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NONNEGATIVE SOLUTIONS OF DISCRETE SECOND–ORDER

UNDAMPED STURM––LIOUVILLE BOUNDARY VALUE PROBLEMS

JAGAN MOHAN JONNALAGADDA

Abstract. This article considers a second-order undamped difference equation satisfying the
Sturm–Liouville boundary conditions. We apply suitable fixed point theorems to establish suf-
ficient conditions for the existence of nonnegative solutions to the considered problem. We also
provide two examples to illustrate the applicability of established results.

Though there have been many works on the study of nonnegative solutions to the con-
sidered problem, most of the works used the application of the Guo–Krasnoselskii fixed point
theorem. This work’s novelty lies in applying new fixed point theorems that yield multiple fixed
points in conical shells to the considered problem. This work improves some previous results
and reports some new results.

1. Introduction

The mathematical modeling of many problems from economics, computer sci-
ence, control systems, mechanical engineering, biological neural networks, and others
leads to considering initial and boundary value problems for nonlinear difference equa-
tions [2, 4, 9, 10, 11]. In the last decades, many authors have studied such problems
using various methods, such as fixed point theory, fixed point index theory, variational
methods, critical point theory, etc.

In this article, using suitable fixed point theorems, we establish sufficient condi-
tions for the existence of nonnegative solutions to the following discrete second-order
undamped Sturm–Liouville boundary value problem:(

Δ2y
)
(ζ −1)−λy(ζ ) = f(ζ ,y(ζ )), ζ ∈ N

T
1 , (1)

αy(0)−β (Δy)(0) = 0, γy(T )+ δ (Δy) (T ) = 0, (2)

where T ∈ N3 ; α , β , γ � 0, λ , δ > 0 with α2 + β 2 > 0, δ � γ ; y : N
T+1
0 → R and

f : N
T
1 × [0,∞) → [0,∞) is a continuous function.
Second-order difference equations of the form (1) arise in many real-world prob-

lems such as undamped vibrating string, the motion of a particle under a central force,
diffusion of a gas into a liquid, etc. Researchers have been studying the existence
of nonnegative solutions for discrete boundary value problems of the form (1)–(2)
during the past few decades. However, most authors focused on applying the Guo–
Krasnoselskii fixed point theorem only [7]. Ferhan [13, 14] and Aykut at al. [3] proved
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the existence of positive solutions for (1)–(2) using the properties of differentiable op-
erators along a specific cone in a Banach space and the Guo–Krasnoselskii fixed point
theorem when λ = 0 and αγT +αδ +β γ > 0. In their monograph, Agarwal et al. [1]
presented the existence theory of the positive solutions for various classes of boundary
value problems involving second and higher-order difference equations using the Guo–
Krasnoselskii fixed point theorem. Recently, in their brief monograph, Henderson et
al. [8] presented the existence of positive solutions for some classes of second-order
nonlinear finite difference equations and systems of second-order nonlinear finite dif-
ference equations, subject to various multi point boundary conditions using the Guo–
Krasnoselskii fixed point theorem.

There has been an increasing interest in multiple fixed point theorems [12] and
their applications to boundary value problems for differential and finite difference equa-
tions. The applications of these fixed point theorems for (1)–(2) are not yet reported.
Motivated by these facts and [6], in this article, we establish the existence of nonneg-
ative solutions for the boundary value problem (1)–(2) using a few prominent conical
shell fixed point theorems. This work improves some previous results and reports some
new results.

This article is organized as follows. Section 2 constructs the Green’s function
associated with (1)–(2) and estimates its bounds. In Section 3, we establish sufficient
conditions for the existence of nonnegative solutions for (1)–(2). Section 4 presents two
examples to manifest the validity of the results obtained in Section 3.

2. Preliminaries

We use the following preliminaries throughout the article. Denote by Ni = {i, i+
1, i + 2, . . .} and N

j
i = {i, i + 1, i + 2, . . . , j} for any real numbers i and j such that

j− i ∈ N1 .

DEFINITION 1. [5] For y : N
T+1
0 → R , the first-order forward difference of y is

defined by
(Δy)(ζ ) = y(ζ +1)− y(ζ ), ζ ∈ N

T
0 ,

and the second-order forward difference of y is defined by(
Δ2y

)
(ζ ) = y(ζ +2)−2y(ζ +1)+ y(ζ ), ζ ∈ N

T−1
0 .

DEFINITION 2. By a solution to (1)–(2) we mean a function y : N
T+1
0 → R such

that y satisfies both (1) and (2).

3. Green’s function and its properties

In this section, we construct the Green’s function for the linear boundary value
problem (

Δ2y
)
(ζ −1)−λy(ζ ) = h(ζ ), ζ ∈ N

T
1 , (3)

αy(0)−β (Δy)(0) = 0, γy(T )+ δ (Δy) (T ) = 0, (4)
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associated with (1)–(2). Here h : N
T
1 → R . Denote by

A =
1
2

[
λ +2+

√
λ 2 +4λ

]
.

