNε ) � ε} . This implies that B(Nε)⊂ A(ε) . Since δ (A(ε)) = 0, it follows that
δ (B(Nε )) = 0. Hence the theorem follows. �

The following Theorem 4 is a direct consequence of Theorem 12 as discussed in
Remark 3. However, we give the details proof of Theorem 4 for the sake of complete-
ness.



STATISTICAL AND ROUGH STATISTICAL CONVERGENCE IN AN S -METRIC SPACE 163

THEOREM 4. Let {xn} be a statistically convergent sequence in an S-metric
space (X ,S) . Then there is a convergent sequence {yn} in X such that xn = yn for
almost all n ∈ N .

Proof. Let {xn} be a statistically convergent to x . Then for any ε > 0, we have
δ ({n ∈ N : S(xn,xn,x) � ε}) = 0. So,

δ ({n ∈ N : S(xn,xn,x) < ε}) = limn→∞
|{k � n : S(xk,xk,x) < ε}|

n
= 1.

So, for every k ∈ N , ∃ nk ∈ N such that ∀ n > nk

|{k � n : S(xk,xk,x) < 1
2k }|

n
> 1− 1

2k .

Choose

ym =

⎧⎪⎨
⎪⎩

xm, if 1 � m � n1 ,

xm, if nk < m � nk+1,S(xm,xm,x) < 1
2k ,

x, otherwise.

Let ε > 0. Choose k ∈ N so that 1
2k < ε . Now, for each m > nk , S(ym,ym,x) =

S(xm,xm,x) < 1
2k < ε . Hence {ym} converges to x . So, limn→∞ym = x .

Let n ∈ N be fixed and let nk < n � nk+1 , then we have

{m � n : ym �= xm} ⊂ {1,2, . . .n}−
{
m � n : S(xm,xm,x) <

1
2k

}
.

So,

1
n
|{m � n : ym �= xm}| � 1− 1

n

∣∣∣{m � n : S(xm,xm,x) <
1
2k

}∣∣∣
<

1
2k < ε.

Hence limn→∞
1
n |{m � n : ym �= xm}| = 0. So, δ ({m ∈ N : ym �= xm}) = 0. Therefore,

xm = ym for almost all m ∈ N . �

COROLLARY 1. Every statistically convergent sequence in an S-metric space has
a convergent subsequence.

Proof. Let {xn} be a statistically convergent sequence. So, there is a convergent
sequence {yn} such that xn = yn almost everywhere, i.e., δ (A) = 0, where A = {m ∈
N : ym �= xm} . Let us enumerate the set N\A by {n1 < n2 < .. .} . Therefore, ynk = xnk

∀ k = 1,2,3 . . . and since {ynk} is convergent, {xnk} is a convergent subsequence of
{xn} . �

DEFINITION 10. Let (X ,S) be an S -metric space. If every statistically Cauchy
sequence is statistically convergent, then (X ,S) is called statistically complete.
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THEOREM 5. If {xn} is Cauchy then it is statistically Cauchy in an S-metric
space.

Proof. Let {xn} be a Cauchy sequence in (X ,S) . Let ε > 0. Then there exists
a natural number k such that S(xn,xn,xm) < ε for every n,m � k . So, in particular
S(xn,xn,xk) < ε ∀n � k . So, the set B(ε) = {n∈N : S(xn,xn,xk) � ε}⊂ {1,2,3, . . .(k−
1)}= Q(say). Since Q is finite, so δ (Q) = 0. Hence δ (B(ε)) = 0. Therefore, {xn} is
statistically Cauchy. �

THEOREM 6. Every statistically complete S-metric space is complete.

