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WEIERSTRASS DIVISION POINTS AND THE ETA FUNCTION LAW

PAUL L. ROBINSON

Abstract. New proofs of the celebrated transformation law for the Dedekind eta function come
by inspecting pairs of related Weierstrass ℘-functions at appropriate division points.

1. Introduction

The eta function of Dedekind, a key player in the theory of numbers and elsewhere,
assigns to each point τ in the upper half-plane H = {z ∈ C : Imz > 0} the value

η(τ) = eπ iτ/12
∞

∏
j=1

(1− e2π iτ j).

With q = e2π iτ this is often abbreviated to

η(τ) = q1/24
∞

∏
j=1

(1−q j)

but merely as a convenience; η(τ) is fundamentally a holomorphic function of τ , not
a branched function of q . The transformation law to which we refer in our title states
that

η(−1/τ) = η(τ)
√

τ/i

for each τ in the upper half-plane, the holomorphic square-root (on the right half-plane)
being singled out by the condition

√
1 = 1. Several proofs of this law are presented

in [1]. Perhaps the most well known proof of this transformation law is due to Siegel
[8]; his one-page proof applies the residue theorem to a suitable rhombic contour and
a suitable sequence of trigonometric functions. Some proofs are based on the Pois-
son summation formula: [9] contains one such proof, using the triple product formula
and theta functions of Jacobi; [6] contains variant proofs, using instead the pentagonal
number theorem of Euler. Other proofs rest on transformation properties of Eisenstein
series: see [7] and [5] for such a proof involving the exceptional (or ‘forbidden’) Eisen-
stein series E2 ; see [3] for a related proof, involving instead the Ramanujan-Eisenstein
series Q and R , which satisfy Q3−R2 = 1728η24 . A proof using the Weierstrass zeta
function and simplifying an idea due to Petersson is presented in [4]. In short, the eta
function transformation law has already been provided with a number of proofs.
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Here, we add an infinite number of proofs to the foregoing partial list. The setting
for our proofs is the theory of elliptic functions; to this extent, our proofs are related
to the aforementioned proofs that make use of Eisenstein series, theta functions or zeta
functions, but the details are very different. To describe the context of our proofs briefly,
fix any odd integer N greater than unity: let p be any Weierstrass ℘-function and
multiply one of its periods by N to obtain a second ℘-function P ; our N th proof
proceeds simply by comparing the first derivative of p at its N th division points with
the first derivative of P at its N th division points.

2. The M th proof of the transformation law

As in the introduction, let N = 2M + 1 be an odd integer greater than one. Let
p = ℘(−;ω ,ω ′) be the Weierstrass ℘-function having (2ω ,2ω ′) as a fundamental
pair of periods. As is quite customary, we take the period ratio τ = ω ′/ω to lie in
the upper half-plane H = {z ∈ C : Imz > 0} and write q = exp{2π iτ} for the cor-
responding nome. Let P = ℘(−;ω ,Nω ′) be the Weierstrass ℘-function that results
when a period of p (here the ‘second’) is multiplied by N ; presented this way, P has
nome qN corresponding to the period ratio Nτ . We are interested in evaluating the first
derivatives of p and P at their N th division points: specifically, we evaluate p′ at the
multiples of α := 2ω/N and evaluate P′ at the multiples of A′ := 2ω ′ .

In order to evaluate the derivative p′ of p =℘(−;ω ,ω ′) at its N th division points,
we avail ourselves of the following standard expression

p′(z) = −σ(2z)/σ4(z). (1)

Here, the Weierstrass sigma function σ = σ(−;ω ,ω ′) may be expressed by the factor-
ization

σ(z) =
2ω
π

exp
{ζ (ω)z2

2ω

}
sin

( πz
2ω

) ∞

∏
j=1

{(1−q je−(z))(1−q je+(z))
(1−q j)2

}
(2)

where ζ (−;ω ,ω ′) = ζ = σ ′/σ is the corresponding Weierstrass zeta function and
where

e±(z) = exp{±π iz/ω}.
As a standard reference for these Weierstrass functions, we cite Chapter XX in the
classic text [10] by Whittaker and Watson: in particular, see page 448 for the sigma
function expansion (2) and page 459 for the sigma function duplication formula (1). In
order to evaluate P′ at its N th division points, we use the corresponding expression

P′(z) = −Σ(2z)/Σ4(z) (3)

where now

Σ(z) =
2ω
π

exp
{Z(ω)z2

2ω

}
sin

( πz
2ω

) ∞

∏
j=1

{(1−Qje−(z))(1−Qje+(z))
(1−Qj)2

}
(4)

with Z = Σ′/Σ the corresponding zeta function and with Q = qN abbreviating the ap-
propriate nome for P .
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THEOREM 1. If 1 � m � M then

i
ω3

π3 P′(mA′) = qm
∞

∏
j=1

{
(1−Qj)6 (1−Qjq−2m)(1−Qjq2m−N)

(1−Qjq−m)4(1−Qjqm−N)4

}
.