Then,
1
A

=
1
2

[
λ +2−

√
λ 2 +4λ

]
.

Clearly, A > 1. For convenience, we use the following notations:

L1 = α −β (A−1),

L2 = α + β
(

1− 1
A

)
,

L3 = AT [γ + δ (A−1)],

L4 =
1

AT

[
γ − δ

(
1− 1

A

)]
,

ξ = L2L3 −L1L4,

φ(ζ ) = L2A
ζ −L1A

−ζ , ζ ∈ N
T+1
0 ,

ψ(ζ ) = L3A
−ζ −L4A

ζ , ζ ∈ N
T+1
0 .

Using Lemmas 1 and 2, we obtain the expression for a general solution of the
nonhomogeneous second-order difference equation (3).

LEMMA 1. A general solution of the homogeneous second-order difference equa-
tion (

Δ2y
)
(ζ −1)−λy(ζ ) = 0, ζ ∈ N1, (5)

is given by
y(ζ ) = C1A

ζ +C2A
−ζ , ζ ∈ N0, (6)

where C1 and C2 are arbitrary constants.

Proof. In order to prove that (6) is a general solution of (5), it is enough to show
that y1(ζ ) = Aζ and y2(ζ ) = A−ζ are two linearly independent solutions of (5) on N0 .
We have(

Δ2y1
)
(ζ −1) = y1(ζ +1)−2y1(ζ )+ y1(ζ −1)

= Aζ+1−2Aζ +Aζ−1 = Aζ
[
A−2+

1
A

]
= λy1(ζ ), ζ ∈ N1,

and(
Δ2y2

)
(ζ −1) = y2(ζ +1)−2y2(ζ )+ y2(ζ −1)

= A−ζ−1−2A−ζ +A−ζ+1 = A−ζ
[

1
A
−2+A

]
= λy2(ζ ), ζ ∈ N1,
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implying that y1(ζ ) = Aζ and y2(ζ ) = A−ζ are solutions of (5) on N0 . Further, the
Wronskian of y1 and y2 is given by

W (y1,y2)(ζ ) =
∣∣∣∣ y1(ζ ) y2(ζ )
(Δy1)(ζ ) (Δy2)(ζ )

∣∣∣∣
=

∣∣∣∣ y1(ζ ) y2(ζ )
y1(ζ +1)− y1(ζ ) y2(ζ +1)− y2(ζ )

∣∣∣∣
=

∣∣∣∣ Aζ A−ζ

Aζ+1−Aζ A−ζ−1−A−ζ

∣∣∣∣
= Aζ

[
A−ζ−1−A−ζ

]
−A−ζ

[
Aζ+1−Aζ

]
=

1
A
−A �= 0, ζ ∈ N1,

implying that y1(ζ ) = Aζ and y2(ζ ) = A−ζ are linearly independent on N0 . The proof
is complete. �

LEMMA 2. Let h : N1 → R . A general solution of the nonhomogeneous second-
order difference equation(

Δ2y
)
(ζ −1)−λy(ζ ) = h(ζ ), ζ ∈ N1, (7)

is given by

y(ζ ) = C1A
ζ +C2A

−ζ +
A

(A2−1)

ζ−1

∑
s=1

(
Aζ−s−As−ζ

)
h(s), ζ ∈ N0, (8)

where C1 and C2 are arbitrary constants.

Proof. In view of Lemma 1, it is enough to show that

v(ζ ) =
A

(A2−1)

ζ−1

∑
s=1

(
Aζ−s−As−ζ

)
h(s), ζ ∈ N0,

is a particular solution of (3). For this purpose, we claim that(
Δ2v

)
(ζ −1)−λv(ζ ) = h(ζ ), ζ ∈ N1. (9)

To see this, for ζ ∈ N1 , consider(
Δ2v

)
(ζ −1) = v(ζ +1)−2v(ζ )+ v(ζ −1)

=
A

(A2−1)

[
ζ

∑
s=1

(
Aζ+1−s−As−ζ−1

)
h(s)−2

ζ−1

∑
s=1

(
Aζ−s−As−ζ

)
h(s)

+
ζ−2

∑
s=1

(
Aζ−1−s−As−ζ+1

)
h(s)

]
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=
A

(A2−1)

[(
A− 1

A

)
h(ζ )+

(
A2− 1

A2

)
h(ζ −1)

−2

(
A− 1

A

)
h(ζ −1)+

ζ−2

∑
s=1

((
Aζ+1−s−As−ζ−1

)

−2
(
Aζ−s−As−ζ

)
+

(
Aζ−1−s−As−ζ+1

))
h(s)

