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AN INTERPOLATION PROCESS ON THE ROOTS OF LAGUERRE

POLYNOMIALS WITH AN ADDITIONAL CONDITION

VAISHALI AGARWAL AND REKHA SRIVASTAVA

Abstract. This paper is devoted to studying a Pál-type interpolation problem on the zeros of
Laguerre polynomials of degree n and its derivative of degree n−1 . Here, we work on an inter-
polation on the polynomials with an additional condition on the zeros of Laguerre polynomials.
The mixed type interpolation problem is studied in a unified way. The aim of this paper is to
consider a special problem of mixed type (0;0,1) -interpolation on the zeros of Laguerre poly-
nomials. In this paper we prove the regularity of the problem and determine explicit formulae
of the interpolation. Under certain conditions, we obtain an estimate over the nonnegative real
number line.

1. Introduction

In 2004, Lénárd [4] investigated the Pál type interpolation problem on the nodes of
Laguerre abscissas. In 1975, Pál [7] demonstrated that there is no distinct polynomial of
degree � 2n−2 when function values are dictated on one set of n points and derivatives
values on another set of n−1 points, but note that there is a unique polynomial having
the degree � 2n− 1 when function value is defined at one more point that does not
belong to the previous collection of n points.

Many authors [5, 6, 9–11, 16], and [8] have studied about interpolation problems
when the function values and its sequential derivatives are specified at the provided set
of points. When using lacunary interpolation, non-consecutive derivatives are used in
the interpolation procedure to retrieve the data. Pál has also introduced a modification
of the Hermite-Fejér interpolation.

In the modification, the function values and the first derivatives are prescribed on
two inter scaled systems of nodal points {xi}n

i=1 and {x∗i }n−1
i=1 , that is −∞ < x1 < x∗1 <

x2 < · · · < xn−1 < x∗n−1 < xn < +∞ , where

wn(x) = (x− x1)(x− x2) . . . (x− xn) (1)

and w
′
n(x) = n(x− x∗1) . . . (x− x∗n−1) . He proved that for any given system of real num-

bers {uk}n
k=1 and {u′

k}n−1
k=1 , there exists a polynomial Q2n−1(x) of minimal degree

(2n−1) satisfying the following interpolational properties:

Q2n−1(xk) = uk (k = 1,2, . . . ,n),

Q
′
2n−1(x

∗
k) = u

′
k (k = 1,2, . . . ,n−1).
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This determined interpolational polynomial is not unique; hence, for the unique-
ness of the polynomial an additional condition is required. Introducing the additional
condition Q2n−1(x0) = 0 at an additional knot x0 �= xk (k = 1,2, . . . ,n) Pál proved the
uniqueness of the polynomial and gave an explicit formula for it.

In 1992, Xie [15] presented a new explicit formula of Pál-type interpolation on the
interval [−1,1] with the additional knot x∗n , where x∗n is equal to one of the nodal points
xk (k = 1, . . . ,n) . Earlier, in 1985, Eneduanya [1] investigated the special case for the
Legendre polynomial. For uniqueness, Eneduanya also used the additional nodal point
x∗n = −1. Szili [13] investigated the Pál-type interpolation on the Hermite-polynomials
with the additional point x0 = 0. Joó and Szabó [3] gave a common generalization of
the classical Fejér interpolation [2] and Pál interpolation. Szili [14] investigated the
integrated Legendre polynomial’s roots in the inverse Pál interpolational problem.

The Pál type interpolation problem, on the nodes of Laguerre abscissas, was also
studied by Lénárd [4]. The function values in Pál type interpolation are specified at the
zeros of wn(x) , whereas the derivative values are specified at the zeros of w

′
n(x) .

Laguerre polynomial L(k)
n (x) (k > −1) has n unique real zeros in (0, ∞) and the

zeros of L(k)
n (x) and L(k)′

n (x) can be found from the inter scaled system of nodal points
0 � ξ0 < ξ ∗

1 < ξ1 < .. . < ξn−1 < ξ ∗
n < ξn < ∞ .