Proof. Let (X ,S) be a statistically complete S -metric space. Suppose that {xn} is
a Cauchy sequence in (X ,S) , then it is statistically Cauchy sequence in (X ,S) . Since
(X ,S) is statistically complete, so {xn} is statistically convergent. By the Corollary 1,
there is a subsequence {xnk} of {xn} such that {xnk} converges to a point x∈ X . Since
{xn} is Cauchy, for ε > 0, there exists N1 ∈N such that S(xn,xn,xm)< ε

3 for n,m� N1 .
On the other hands, {xnk} converges to x , so there exists k0 such that S(xnk ,xnk ,x) < ε

3∀ k � k0 . So, in particular S(xnk0
,xnk0

,x) < ε
3 and let N = max{N1,nk0} . Then for

n � N , we have

S(xn,xn,x) � S(xn,xn,xnk0
)+S(xn,xn,xnk0

)+S(x,x,xnk0
)

= S(xn,xn,xnk0
)+S(xn,xn,xnk0

)+S(xnk0
,xnk0

,x)

<
ε
3

+
ε
3

+
ε
3

= ε.

Hence limn→∞xn = x . So, (X ,S) is a complete S -metric space. �

DEFINITION 11. (cf. [5]) A sequence {xn} in an S -metric space (X ,S) is said
to be statistically bounded if for any fixed u ∈ X there exists a positive real number B
such that

δ ({n ∈ N : S(xn,xn,u) � B}) = 0.

THEOREM 7. Every statistically Cauchy sequence is statistically bounded in an
S-metric space (X ,S) .

Proof. Let ε > 0 and let {xn} be a statistically Cauchy sequence in (X ,S) . Then
there exists N ∈ N such that δ (B) = 0, where B = {n ∈ N : S(xn,xn,xN) � ε

2} . Let
k ∈ Bc , then S(xk,xk,xN) < ε

2 . Let u ∈ X be fixed, then for the same ε > 0, we have

S(xk,xk,u) � S(xk,xk,xN)+S(xk,xk,xN)+S(u,u,xN)

<
ε
2

+
ε
2

+S(xN,xN ,u)

= ε +S(xN,xN ,u)
= a (say).
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So, k ∈ {n ∈ N : S(xn,xn,u) < a} . Therefore, Bc ⊂ {n ∈ N : S(xn,xn,u) < a} . Since
δ (B) = 0, δ (Bc) = 1. Hence δ ({n ∈ N : S(xn,xn,u) < a}) = 1. This implies that
δ ({n∈N : S(xn,xn,u) � a}) = 0. Therefore, the sequence {xn} is statistically bounded
in X . �

COROLLARY 2. Every statistically convergent sequence is statistically bounded
in an S-metric space.

4. Rough statistical convergence in an S -metric space

DEFINITION 12. A sequence {xn} in an S -metric space (X ,S) is said to be rough
statistically convergent or r -statistically convergent (or, in short r -st convergent) to x ,
if for every ε > 0 and for some roughness degree r , δ ({n∈ N : S(xn,xn,x) � r+ε}) =
0.

For r = 0, the rough statistical convergence becomes the statistical convergence
in any S -metric space (X ,S) . If a sequence {xn} is rough statistically convergent to

x , then we denote it by the notation xn
r-st−→ x and x is said to be a rough statistical

limit point (or r -st limit point) of {xn} . The set of all r -st limit points of a sequence
{xn} is said to be the r -st limit set. We denote it by st -LIMrxn , i.e., st -LIMrxn ={

x ∈ X : xn
r-st−→ x

}
. For the degree of roughness r > 0, the r-st limit may not be

unique.

THEOREM 8. Every rough convergent sequence in an S-metric space (X ,S) is
rough statistically convergent.

Proof. Let a sequence {ξn} be rough convergent to ξ in (X ,S) . Let ε > 0 be
arbitrary. Then for ε > 0, there exists m ∈ N such that S(ξn,ξn,ξ ) < r + ε ∀n � m .
Then the set A = {n ∈ N : S(ξn,ξn,ξ ) � r + ε} ⊂ {1,2,3, . . .(m− 1)} . Since A is a
finite set, so δ (A) = 0. Hence {ξn} is rough statistically convergent in (X ,S) . �

REMARK 2. The converse of the above theorem may not be true. The following
example shows that a rough statistically convergent sequence may not be rough conver-
gent in an S -metric space.