]

=
A

(A2−1)

[(
A− 1

A

)
h(ζ )+

(
A− 1

A

)(
A−2+

1
A

)
h(ζ −1)

+
ζ−2

∑
s=1

(
Aζ−s−As−ζ

)(
A−2+

1
A

)
h(s)

]

=
A

(A2−1)

(
A− 1

A

)
h(ζ )

+
(

A−2+
1
A

)
A

(A2−1)

ζ−1

∑
s=1

(
Aζ−s−As−ζ

)
h(s)

= h(ζ )+ λv(ζ ),

implying that (9) holds. The proof is complete. �

In order to find the unique solution to the boundary value problem (3)–(4), we have
to apply the boundary conditions (4) which involve the first-order forward difference of
y . For this purpose, we compute Δy in the following remark.

REMARK 1. Consider (8). Then, for ζ ∈ N0 ,

(Δy) (ζ ) = y(ζ +1)− y(ζ )

= C1

(
Aζ+1−Aζ

)
+C2

(
A−ζ−1−A−ζ

)

+
A

(A2−1)

[
ζ

∑
s=1

(
Aζ+1−s−As−ζ−1

)
h(s)−

ζ−1

∑
s=1

(
Aζ−s −As−ζ

)
h(s)

]

= C1A
ζ (A−1)+C2A

−ζ
(

1
A
−1

)
+

A
(A2 −1)

(
A− 1

A

)
h(ζ )

+
A

(A2−1)

[
ζ−1

∑
s=1

((
Aζ+1−s−As−ζ−1

)
−

(
Aζ−s−As−ζ

))
h(s)

]

= C1A
ζ (A−1)+C2A

−ζ
(

1
A
−1

)
+

A
(A2 −1)

(
A− 1

A

)
h(ζ )

+
A

(A2−1)

[
ζ−1

∑
s=1

(
Aζ−s (A−1)+As−ζ

(
1− 1

A

))
h(s)

]
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= C1A
ζ (A−1)+C2A

−ζ
(

1
A
−1

)

+
A

(A2−1)

[
ζ

∑
s=1

(
Aζ−s (A−1)+As−ζ

(
1− 1

A

))
h(s)

]
. (10)

In Lemmas 3, 4 and 5, we construct the Green’s function associated with (3)–(4)
and state its properties.

LEMMA 3. Assume ξ �= 0 . The linear boundary value problem (3)–(4) has a
unique solution given in the form

y(ζ ) =
T

∑
s=1

G (ζ ,s)h(s), ζ ∈ N
T+1
0 , (11)

where

G (ζ ,s) =
A

(A2−1)

{ φ(s)ψ(ζ )
ξ , s ∈ N

ζ
1 ,

φ(ζ )ψ(s)
ξ , s ∈ N

T
ζ .

(12)

Proof. From Lemma 2, a general solution of the second-order difference equation
(3) is given by

y(ζ ) = C1A
ζ +C2A

−ζ +
A

(A2−1)

ζ−1

∑
s=1

(
Aζ−s−As−ζ

)
h(s), ζ ∈ N

T+1
0 , (13)

where C1 and C2 are arbitrary constants. It follows from Remark 1 that

(Δy)(ζ ) = C1A
ζ (A−1)+C2A

−ζ
(

1
A
−1

)

+
A

(A2−1)

[
ζ

∑
s=1

(
Aζ−s (A−1)+As−ζ

(
1− 1

A

))
h(s)

]
, ζ ∈ N

T
0 .(14)

Using αy(0)−β (Δy)(0) = 0 in (13)–(14), we obtain

L1C1 +L2C2 = 0. (15)

Using γy(T )+ δ (Δy) (T ) = 0 in (13)–(14), we obtain

L3C1 +L4C2 =
A

(A2−1)

T

∑
s=1

[
L3A

−s−L4A
s] . (16)

From (15) and (16), we have

C1 =
1
ξ

L2A
(A2 −1)

T

∑
s=1

[
L3A

−s−L4A
s] , (17)
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and

C2 = − 1
ξ

L1A
(A2−1)

T

∑
s=1

[
L3A

−s−L4A
s] . (18)

Substituting the equalities (17) and (18) in (13), we obtain (12). �

LEMMA 4. Assume α � β (A−1) and γ � δ
(
1− 1

A

)
. Then, the following prop-

erties hold:

1. 0 � L1 � L2 and 0 � L4 � L3 ;

2. ξ � 0 ;

3. φ is a nondecreasing function on N
T+1
0 with φ(0) � 0 ;

4. ψ is a nonincreasing function on N
T+1
0 with ψ(T +1) � 0 ,

where

L1 = α −β (A−1),

L2 = α + β
(

1− 1
A

)
,

L3 = AT [γ + δ (A−1)],

L4 =
1

AT

[
γ − δ

(
1− 1

A

)]
,

ξ = L2L3 −L1L4,

φ(ζ ) = L2A
ζ −L1A

−ζ , ζ ∈ N
T+1
0 ,

ψ(ζ ) = L3A
−ζ −L4A

ζ , ζ ∈ N
T+1
0 .