Let {ξi}n
i=0 and {ξ ∗

i }n
i=1 be the arbitrary two sets of nodal points in an infinite

interval [0,∞) inter scaled such that

0 � ξ0 < ξ ∗
1 < ξ1 < .. . < ξn−1 < ξ ∗

n < ξn < +∞. (2)

Then there exists a unique polynomial Rn(x) having a degree less than or equal to
3n+ k−1 that meets the interpolation requirements listed below:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Rn(ξi) = α∗
i , i = 1,2, . . . ,n

Rn(ξ ∗
i ) = β ∗

i , i = 1,2, . . . ,n−1

R
′
n(ξ ∗

i ) = γ∗i , i = 1,2, . . . ,n−1

R( j)
n (ξ0) = ϕ∗( j)

0 , j = 0,1, . . . ,k

(3)

Rn(0) = 0, (4)

where {α∗
i }n

i=1 , {β ∗
i }n−1

i=1 , {γ∗i }n−1
i=1 , and {ϕ∗( j)

0 }k
j=0 , are arbitrary real numbers. The

object is to consider the problem of explicit representation and estimation of the se-
quence {Rn(x)} of polynomials of degree � 3n+ k−1.

2. Preliminaries

We have used some well known results of the Laguerre polynomial L(k)
n (x) which

are as follows:
The differential equation of the Laguerre polynomial is given by

xD2L(k)
n (x)+ (1+ k− x)DL(k)

n (x)+nL(k)
n (x) = 0, (5)
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where n is a positive integer and k > −1.

For the zeros of L(k)
n (x) , we have the results from Srivastava [10]:

2
√

x j =
1√
n
[ jπ +O(1)] (6)

|L(k)′
n (x j)| ∼ j−k− 3

2 nk+1, (0 < x j � Ω, n = 1,2,3, . . .) (7)

|L(k)
n (x)| =

{
x−

k
2− 1

4 O(n
k
2− 1

4 ), cn−1 � x � Ω
O(nk), 0 � x � cn−1 (8)

O(l j(x)) = O(l∗j (x)) = 1, (9)

|x− xk| ∼ k2

n
. (10)

Now we also have some properties of fundamental polynomials of the Lagrange
interpolation which are given in Szegő [12] as:

l j(x) =
L(k)

n (x)

L(k)′
n (x j)(x− x j)

, (11)

l∗j (x) =
L(k)

′
n (x)

L(k)′′
n (y j)(x− y j)

. (12)

Here the degree of the polynomial l j(x) is n−1 and the degree of the polynomial
l∗j (x) is n−2.

The tool which is use to measure the rate of convergence is the modulus of conti-
nuity of the function f . For a function f : R → R , ω( f ,δ ) denotes the special form of
modulus of continuity given by:

ω( f ,δ ) = sup
0�t�δ

‖W (x+ t) f (x+ t)−W(x) f (x) ‖ + ‖ τ(δx)W (x) f (x) ‖,

where

τ(x) =
{ |x|, if |x| � 1

1, if |x| > 1

and ‖ . ‖ denotes the sup-norm in C(R) . If f ∈C(R) and

lim
|x|−→∞

W (x) f (x) = 0,

then
lim

δ−→0
ω( f ,δ ) = 0.
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3. Explicit representation of interpolatory polynomial

Let 2n + 1 points in (0, ∞) be given by (2). Then, for the prescribed numbers
{α∗

i }n
i=0 , {β ∗

i }n−1
i=1 , {γ∗i }n−1

i=1 , there exists a unique polynomial {Rn(x)} of degree �
3n+ k−1 satisfying the conditions (3) and (4).