EXAMPLE 2. Let X = R
2 and ||.|| be the Euclidean norm on X , then S(x,y,z) =

||x− z||+ ||y− z|| , ∀x,y,z ∈ X is an S -metric on X . Let a sequence {ξn} be defined
by

ξn =

⎧⎪⎨
⎪⎩

(p, p), if n = p2 for p ∈ N ,

(0,0), if n �= p2 and n is even,

(1,1), if n �= p2 and n is odd.

Let ε > 0 be arbitrary and consider the point ξ1 = (1,1) . Then A1 = {n∈N : S(ξn,ξn,ξ1)
� 2

√
2+ ε} ⊂ {12,22,32,42,52 . . .} = M (say).
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Again, consider the point ξ2 = (0,0) . Then A2 = {n ∈ N : S(ξn,ξn,ξ2) � 2
√

2+
ε} ⊂ M .

Since δ (M) = 0, we have that δ (A1) = δ (A2) = 0.
So, {ξn} is rough statistically convergent to (1,1) and (0,0) of roughness degree

2
√

2.
But

S(ξn,ξn,ξ2) = 2||ξn− ξ2|| =

⎧⎪⎨
⎪⎩

2
√

2p, if n = p2,

0, if n �= p2 and n is even,

2
√

2, if n �= p2 and n is odd.

So, when n = p2 , there does not exist any positive integer n0 such that the condition
S(ξn,ξn,ξ2) < r+ε for all n � n0 holds. Hence {ξn} is not rough convergent to (0,0)
of any roughness degree r > 0. Similarly, it can be shown that {ξn} is not rough
convergent to (1,1) .

DEFINITION 13. [21] The diameter of a set A in an S -metric space (X ,S) is
defined by

diam(A) = sup {S(x,x,y) : x,y ∈ A} .

THEOREM 9. Let {xn} be a r -statistically convergent sequence in an S-metric
space (X ,S) . Then the diameter of st-LIMrxn is not greater than 3r , i.e., dim(st-LIMrxn)
� 3r .

Proof. If possible, suppose that diam(st-LIMrxn) > 3r . Then there exist elements

ξ ,η ∈ st-LIMrxn such that S(ξ ,ξ ,η) > 3r . Take ε ∈ (
0, S(ξ ,ξ ,η)

3 − r
)
. Since ξ ,η ∈

st-LIMrxn , δ (A1) = 0 and δ (A2) = 0, where A1 = {n ∈ N : S(xn,xn,ξ ) � r + ε} and
A2 = {n ∈ N : S(xn,xn,η) � r+ ε} . From the property of natural density, we can write
δ (Ac

1∩Ac
2) = 1. Now, for all n ∈ Ac

1 ∩Ac
2

S(ξ ,ξ ,η) � S(ξ ,ξ ,xn)+S(ξ ,ξ ,xn)+S(η ,η ,xn)
= S(xn,xn,ξ )+S(xn,xn,ξ )+S(xn,xn,η) (by Lemma 1)
< (r+ ε)+ (r+ ε)+ (r+ ε)
= 3(r+ ε)
= 3r+3ε

= 3r+3
{S(ξ ,ξ ,η)

3
− r

}
= 3r+S(ξ ,ξ ,η)−3r

= S(ξ ,ξ ,η), which is a contradiction.

Hence the diameter of st-LIMrxn is not greater than 3r , i.e., diam(st-LIMrxn) �
3r . �
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THEOREM 10. If a sequence {xn} statistically convergent to x′ in an S-metric
space (X ,S) , then st-LIMrxn = BS[x′,r] .

Proof. Let a sequence {xn} be statistically convergent to x′ . Let ε > 0. Then
δ (A) = 0, where A = {n ∈ N : S(xn,xn,x′) � ε

3} .
Let y ∈ BS[x′,r] = {y ∈ X : S(y,y,x′) � r} . Then using the triangular properties of

S -metric space, we have for n ∈ Ac

S(xn,xn,y) � S(xn,xn,x
′)+S(xn,xn,x

′)+S(y,y,x′)

<
ε
3

+
ε
3

+ r

< r+ ε.