Proof. It follows from the hypothesis that 0 � L1 and 0 � L4 . Consider

L2 −L1 = (α −β (A−1))−
(

α + β
(

1− 1
A

))

= β
(

1− 1
A

)
� 0,

implying that L1 � L2 . Now, consider

L3−L4 = AT [γ + δ (A−1)]− 1
AT

[
γ − δ

(
1− 1

A

)]

= γ
(

AT − 1
AT

)
+ δ

[
AT (A−1)+

1
AT

(
1− 1

A

)]

� δ
(

1− 1
A

)(
AT − 1

AT

)
+ δ

[
AT (A−1)+

1
AT

(
1− 1

A

)]

= γAT
(

1− 1
A

)
� 0,
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implying that L4 � L3 . The proof of (1) is complete. To prove (2), consider

ξ = L2L3 −L1L4 � L1L3 −L1L3 = 0.

The proof of (2) is complete. Clearly, φ(0) = L2−L1 � 0. In order to show that φ is a
nondecreasing function on N

T+1
0 , it is enough to show that (Δφ) (ζ ) is nonnegative on

N
T
0 . For ζ ∈ N

T
0 , we have

(Δφ) (ζ ) = φ(ζ +1)−φ(ζ )

=
(
L2A

ζ+1−L1A
−ζ−1

)
−

(
L2A

ζ −L1A
−ζ

)
= L2A

ζ (A−1)+L1A
−ζ

(
1− 1

A

)
� 0,

implying that φ is a nondecreasing function on N
T+1
0 . The proof of (3) is complete.

Consider

ψ(T +1) = L3A
−T−1−L4A

T+1

=
1
A

[γ + δ (A−1)]−A

[
γ − δ

(
1− 1

A

)]

= (δ − γ)
(

A− 1
A

)
� 0.

In order to show that ψ is a nonincreasing function on N
T+1
0 , it is enough to show that

(Δψ)(ζ ) is nonpositive on N
T
0 . For ζ ∈ N

T
0 , we have

(Δψ)(ζ ) = ψ(ζ +1)−ψ(ζ )

=
(
L3A

−ζ−1−L4A
ζ+1

)
−

(
L3A

−ζ −L4A
ζ
)

= −L4A
ζ (A−1)−L3A

−ζ
(

1− 1
A

)
� 0,

implying that ψ is a nonincreasing function on N
T+1
0 . The proof of (4) is com-

plete. �

LEMMA 5. Assume α � β (A−1) and γ � δ
(
1− 1

A

)
such that ξ > 0 . Then, the

following properties hold:

1. G (ζ ,s) � 0 for all (ζ ,s) ∈ N
T+1
0 ×N

T
1 ;

2. G (ζ ,s) � G (s,s) for all (ζ ,s) ∈ N
T+1
0 ×N

T
1 ;

3. G (ζ ,s) � σG (s,s) for all (ζ ,s) ∈ N
T
1 ×N

T
1 , where

σ = min

{
φ(1)
φ(T )

,
ψ(T )
ψ(1)

}
.

Clearly, 0 < σ < 1 .
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Proof. The proofs of (1) follows from Lemma 4. For s ∈ N
ζ
1 , we have

G (ζ ,s)
G (s,s)

=
ψ(ζ )
ψ(s)

� 1.

Similarly, for s ∈ N
T
ζ , we have

G (ζ ,s)
G (s,s)

=
φ(ζ )
φ(s)

� 1.

The proof of (2) is complete. For s ∈ N
T
ζ , we have

G (ζ ,s)
G (s,s)

=
φ(ζ )
φ(s)

� φ(1)
φ(T )

.

Similarly, for s ∈ N
ζ
1 , we have

G (ζ ,s)
G (s,s)

=
ψ(ζ )
ψ(s)

� ψ(T )
ψ(1)

.

The proof of (3) is complete. �

4. Existence of nonnegative solutions

The existence results for nonnegative solutions to the boundary value problem (1)–
(2) are stated and proven in this section. By Lemma 3, we note that y is a solution of
the summation equation

y(ζ ) =
T

∑
s=1

G (ζ ,s)f(s,y(s)), ζ ∈ N
T+1
0 , (19)

if and only if y is a solution of (1)–(2). Any solution y : N
T+1
0 → R of (1)–(2) can be

viewed as a real (T +2)-tuple vector. Consider a T -dimensional Banach space

Y =
{

y : N
T+1
0 → R

∣∣∣ αy(0)−β (Δy)(0) = 0, γy(T )+ δ (Δy)(T ) = 0
}
⊆ R

T ,

with the norm
‖y‖ = max

ζ∈NT
1

|y(ζ )| ,

and cone K in Y given by

K =
{

y ∈Y
∣∣∣ y(ζ ) � 0 for ζ ∈ N

T
1 and min

ζ∈NT
1

y(ζ ) � σ‖y‖
}
.