The polynomial Rn(x) is explicitly given by:

Rn(x) =
n

∑
j=0

α∗
j Uj(x)+

n−1

∑
j=1

β ∗
j Vj(x)+

n−1

∑
j=1

γ∗j Wj(x)+
k

∑
j=0

ϕ∗( j)
0 Zj(x) (13)

where {Uj(x)}n
j=0 , {Vj(x)}n−1

j=1 , {Wj(x)}n−1
j=1 , and {Zj(x)}k

j=0 are the polynomials hav-
ing the degree � 3n+ k− 1. These polynomials are unique and satisfy the following
conditions: for j = 0,1,2, . . . ,n⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Uj (xi) = δi j, (i = 1,2, . . . ,n)

Uj (yi) = 0, (i = 1,2, . . . ,n−1)

U ′
j (yi) = 0, (i = 1,2, . . . ,n−1)

U (l)
j (0) = 0, (l = 0,1, . . . ,k)

(14)

for j = 1,2, . . . ,n−1 ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vj (xi) = 0, (i = 1,2, . . . ,n)

Vj (yi) = δi j, (i = 1,2, . . . ,n−1)

V ′
j (yi) = 0, (i = 1,2, . . . ,n−1)

V (l)
j (0) = 0, (l = 0,1, . . . ,k)

(15)

for j = 1,2, . . . ,n−1 ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Wj (xi) = 0, (i = 1,2, . . . ,n)

Wj (yi) = 0, (i = 1,2, . . . ,n−1)

W ′
j (yi) = δi j, (i = 1,2, . . . ,n−1)

W (l)
j (0) = 0, (l = 0,1, . . . ,k)

(16)

for l = 0,1, . . . ,k ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Zk (xi) = 0, (i = 1,2, . . . ,n)

Zk (yi) = 0, (i = 1,2, . . . ,n−1)

Z′
k (yi) = 0, (i = 1,2, . . . ,n−1)

Z(l)
k (0) = δi j, (l = 0,1, . . . ,k).

(17)

Here δi j is a Kronecker delta,

δi j =
{

1, i = j
0, i �= j

. (18)
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The explicit form of the Uj(x),Vj(x),Wj(x) and Zk(x) are given in the following
lemma.

LEMMA 1. The fundamental polynomial {Uj(x)}n
j=0 satisfying the interpolatory

condition (14) is given by:

U0(x) =
L(k)

n (x)
[
L(k)

′
n (x)

]2

L(k)
n (0)

[
L(k)′

n (0)
]2 (19)

and for j = 1,2 . . . ,n

Uj(x) =
xk+2l j(x)

[
L(k)

′
n (x)

]2

xk+2
j

[
L(k)′

n (x j)
]2 (20)

where l j(x) is given by (11) .

Proof. For j = 1,2 . . . ,n , let

U∗
j (x) = u1x

k+2l j(x)[L
(k)

′
n (x)]2 (21)

be a polynomial of degree � 3n+ k− 1. We can easily check that U∗
j (x) satisfies the

equation (14) provided

u1 =
1

xk+2
j

[
L(k)′

n (x j)
]2 . (22)

Thus,
U∗

j (x) ≡Uj(x), (23)

which completes the proof of the lemma. �

LEMMA 2. The fundamental polynomial {Vj(x)}n−1
j=1 satisfying the interpolatory

condition (15) is given by: for j = 1,2 . . . ,n−1

Vj(x) =
xk+2[l∗j (x)]2L

(k)
n (x)

yk+2
j L(k)

n (y j)

[
1+

(k+ y j)
y j

(x− y j)
]

(24)

where l∗j (x) is given by (12) .