So, {n∈ N : S(xn,xn,y) � r+ε}⊂ A . Therefore, δ ({n∈ N : S(xn,xn,y) � r+ε}) = 0.
So, y ∈ st-LIMrxn . Hence

BS[x′,r] ⊂ st-LIMrxn. (1)

Again, let y ∈ st-LIMrxn and let ε > 0 be arbitrary. Then δ (B) = 0, where B = {n ∈
N : S(xn,xn,y) � r+ ε

3} . Now, let n ∈ Ac ∩Bc

S(x′,x′,y) � S(x′,x′,xn)+S(x′,x′,xn)+S(y,y,xn)
= S(xn,xn,x

′)+S(xn,xn,x
′)+S(xn,xn,y)

<
ε
3

+
ε
3

+ r+
ε
3

= (r+ ε).

So, S(y,y,x′) < r+ ε . Since ε > 0 is arbitrary, S(y,y,x′) � r . So, y ∈ BS[x′,r] . Hence

st-LIMrxn ⊂ BS[x′,r]. (2)

From (1) and (2), we get st-LIMrxn = BS[x′,r] . �

THEOREM 11. Let {xn} be a r -statistically convergent sequence in an S-metric
space (X ,S) and let {ξn} be a convergent sequence in st-LIMrxn converging to ξ .
Then ξ must belongs to st-LIMrxn .

Proof. If st-LIMrxn = φ , then there is nothing to prove. Let us consider the case
where st-LIMrxn �= φ . Let {ξn} be a sequence in st-LIMrxn such that {ξn} is con-
vergent to ξ . Let ε > 0 be arbitrary. So, for ε > 0, there exists n1 ∈ N such that
S(ξn,ξn,ξ ) < ε

3 ∀n � n1 . Now, let us choose an n0 ∈ N such that n0 > n1 . Then we
can write S(ξn0 ,ξn0 ,ξ ) < ε

3 . Since {ξn}⊂ st-LIMrxn , so we have ξn0 ∈ st-LIMrxn and
δ ({n ∈ N : S(xn,xn,ξn0) � r+ ε

3}) = 0. Now, we show that

{n ∈ N : S(xn,xn,ξ ) < r+ ε} ⊇
{

n ∈ N : S(xn,xn,ξn0) < r+
ε
3

}
. (3)

Let k ∈ {n ∈ N : S(xn,xn,ξn0) < r+ ε
3} .
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Then S(xk,xk,ξn0) < r+ ε
3 . So, we can write

S(ξ ,ξ ,xk) � S(ξ ,ξ ,ξn0)+S(ξ ,ξ ,ξn0)+S(xk,xk,ξn0)
= S(ξn0 ,ξn0 ,ξ )+S(ξn0,ξn0 ,ξ )+S(xk,xk,ξn0)

<
ε
3

+
ε
3

+ r+
ε
3

= r+ ε.

Hence k ∈ {n∈ N : S(ξ ,ξ ,xn) < r+ε} = {n∈ N : S(xn,xn,ξ ) < r+ε} . Therefore, (3)
holds. Since the set on the right-hand side of (3) has natural density 1, so the natural
density of the set on the left-hand side of (3) is equal to 1. So, δ ({n∈ N : S(xn,xn,ξ ) �
r+ ε}) = 0. Hence ξ ∈ st-LIMrxn . Therefore, the theorem follows. �

THEOREM 12. Every S-metric space (X ,S) is first countable.

Proof. Let τ(S) be the topology generated by the base v , where v = {BS(x,ε) :
x ∈ X ,ε > 0} . Let us consider u = {BS(x, 1

p) : x ∈ X , p ∈ N} . Then u is a basis for
τ(S) . For let, A ∈ τ(S) and x ∈ A be arbitrary element. Then, since v is a basis for
τ(S) , there exists ε > 0 such that x∈ BS(x,ε)⊂ A . Choose p∈ N so that 1

p < ε . Then

BS(x, 1
p ) ⊂ BS(x,ε) . Thus x ∈ BS(x, 1

p) ⊂ BS(x,ε) ⊂ A . So, u forms a basis for τ(S) .
Since u is countable, (X ,S) is first countable. �

COROLLARY 3. Let {xn} be a r -statistically convergent sequence in an S-metric
space (X ,S) . Then st-LIMrxn is a closed set for any roughness degree r � 0 .