Define the operator S : Y → Y by

(
Sy

)
(ζ ) =

T

∑
s=1

G (ζ ,s)f(s,y(s)), ζ ∈ N
T+1
0 . (20)
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It’s obvious that y is a fixed point of S if and only if it solves (1)–(2). S is trivially
completely continuous because it is a summation operator on a discrete finite set. In
order to find nonnegative solutions of (1)–(2), we now look for nonnegativefixed points
of S . In this direction, Definition 3 and Theorems 1-3 will be crucial.

DEFINITION 3. [12] Let Y = (Y,‖ · ‖) be a real Banach space and K ⊂ Y be a
cone. Let a , b be two numbers with 0 < a < b < ∞ and g be a concave nonnegative
functional on K . We define the following sets

Ka = {y ∈ K : ‖y‖ � a},
K(g,a,b) = {y ∈ K : a � g(y), ‖y‖ � b}.

Clearly, Ka and K(g,a,b) are bounded, closed, and convex in K .

THEOREM 1. [12] Let c > 0 be a number. Suppose S : Kc → K is completely
continuous, and suppose we have a concave nonnegative functional g with g(y) � ‖y‖
for all y ∈ K , and numbers 0 < a < b � c < ∞ satisfying the following conditions:

(i) {y ∈ K(g,a,b) : g(y) > a} �= /0 and g(Sy) > a if y ∈ K(g,a,b);

(ii) Sy ∈ Kc if y ∈ K(g,a,c);

(iii) g(Sy) > a for all y ∈ K(g,a,c) with ‖Sy‖ > b.

Then, S has a fixed point in K(g,a,c) .

THEOREM 2. [12] Let c > 0 be a number. Suppose S : Kc → K is completely
continuous, and suppose we have a concave nonnegative functional g with g(y) � ‖y‖
for all y ∈ K , and numbers a and d , with 0 < d < a < c < ∞ satisfying the following
conditions:

(i) {y ∈ K(g,a,c) : g(y) > a} �= /0 and g(Sy) > a if y ∈ K(g,a,c);

(ii) ‖Sy‖ < d if y ∈ Kd ; and either

(iii) ‖Sy‖−g(Sy) � c−a for each y ∈ Kc such that ‖Sy‖ > c; or

(iv) g(Sy) > a
c‖Sy‖ for each y ∈ Kc such that ‖Sy‖ > c.

Then, S has minimum two fixed points in Kc .

THEOREM 3. [12] Let c > 0 be a number. Suppose S : Kc → Kc is completely
continuous, and suppose we have a concave nonnegative functional g with g(y) � ‖y‖
for all y∈K , and numbers 0 < d < a < b � c < ∞ , satisfying the following conditions:

(i) {y ∈ K(g,a,b) : g(y) > a} �= /0 and g(Sy) > a if y ∈ K(g,a,b);

(ii) ‖Sy‖ < d if y ∈ Kd ;
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(iii) g(Sy) > a for all y ∈ K(g,a,c) with ‖Sy‖ > b.

Then, S has minimum three fixed points in Kc .

LEMMA 6. S(K) ⊂ K .

Proof. Let y ∈ K . Then, by Lemma 5, we have
(
Sy

)
(ζ ) � 0 for all ζ ∈ N

T
1 .

Now, consider

min
ζ∈N

T
1

(
Sy

)
(ζ ) = min

ζ∈N
T
1

[
T

∑
s=1

G (ζ ,s)f(s,y(s))

]

�
T

∑
s=1

[
min

ζ∈NT
1

G (ζ ,s)

]
f(s,y(s))

� σ
T

∑
s=1

G (s,s)f(s,y(s))

� σ
T

∑
s=1

[
max
ζ∈N

T
1

G (ζ ,s)

]
f(s,y(s))

� σ max
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)f(s,y(s))

]

= σ max
ζ∈NT

1

(
Sy

)
(ζ ) = σ ‖Sy‖ .

Therefore, Sy ∈ K . The proof is complete. �
Denote by

M =
T

∑
s=1

G (s,s).

Let us define a concave nonnegative functional g : K → [0,∞) by

g(y) = min
ζ∈NT

1

y(ζ ), ζ ∈ K.

Clearly, g(y) � ‖y‖ for all y ∈ K .