Proof. For j = 1,2 . . . ,n−1, let

V ∗
j (x) = V1x

k+2[l∗j (x)]
2L(k)

n (x)+V2x
k+2l∗j (x)L

(k)
n (x)L(k)

′
n (x) (25)

be a polynomial of degree � 3n+ k− 1. We can easily check that V ∗
j (x) satisfies the

equation (15) provided

V1 =
1

yk+2
j L(k)

n (y j)
. (26)
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Also for j = 1,2, . . . ,n−1, the condition V ∗′
j (yi) = 0 provides

V2 =
(k+ y j)

yk+2
j L(k)

n (y j)L
(k)′′
n (y j)

. (27)

Thus,

V ∗
j (x) ≡Vj(x) (28)

which completes the proof of the lemma. �

LEMMA 3. The fundamental polynomial {Wj(x)}n−1
j=1 satisfying the interpolatory

condition (16) is given by: for j = 1,2, . . . ,n−1

Wj(x) =
xk+2l∗j (x)L

(k)
n (x)L(k)′

n (x)

yk+2
j L(k)

n (y j)L
(k)′′
n (y j)

(29)

where l∗j (x) is given by (12) .

Proof. For j = 1,2, . . . ,n−1, let

W ∗
j (x) = w1x

k+2l∗j (x)L
(k)
n (x)L(k)′

n (x) (30)

be a polynomial of degree � 3n+ k−1. We can easily check that W ∗
j (x) satisfies the

equation (16) provided

w1 =
1

yk+2
j L(k)

n (y j)L
(k)′′
n (y j)

. (31)

Thus,
W ∗

j (x) ≡Wj(x) (32)

it completes the lemma’s proof. �

LEMMA 4. The interpolatory condition (17) is satisfied by the basic polynomial
{Zj(x)}k

j=0 , which is provided by: for j = 0,1,2, . . . ,k−1

Zj(x) = a j(x)x j+1[L(k)
n (x)]2L(k)

′
n (x)+ xk+1L(k)

n (x)L(k)
′

n (x)⎡
⎣z∗j −

L(k)
n (x)a j(x)+b j(x)L

(k)
′

n (x)
xk− j

⎤
⎦ (33)

and

Zk(x) =
1

k!L(k)
n (0)[L(k)′

n (0)]2
xk+1L(k)

n (x)[L(k)
′

n (x)]2 (34)
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where the degree of the polynomial a j(x) is at most (k− j− 1) and the degree of the
polynomial b j(x) is at most (k− j) .

Proof. Let us suppose that Zj(x) , for some fixed j ∈ {0,1, . . . ,k−1} , be

Z∗
j (x) = a∗j(x)x

j+1[L(k)
n (x)]2L(k)

′
n (x)+ xk+1L(k)

n (x)L(k)
′

n (x)b∗n(x) (35)

where the degree of the polynomial a∗j(x) is (k− j−1) and the degree of the polyno-

mial q∗n(x) is n . Also note that for (l = 0,1, . . . , j− 1) , Z(l)
j (0) = 0. We know that

L(k)
n (xi) = 0 and L(k)

′
n (yi) = 0. Therefore, Zj(xi) = 0 and Zj(yi) = 0 for i = 1,2, . . . ,n .

The coefficient of the polynomial a∗j(x) , for (l = j, . . . ,k−1) , is calculated by:

Z(l)
j (0) =

dl

dxl

[
a∗j(x)x

j[L(k)
n (x)]2L(k)

′
n (x)

]
x=0

= δi j. (36)

Now using the condition Z
′
j(yi) = 0 of (17), we will have

q∗n(yi) = −(yi) j−kL(k)
n (yi)a∗j(yi) (37)

this will imply the value of g∗n(x) as:

q∗n(x) = −L(k)
n (x)a∗j(x)+b∗j(x)L

(k)
′

n (x)
xk− j , (38)

where the degree of the polynomial a∗j(x) is at most (k− j−1) and the degree of the
polynomial b∗j(x) is atmost (k− j) . By using the equations (35) and (38), we get the
polynomial Zj(x) of degree � 3n+ k−1 satisfying the equation (17). �

Now we state our main theorem.