Proof. We evaluate the expression (3) for P′(z) at z = mA′ ; each of the Sigma
functions in (4) has four factors, which we consider in turn. The 2ω/π coefficients
together amount to π3/8ω3 while the exponential factors cancel. For the trigonometric
factors, we require

sin
πmA′

2ω
= sinmπτ =

e2mπ iτ −1
2iemπ iτ

whence

sin4 πmA′

2ω
=

(qm −1)4

16q2m

and similarly

sin
πm2A′

2ω
= sin2mπτ =

q2m −1
2iqm ;

the trigonometric factors thus contribute

q2m −1
2iqm

16q2m

(qm −1)4 = 8iqm 1−q2m

(1−qm)4 .

For the infinite products we use

e±(mA′) = e±π im2ω ′/ω = q±m and e±(2mA′) = q±2m

to see that their contribution is

∞

∏
j=1

{
(1−Qj)6 (1−Qjq−2m)(1−Qjq+2m)

(1−Qjq−m)4(1−Qjq+m)4

}
;

here, recall that Q = qN to see that we may write

∞

∏
j=1

{ (1−Qjq+2m)
(1−Qjq+m)4 =

(1−qm)4

1−q2m

∞

∏
j=1

{ (1−Qjq2m−N)
(1−Qjqm−N)4

}
.

Finally, assemble the contributions of all four types of factor to conclude the proof. �
We now multiply the results of this Theorem as m runs through 1, . . . ,M . The

outcome is pleasing: it yields a generalization of the Borwein cubic theta function c
from the case N = 3.

THEOREM 2.

iM
ω3M

π3M

M

∏
m=1

P′(mA′) = qM(M+1)/2
{ ∞

∏
j=1

(1−qN j)N

1−q j

}3
.
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Proof. The product on the left-hand side is clear, as is the factor qM(M+1)/2 on the
right-hand side; for the balance on the right-hand side we argue as follows. The various
factors 1−Qj of course contribute

∞

∏
j=1

(1−Qj)6M =
∞

∏
j=1

(1−qN j)6M.

To handle the remaining factors on the right-hand side, let us abbreviate 1−Qjq−k to
[k] ; in the j th factor, we then have

M

∏
m=1

[2m][N−2m]
[m]4[N−m]4

=
1

[2M]3[2M−1]3 · · · [1]3
=

{ [0]
[2M][2M−1] · · · [1][0]

}3
.

Here, taking the product as j runs over the positive integers, the numerators yield

∞

∏
j=1

(1−Qj)3 =
∞

∏
j=1

(1−qN j)3

while the denominators yield the cube of

∞

∏
j=1

{
(1−qN j−2M) · · · (1−qN j−1)(1−qN j)

}
=

∞

∏
j=1

(1−q j).

Finally, assemble the pieces and recall that 6M +3 = 3N to conclude the proof. �
We complement the foregoing evaluations by performing the corresponding eval-

uations of p′ . As the calculations follow similar lines to those that have gone before,
we may be brief. For these calculations, we abbreviate the ‘first’ N th root of unity by
ε : thus

ε := exp{2π i/N}.

THEOREM 3. If 1 � m � M then

−8
ω3

π3 p′(mα) =
sin(2mπ/N)
sin4(mπ/N)

∞

∏
j=1

{
(1−q j)6 (1−q jε−2m)(1−q jε2m−N)

(1−q jε−m)4(1−q jεm−N)4

}
.

Proof. Along Theorem 1 lines, calculating p′(mα) by tracking the four types of
factor in each sigma function (2) that apears in (1). Again, the 2ω/π coefficients
contribute π3/8ω3 and the exponentials cancel. The trigonometric factors contribute
sin4(πmα/2ω) = sin4(mπ/N) in the denominator and sin(2mπ/N) in the numerator.
Finally, the contribution of the infinite products is found by noting that e−(mα) = ε−m

and e+(mα) = εm = εm−N . �
The result of multiplying these evaluations as m runs through 1, . . . ,M is also

pleasing: it leads to a generalization of the Borwein cubic theta function b from the
case N = 3.
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THEOREM 4.

(−1)M ω3M

π3M

M

∏
m=1

p′(mα) =
{ 1√

N

∞

∏
j=1

(1−q j)N

1−qN j

}3
.

Proof. Along Theorem 2 lines; accordingly, we need only mention the two main
departures. To evaluate the product of the trigonometric ratios, we employ the familiar
identity

M

∏
m=1

sin
(mπ

N

)
=

√
N

2M

which comes by letting z → 1 in the factorization

zN −1
z−1

=
2M

∏
m=1

(z− εm).

To multiply the infinite products, we employ the related elementary factorization

(1−q j)(1−q jε) · · · (1−q jε2M) = 1−qN j. �

We may use our p′(mα) evaluations to deduce alternative P′(mA′) evaluations, as
follows. Recall that we based P on (2ω ,2Nω ′) as a fundamental pair of periods. We
are free to base P on any equivalent pair; we choose the equivalent pair (2Nω ′,−2ω)
so that P = ℘(−;Nω ′,−ω) . Note that the new period ratio −1/Nτ also lies in the
upper half-plane; we shall write

q∗ = exp{−2π i/Nτ}

for the nome that this choice confers upon P . Rather than pause to record the effect that
this change of perspective has on individual first derivatives, we pass directly to their
product.