THEOREM 4. Suppose there exist numbers 0 < b < b
σ � c < ∞ satisfying the

following conditions:

(C 1) f(ζ ,y) � c
M

, (ζ ,y) ∈ N
T
1 × [b,c];

(C 2) f(ζ ,y) >
b

Mσ
, (ζ ,y) ∈ N

T
1 ×

[
b,

b
σ

]
.

Then, (1)–(2) has a nonnegative solution y in K(g,b,c) .
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Proof. We demonstrate that every requirement stated in Theorem 1 is met. It is
evident that S : Kc → K is completely continuous. For all y ∈ K(g,b,c) , we have
b � g(y) and ‖y‖ � c . That is,

b � y(ζ ) � c, ζ ∈ N
T
1 .

From assumption (C 1), we get

‖Sy‖ = max
ζ∈NT

1

(
Sy

)
(ζ )

= max
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)f(s,y(s))

]

� c
M

max
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)

]

� c
M

T

∑
s=1

[
max
ζ∈NT

1

G (ζ ,s)

]

� c
M

[
T

∑
s=1

G (s,s)

]
= c,

implying that Sy ∈ Kc . Consequently, Theorem 1’s condition (ii) is met. We now
demonstrate that Theorem 1’s condition (i) is true. Let y∗ ≡ b

σ . Since

g(y∗) = g

(
b
σ

)
=

b
σ

> b and ‖y∗‖ =
b
σ

,

we obtain y∗ ∈ K
(
g,b, b

σ
)
, and{
y ∈ K

(
g,b,

b
σ

)
: g(y) > b

}
�= /0.

Also, if y ∈ K
(
g,b, b

σ
)
, then

b � y(ζ ) � b
σ

, ζ ∈ N
T
1 .

From assumption (C 2), we obtain

g(Sy) = min
ζ∈NT

1

(
Sy

)
(ζ )

= min
ζ∈N

T
1

[
T

∑
s=1

G (ζ ,s)f(s,y(s))

]

>
b

Mσ
min

ζ∈NT
1

[
T

∑
s=1

G (ζ ,s)

]
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� b
Mσ

T

∑
s=1

[
min

ζ∈NT
1

G (ζ ,s)

]

� b
M

[
T

∑
s=1

G (s,s)

]
= b.

This demonstrates that Theorem 1’s condition (i) is met. Lastly, we verify that Theorem
1’s condition (iii) is likewise true. Assume that ‖Sy‖ > b

σ for every y ∈ K(g,b,c) .
Then,

g(Sy) = min
ζ∈N

T
1

(
Sy

)
(ζ ) � σ‖Sy‖ > b.

Therefore, Theorem 1’s condition (iii) is met. Thus, (1)–(2) has a nonnegative solution
y in K(g,b,c) according to Theorem 1. �

THEOREM 5. Suppose there exist numbers 0 < a < b < 2b
σ < ∞ satisfying the

following conditions:

(B 1) f(ζ ,y) <
a
M

, (ζ ,y) ∈ N
T
1 × [0,a];

(B 2) f(ζ ,y) >
b

Mσ
, (ζ ,y) ∈ N

T
1 ×

[
b,

2b
σ

]
.

Then, (1)–(2) has minimum two nonnegative solutions y1 and y2 in K 2b
σ

.

Proof. We demonstrate that every condition stated in Theorem 2 is met. It is
evident that S : Kc → K is completely continuous. For all y ∈ Ka , we have ‖y‖ � a .
From assumption (B 1), we get

‖Sy‖ = max
ζ∈NT

1

(
Sy

)
(ζ )

= max
ζ∈N

T
1

[
T

∑
s=1

G (ζ ,s)f(s,y(s))

]

<
a
M

max
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)

]

� a
M

T

∑
s=1

[
max
ζ∈NT

1

G (ζ ,s)

]

� a
M

[
T

∑
s=1

G (s,s)

]
= a.

Consequently, Theorem 2’s condition (ii) is met. We now demonstrate that Theorem 2
holds under condition (i). Let y∗ ≡ 2b

σ . Since

g(y∗) = g

(
2b
σ

)
=

2b
σ

> b and ‖y∗‖ =
2b
σ

,
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we obtain y∗ ∈ K
(
g,b, 2b

σ
)
, and{
y ∈ K

(
g,b,

2b
σ

)
: g(y) > b

}
�= /0.

Also, if y ∈ K
(
g,b, 2b

σ
)
, then

b � y(ζ ) � 2b
σ

, ζ ∈ N
T
1 .

From assumption (B 2), we obtain

g(Sy) = min
ζ∈NT

1

(
Sy

)
(ζ )

= min
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)f(s,y(s))

]

>
b

Mσ
min

ζ∈NT
1

[
T

∑
s=1

G (ζ ,s)

]

� b
Mσ

T

∑
s=1

[
min

ζ∈NT
1

G (ζ ,s)

]

� b
M

[
T

∑
s=1

G (s,s)

]
= b.