THEOREM 1. Assuming that the interpolatory function f : R → R is continuous
as well as differentiable such that

C(m) = { f (x) : f (x) = O(xm) as x −→ ∞};
where m is a non negative integer, f is continuous function in the interval [0,∞) , then
for each f ∈C(m) and a non negative k ,

Rn(x) =
n

∑
j=0

α∗
j Uj(x)+

n−1

∑
j=1

β ∗
j Vj(x)+

n−1

∑
j=1

γ∗j Wj(x)+
k

∑
j=0

ϕ∗( j)
0 Zj(x) (39)

satisfies the relation:

|Rn(x)− f (x)| = O(1)ω
(

f ,
logn√

n

)
, for 0 � x � cn−1 (40)

|Rn(x)− f (x)| = O(1)ω
(

f ,
logn√

n

)
, for cn−1 � x � Ω (41)

here ω represents the modulus of continuity.

Prior to proving theorem 1, first estimate the values of the following fundamental
polynomials, which are listed below:
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4. Estimation of the fundamental polynomials

THEOREM 2. Let us assume the fundamental polynomial Uj(x) , for j = 0,1,2, . . . ,n
is presented by:

Uj(x) =
xk+2l j(x)

[
L(k)

′
n (x)

]2

xk+2
j

[
L(k)′

n (x j)
]2 , (42)

then we have
n

∑
j=0

|Uj(x)| = O(1), for 0 � x � Ω. (43)

Proof. From the polynomial Uj(x) we have

n

∑
j=0

∣∣Uj(x)
∣∣ �

n

∑
j=0

∣∣xk+2
∣∣ ∣∣l j(x)

∣∣[L(k)
′

n (x)
]2

∣∣∣xk+2
j

∣∣∣[L(k)′
n (x j)

]2 , (44)

As Uj(x) is independent of L(k)
n (x) , and by using the equations (6), (7), and (9),

we get the desired result.

n

∑
j=0

|Uj(x)| = O(1), for 0 � x � Ω. �

THEOREM 3. Let us assume the fundamental polynomial Vj(x) , for j = 1,2, . . . ,
n−1 is presented by:

Vj(x) =
xk+2[l∗j (x)]2L

(k)
n (x)

yk+2
j L(k)

n (y j)

[
1+

(k+ y j)
y j

(x− y j)
]

(45)

then we have

n−1

∑
j=1

|Vj(x)| = O(n−1), for 0 � x � Ω. (46)

Proof. Rewrite the polynomial as:

Vj(x) =
xk+2[l∗j (x)]

2L(k)
n (x)

yk+2
j L(k)

n (y j)
+

(k+ y j)
y j

xk+2[l∗j (x)]
2L(k)

n (x)

yk+2
j L(k)

n (y j)
(x− y j) (47)
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then we have

n−1

∑
j=1

∣∣Vj(x)
∣∣ �

n−1

∑
j=1

∣∣xk+2
∣∣[l∗j (x)]2 ∣∣∣L(k)

n (x)
∣∣∣∣∣∣yk+2

j

∣∣∣ ∣∣∣L(k)
n (y j)

∣∣∣
+

n−1

∑
j=1

∣∣(k+ y j)
∣∣ ∣∣xk+2

∣∣[l∗j (x)]2 ∣∣∣L(k)
n (x)

∣∣∣ ∣∣(x− y j)
∣∣

|y j|
∣∣∣yk+2

j

∣∣∣ ∣∣∣L(k)
n (y j)

∣∣∣ (48)

by using the equations (6), (8), (9), and (10) we get the desired result.

n

∑
j=1

|Vj(x)| = O(n−1), for 0 � x � Ω. �

THEOREM 4. Let us suppose the fundamental polynomial Wj(x) , for j = 1,2, . . . ,
n−1 , is presented by:

Wj(x) =
xk+2l∗j (x)L

(k)
n (x)L(k)′

n (x)

yk+2
j L(k)

n (y j)L
(k)′′
n (y j)

(49)

then we have

n−1

∑
j=1

|Wj(x)| = O(n−1), for 0 � x � cn−1 (50)

n−1

∑
j=1

|Wj(x)| = O(1), for cn−1 � x � Ω. (51)