Proof. Since the S -metric space (X ,S) is first countable, the result follows di-
rectly from Theorem 11. �

REMARK 3. In [22], it is proved that a sequence in a first countable space is statis-
tically convergent to x if and only if it is S∗ -convergent to x , where a sequence {xn}n∈N

in a topological space X is said to be S∗ -convergent to x ∈ X if there is A ⊂ N with
δ (A) = 1 such that limm→∞,m∈Axm = x . So, in view of Theorem 12, if {xn} is statisti-
cally convergent to x , it is S∗ -convergent. So, there is A ⊂ N with δ (A) = 1 such that
limm→∞,m∈Axm = x . Let {yn} be a sequence such that

ym =

{
xm if m ∈ A ,

x if m ∈ N\A.

Then {yn} is a convergent sequence and the set {m∈N : ym �= xm}⊂Ac . Since δ (A) =
1, δ (Ac) = 0. So, δ ({m ∈ N : ym �= xm}) = 0. So, xn = yn for almost all n ∈ N . This
is the conclusion of Theorem 4.

THEOREM 13. Let (X ,S) be an S-metric space. Then a sequence {xn} is statis-
tically bounded in (X ,S) if and only if there exists a non-negative real number r such
that st-LIMrxn �= φ .
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Proof. Let p ∈ X be a fixed element in X . Since the sequence {xn} is statisti-
cally bounded in (X ,S) , so there exists a positive real number M such that δ ({n ∈ N :
S(xn,xn, p) � M}) = 0. Let ε > 0 be arbitrary and r = M . Then M < r + ε . So, we
have the inclusion

{n ∈ N : S(xn,xn, p) < r+ ε} ⊃ {n ∈ N : S(xn,xn, p) < M}. (4)

Hence {n ∈ N : S(xn,xn, p) � r + ε} ⊂ {n ∈ N : S(xn,xn, p) � M} . Since δ ({n ∈ N :
S(xn,xn, p) � M}) = 0, it follows that δ ({n∈ N : S(xn,xn, p) � r+ε}) = 0. Therefore,
p ∈ st-LIMrxn i.e. st-LIMrxn �= φ .

Conversely, let st-LIMrxn �= φ and let p be a r -limit of {xn} . Then for ε > 0,
δ ({n ∈ N : S(xn,xn, p) � r + ε}) = 0. Let A = {n ∈ N : S(xn,xn, p) � r + ε} and M =
r + ε . Then δ (A) = 0 and if n ∈ Ac , then S(xn,xn, p) < r + ε = M . So, n ∈ {n ∈
N : S(xn,xn, p) < M} . This implies Ac ⊂ {n ∈ N : S(xn,xn, p) < M} . So, {n ∈ N :
S(xn,xn, p) � M} ⊂ A and hence δ ({n ∈ N : S(xn,xn, p) � M}) = 0. Therefore, {xn}
is statistically bounded. �

THEOREM 14. Let {xnp} be a subsequence of {xn} such that δ ({n1,n2, . . .}) =
1 , then st-LIMrxn ⊆ st-LIMrxnp .