This demonstrates that Theorem 2’s condition (i) is met. Lastly, we verify that Theorem
2’s condition (iv) is likewise true. Assume that ‖Sy‖ > 2b

σ and that y ∈ K 2b
σ

. Then,

g(Sy) = min
ζ∈NT

1

(
Sy

)
(ζ ) � σ‖Sy‖ >

σ
2
‖Sy‖ =

b(
2b
σ

)‖Sy‖.

Therefore, Theorem 2’s condition (iv) is met. Thus, in K 2b
σ

, (1)–(2) has at least two

nonnegative solutions, denoted as y1 and y2 , according to Theorem 2. �

THEOREM 6. Suppose there exist numbers 0 < a < b
σ � c < ∞ satisfying the

following conditions:

(A 1) f(ζ ,y) � c
M

, (ζ ,y) ∈ N
T
1 × [0,c];

(A 2) f(ζ ,y) <
a
M

, (ζ ,y) ∈ N
T
1 × [0,a];

(A 3) f(ζ ,y) >
b

Mσ
, (ζ ,y) ∈ N

T
1 ×

[
b,

b
σ

]
.

Then, (1)–(2) has minimum three nonnegative solutions y1 , y2 and y3 in Kc such that

‖y1‖ < a, g(y2) > b, (21)

‖y3‖ > a with g(y3) < b. (22)
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Proof. We demonstrate that every condition stated in Theorem 3 is met. We have
‖y‖ � c for every y ∈ Kc . From assumption (A 1), we get

‖Sy‖ = max
ζ∈NT

1

(
Sy

)
(ζ )

= max
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)f(s,y(s))

]

� c
M

max
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)

]

� c
M

T

∑
s=1

[
max
ζ∈N

T
1

G (ζ ,s)

]

� c
M

[
T

∑
s=1

G (s,s)

]
= c.

Hence, S : Kc → Kc is completely continuous. For all y ∈ Ka , we have ‖y‖� a . From
assumption (A 2), we get

‖Sy‖ = max
ζ∈NT

1

(
Sy

)
(ζ )

= max
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)f(s,y(s))

]

<
a
M

max
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)

]

� a
M

T

∑
s=1

[
max
ζ∈NT

1

G (ζ ,s)

]

� a
M

[
T

∑
s=1

G (s,s)

]
= a.

Consequently, Theorem 3’s condition (ii) is met. We now demonstrate that Theorem 3
holds under condition (i). Let y∗ ≡ b

σ . Since

g(y∗) = g

(
b
σ

)
=

b
σ

> b and ‖y∗‖ =
b
σ

,

we obtain y∗ ∈ K
(
g,b, b

σ
)
, and{
y ∈ K

(
g,b,

b
σ

)
: g(y) > b

}
�= /0.

Also, if y ∈ K
(
g,b, b

σ
)
, then

b � y(ζ ) � b
σ

, ζ ∈ N
T
1 .
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From assumption (A 3), we obtain

g(Sy) = min
ζ∈NT

1

(
Sy

)
(ζ )

= min
ζ∈NT

1

[
T

∑
s=1

G (ζ ,s)f(s,y(s))

]

>
b

Mσ
min

ζ∈N
T
1

[
T

∑
s=1

G (ζ ,s)

]

� b
Mσ

T

∑
s=1

[
min

ζ∈NT
1

G (ζ ,s)

]

� b
M

[
T

∑
s=1

G (s,s)

]
= b.

This demonstrates that Theorem 3’s condition (i) is met. Lastly, we verify that Theorem
3’s condition (iii) is likewise true. Assume that ‖Sy‖ > b

σ for every y ∈ K(g,b,c) .
Then,

g(Sy) = min
ζ∈NT

1

(
Sy

)
(ζ ) � σ‖Sy‖ > b.

Therefore, Theorem 3’s condition (iii) is met. Thus, according to Theorem 3, there are
at least three nonnegative solutions to (1)–(2) in Kc , such that (21) and (22) hold. These
solutions are y1 , y2 , and y3 . �

REMARK 2. Since α , β , γ � 0, δ > 0 with α2 + β 2 > 0 and δ � γ , it follows
from the boundary conditions (2) that we have y(0) � 0 and y(T + 1) � 0 for each
y ∈ K . If we remove the restriction δ � γ , then y(T +1) need not be nonnegative.

5. Applications

APPLICATION 1. (Dirichlet conditions) Consider (1)–(2) with λ = 1
2 , T = 4,

α = γ = δ = 1, β = 0 and

f(ζ ,ξ ) =
37

25(ζ +1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
120

+ sinξ , ζ ∈ N
4
1, 0 � ξ � 1

35
,

1
120

+150

(
ξ − 1

35

)
+ sinξ , ζ ∈ N

4
1,

1
35

� ξ � 1
27

,

1
120

+
80
63

+ sinξ , ζ ∈ N
4
1,

1
27

� ξ � 360.