Proof. From the polynomial Wj(x) we have

∣∣Wj(x)
∣∣ �

∣∣xk+2
∣∣ |l∗j (x)| ∣∣∣L(k)

n (x)
∣∣∣
∣∣∣∣L(k)

′
n (x)

∣∣∣∣∣∣∣yk+2
j

∣∣∣ ∣∣∣L(k)
n (y j)

∣∣∣ ∣∣∣L(k)′′
n (y j)

∣∣∣ , (52)

n−1

∑
j=1

∣∣Wj(x)
∣∣ �

n−1

∑
j=1

∣∣xk+2
∣∣ |l∗j (x)| ∣∣∣L(k)

n (x)
∣∣∣
∣∣∣∣L(k)

′
n (x)

∣∣∣∣∣∣∣yk+2
j

∣∣∣ ∣∣∣L(k)
n (y j)

∣∣∣ ∣∣∣L(k)′′
n (y j)

∣∣∣ , (53)

by using the equations (6), (7), (8), and (9), we get the desired result. �

REMARK. Let C(m) = { f (x) : f is continuous in [0,∞), f (x) = O(xm) as x −→
∞;} , where m � 0 is an integer. Then, by Szegő [12] Theorem 14.7,

lim
n−→∞

| f (x)−H(α)
n ( f ,x)|I = 0, (54)
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where I ⊂ (0,∞) for α � 0, or I ⊂ (0,∞) for −1 < α < 0. Also note that there is

a function in C(m) such that {H(α)
n ( f ,x)} diverges for α � 0 at x = 0. And for the

convergence rate, we have:

∣∣∣ f (x)−H(α)
n ( f ,x)

∣∣∣
I
=

⎧⎪⎨
⎪⎩

O
(
ω

(
f ,n−1−α))

; −1 < α < 0

O
(

ω
(

f , logn√
n

))
; α � − 1

2 .
(55)

5. Proof of the main theorem 1

Let us suppose that Sn(x) be a polynomial of degree � 3n+ k− 1 and Rn(x) be
given by (13). Note that Rn(x) is exact for every fundamental polynomial of degree
� 3n+ k−1; therefore,

Sn(x) =
n

∑
j=0

Sn(x j)Uj(x)+
n−1

∑
j=1

Sn(y j)Vj(x)+
n−1

∑
j=1

S
′
n(y j)Wj(x)+

k

∑
j=0

Sn(x0)Zj(x) (56)

from equations (13) and (56) we get

| f (x)−Rn(x)| � | f (x)−Sn(x)|+ |Sn(x)−Rn(x)| (57)

� | f (x)−Sn(x)|+
n

∑
j=0

∣∣ f (x j)−Sn(x j)
∣∣ ∣∣Uj(x)

∣∣
+

n−1

∑
j=1

∣∣ f (y j)−Sn(y j)
∣∣ ∣∣Vj(x)

∣∣
+

n−1

∑
j=1

∣∣∣ f ′(y j)−S
′
n(y j)

∣∣∣ ∣∣Wj(x)
∣∣

+
k

∑
j=0

∣∣∣ f l(x0)−S(l)
n (x0)

∣∣∣ ∣∣Zj(x)
∣∣ . (58)

Thus, equation (55) and the conclusions of theorem 2, 3, and 4 complete the proof
of the theorem 1.

6. Conclusions

In this paper, we have proved the existence, uniqueness, explicit representation,
and order of convergence of the given interpolatory problem when the zeros {xi}n

i=1 and

{yi}n−1
i=1 are prescribed on the Laguerre polynomials L(k)

n (x) and its derivative L(k)′
n (x)

respectively, with an additional condition. If f : R→R be a continuously differentiable
interpolatory function, then there exists a polynomial Rn(x) having the degree � 3n+
k− 1 holding the equation (3) as well as an additional condition (4). The function
values of the polynomial converge uniformly to f (x) on the nonnegative real number
line for the large value of n .
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[2] L. FEJÉR, Über interpolation, Göttinger Nachrichten, 1916, 66–91.
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