Proof. Let {xnp} be a subsequence of {xn} and x ∈ st-LIMrxn . Let ε > 0 be
arbitrary, then the set A = {n∈N : S(xn,xn,x) � r+ε} has density zero. So, δ (Ac) = 1.
Since the set P = {n1,n2, . . .} has density 1, Ac ∩ P �= φ . For if Ac ∩P = φ , then
P ⊂ A and so δ (P) = 0, a contradiction, since δ (A) = 0. Let nk ∈ Ac ∩P . Then
S(xnk ,xnk ,x) < r + ε . So, {np ∈ P : S(xnp ,xnp ,x) � r + ε} ⊂ A∪Pc . This implies that
δ ({np ∈ P : S(xnp ,xnp ,x) � r+ ε}) = 0, since δ (A∪Pc) � δ (A)+δ (Pc) = 0+0 = 0.
Therefore, x ∈ st -LIMrxnp . Hence st-LIMrxn ⊆ st-LIMrxnp . �

THEOREM 15. Let {ξn} and {ηn} be two sequences in an S-metric space (X ,S)
such that S(ξn,ξn,ηn) −→ 0 as n −→ ∞ . Then {ξn} is r -statistically convergent to ξ
if and only if {ηn} is r -statistically convergent to ξ .

Proof. Let {ξn} be r -statistically convergent to ξ . Let ε > 0. Then for ε > 0,
δ (A) = 0, where A = {n ∈ N : S(ξn,ξn,ξ ) � r+ ε

3} .
Since S(ξn,ξn,ηn)−→ 0 as n−→ ∞ , for ε > 0, ∃ k ∈N such that S(ξn,ξn,ηn) �

ε
3 , when n � k .

Since δ (A) = 0, δ (Ac) = 1. Again, δ ({1,2, . . .k}) = 0, so δ ({1,2, . . .k}c) = 1.
So, Ac ∩{1,2, . . .k}c �= φ . If n ∈ Ac ∩{1,2, . . .k}c , then

S(ηn,ηn,ξ ) � S(ηn,ηn,ξn)+S(ηn,ηn,ξn)+S(ξ ,ξ ,ξn)
= S(ξn,ξn,ηn)+S(ξn,ξn,ηn)+S(ξn,ξn,ξ )

<
ε
3

+
ε
3

+
(
r+

ε
3

)
= r+ ε.
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Hence Ac ∩{1,2, . . .k}c ⊂ {n ∈ N : S(ηn,ηn,ξ ) < r + ε} . So, {n ∈ N : S(ηn,ηn,ξ ) �
r+ε}⊂ (Ac∩{1,2, . . .k}c)c = A∪{1,2, . . .k} . Now, since δ (A∪{1,2, . . .k})� δ (A)+
δ ({1,2, . . .k}) = 0+0 = 0, so δ ({n ∈ N : S(ηn,ηn,ξ ) � r+ε}) = 0. Therefore, {ηn}
is r -statistically convergent to ξ .

The opposite part is similar. �

DEFINITION 14. (cf. [2]) Let (X ,S) be an S -metric space. Then c ∈ X is called
a statistical cluster point of a sequence {xn} in (X ,S) if for every ε > 0, δ ({n ∈ N :
S(xn,xn,c) < ε}) �= 0.

THEOREM 16. Let {xn} be a sequence in an S-metric space (X ,S) . If c is a
cluster point of {xn} , then st-LIMrxn ⊂ BS[c,r] for some r > 0 .

Proof. Let ε > 0 and let x ∈ st-LIMrxn . Then for ε > 0, δ (B1) = 0, where
B1 = {n ∈ N : S(xn,xn,x) � r + ε

3} . Again, since c is a cluster point of {xn} , for the
same ε > 0, δ (B2) �= 0, where B2 = {n ∈ N : S(xn,xn,c) < ε

3} . Now, let k ∈ Bc
1∩B2 ,

then S(xk,xk,x) < r+ ε
3 and S(xk,xk,c) < ε

3 . Therefore, we can write

S(c,c,x) � S(c,c,xk)+S(c,c,xk)+S(x,x,xk)
= S(xk,xk,c)+S(xk,xk,c)+S(xk,xk,x)

<
ε
3

+
ε
3

+
(
r+

ε
3

)
= r+ ε.

Since ε > 0 is arbitrary, S(c,c,x) � r and hence S(x,x,c) � r . Therefore, x ∈ BS[c,r] .
Hence st-LIMrxn ⊂ BS[c,r] holds for some r > 0. �
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