THEOREM 5.

(−1)M N3M ω ′ 3M

π3M

M

∏
m=1

P′(mA′) =
{ 1√

N

∞

∏
j=1

(1−q j
∗)N

1−qN j
∗

}3
.

Proof. A direct translation from the result of Theorem 4: replace ω by Nω ′ ,
replace α by A′ and replace q by q∗ . �

Now compare Theorem 2 and Theorem 5: as τ = ω ′/ω there follows at once

{ 1√
N

∞

∏
j=1

(1−q j
∗)N

1−qN j
∗

}3
= iM N3M τ3M qM(M+1)/2

{ ∞

∏
j=1

(1−qN j)N

1−q j

}3
. (5)



190 P. L. ROBINSON

In order to pass to the cube root here, we argue by holomorphicity in τ ∈ H that

γ
iM√
N

∞

∏
j=1

(1−q j
∗)N

1−qN j
∗

= NM τM qM(M+1)/6
∞

∏
j=1

(1−qN j)N

1−q j (6)

where for convenience we write

qM(M+1)/6 := exp{M(M +1)π iτ/3} (7)

and where γ is a (constant) cube root of unity. To determine γ we need only evaluate
at a single value of τ . We choose i/

√
N : at this (unique) fixed point in H of the

involution τ �→ −1/Nτ , we see that q∗ = q = e−2π/
√

N is real and τM = iM/
√

N
M

; as
the iM coefficients cancel, it follows that γ = 1.

To simplify the presentation of our results, it is convenient to introduce two ‘new’
functions. Prompted by Theorem 4 we define

b(q) =
∞

∏
j=1

(1−q j)N

1−qN j ; (8)

the resulting function b is holomorphic in the open unit disc. Prompted by Theorem 2
we define

c(q) = qM(M+1)/6
∞

∏
j=1

(1−qN j)N

1−q j ; (9)

the resulting function of q without the leading power of q is holomorphic in the open
unit disc, but c(q) itself is to be regarded as a holomorphic function of τ in H ac-
cording to (7).

In terms of these ‘new’ functions, we now have the following transformation laws.

THEOREM 6. Let τ ∈ H : if q = exp{2π iτ} and q∗ = exp{−2π i/Nτ} then

iM b(q∗) =
√

N NM τM c(q).

iM
√

N c(q∗) = τM b(q).

Proof. The first law is a simple reformulation of (6) (where γ = 1) in terms of the
‘new’ functions; the second follows upon replacing τ by −1/Nτ . �

Our M th proof of the transformation law for the Dedekind eta function follows
easily once we express b and c in terms of η : with q = exp{2π iτ} as usual, it is
immediate from (8) that

b(q) =
η(τ)N

η(Nτ)

while the incorporation of the leading ‘power of q ’ in (9) ensures that

c(q) =
η(Nτ)N

η(τ)
.
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This being so, it follows that

bN(q)c(q) = η(τ)N2−1 = η(τ)4M(M+1) (10)

and
b(q)cN(q) = η(Nτ)N2−1 = η(Nτ)4M(M+1). (11)

THEOREM 7. If τ ∈ H then

η(−1/τ) = η(τ)
√

τ/i.

Proof. In (11) replace τ by −1/Nτ : this replaces q by q∗ so that

η(−1/τ)4M(M+1) = b(q∗)cN(q∗)

whence the transformation laws in Theorem 6 imply that

η(−1/τ)4M(M+1) =
{
i−M

√
NNMτMc(q)

}{
i−MτMb(q)/

√
N

}N

which upon simplification using (10) yields

η(−1/τ)4M(M+1) = τ2M(M+1)η(τ)4M(M+1).

The final step in the proof is to pass to the correct root of order 4M(M + 1) . This
is effected by observing that the quotient

√
τ/iη(τ)/η(−1/τ) is both a holomorphic

function of τ ∈ H and a root of unity to this order, hence constant; evaluation at the
fixed point i ∈ H of the involution τ �→ −1/τ shows this constant root of unity to be
unity itself. �

We close our account with a couple of brief remarks.
Notice that c(q) is a holomorphic function of q in the open unit disc except when

M ≡ 1 modulo 3: thus, whereas in the cubic case the function c(q) is led by a cube
root of q , in the quintic case (M = 2) it is led by q and in the septic case (M = 3) it is
led by q2 .

The functions b and c are introduced at (8) and (9) as ‘new’ functions. Our choice
of names for these functions is of course guided in part by the established notation when
N = 3: in this case, b is precisely the Borwein cubic theta function of the same name,
while c differs from the Borwein cubic theta function of the same name only by a
numerical coefficient; see [2] and [3].

Finally, if we wish to standardize these ‘new’ functions so that they agree with the
Borwein functions when N = 3 then we should rescale c and so define

b(τ) =
η(τ)N

η(Nτ)
and c(τ) = N(M+1)/2 η(Nτ)N

η(τ)
. (12)

Once this is done, the transformation laws assume the matched forms

iM b(q∗) =
√

NM τM c(q)

and
iM c(q∗) =

√
NM τM b(q).
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