Clearly, T ∈ N3 ; α , β , γ � 0, λ , δ > 0 with α2 + β 2 > 0, δ � γ ; u : N
5
0 → R

and f : N
4
1× [0,∞) → [0,∞) is a continuous function. We obtain A = 2, L1 = L2 = 1,

L3 = 32, L4 = 1
32 , ξ = 1023

32 ,

φ(ζ ) = 2ζ −2−ζ , ζ ∈ N
5
0,
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and
ψ(ζ ) = 25−ζ −2ζ−5, ζ ∈ N

5
0.

The Green’s function of (3)–(4) is

G (ζ ,s) =
64

3069

⎧⎪⎨
⎪⎩

(2s−2−s)
(
25−ζ −2ζ−5

)
, s ∈ N

ζ
1 ,(

2ζ −2−ζ
)(

25−s−2s−5
)
, s ∈ N

4
ζ .

Then,

σ = min

{
φ(1)
φ(4)

,
ψ(4)
ψ(1)

}
=

8
85

,

and

M =
T

∑
s=1

G (s,s) =
64

3069

4

∑
s=1

[
32+

1
32

−22s−5−25−2s
]

=
760
341

.

If we choose a = 1
35 , b = 1

27 and c = 360, then 0 < a < b
σ � c < ∞ and

(A 1) f(ζ ,y) � 3069
19

, (ζ ,y) ∈ N
4
1× [0,360];

(A 2) f(ζ ,y) <
341

26600
, (ζ ,y) ∈ N

4
1×

[
0,

1
35

]
;

(A 3) f(ζ ,y) >
5797
32832

, (ζ ,y) ∈ N
4
1×

[
1
27

,
85
216

]
.

Then, by Theorem 6, (1)–(2) has minimum three nonnegative solutions y1 , y2 and y3

in K360 such that

‖y1‖ <
1
35

, g(y2) >
1
27

, (23)

‖y3‖ >
1
35

with g(y3) <
1
27

. (24)

APPLICATION 2. (Right focal conditions) Consider (1)–(2) with λ = 1
2 , T = 4,

α = γ = δ = 1, β = 0 and

f(ζ ,ξ ) =
19

10(ζ +1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
120

+ sinξ , ζ ∈ N
4
1, 0 � ξ � 1

35
,

1
120

+150

(
ξ − 1

35

)
+ sinξ , ζ ∈ N

4
1,

1
35

� ξ � 1
27

,

1
120

+
80
63

+ sinξ , ζ ∈ N
4
1,

1
27

� ξ � 360.

Clearly, T ∈ N3 ; α , β , γ � 0, λ , δ > 0 with α2 + β 2 > 0, δ � γ ; u : N
5
0 → R

and f : N
4
1× [0,∞) → [0,∞) is a continuous function. We obtain A = 2, L1 = L2 = 1,

L3 = 16, L4 = − 1
32 , ξ = 513

32 ,

φ(ζ ) = 2ζ −2−ζ , ζ ∈ N
5
0,
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and

ψ(ζ ) = 24−ζ +2ζ−5, ζ ∈ N
5
0.

The Green’s function of (3)–(4) is

G (ζ ,s) =
64

1539

⎧⎪⎨
⎪⎩

(2s−2−s)
(
24−ζ +2ζ−5

)
, s ∈ N

ζ
1 ,(

2ζ −2−ζ
)(

24−s +2s−5
)
, s ∈ N

4
ζ .

Then,

σ = min

{
φ(1)
φ(4)

,
ψ(4)
ψ(1)

}
=

24
255

,

and

M =
T

∑
s=1

G (s,s) =
64

1539

4

∑
s=1

[
16− 1

32
+22s−5−24−2s

]
=

164
57

.

If we choose a = 1
35 , b = 1

27 and c = 360, then 0 < a < b
σ � c < ∞ and

(A 1) f(ζ ,y) � 5130
41

, (ζ ,y) ∈ N
4
1× [0,360];

(A 2) f(ζ ,y) <
57

5740
, (ζ ,y) ∈ N

4
1 ×

[
0,

1
35

]
;

(A 3) f(ζ ,y) >
1615
11808

, (ζ ,y) ∈ N
4
1×

[
1
27

,
255
648

]
.

Then, by Theorem 6, (1)–(2) has minimum three nonnegative solutions y1 , y2 and y3

in K360 such that

‖y1‖ <
1
35

, g(y2) >
1
27

, (25)

‖y3‖ >
1
35

with g(y3) <
1
27

. (26)

6. Conclusion

In this article, we considered a second-order undamped difference equation satis-
fying the Sturm–Liouville boundary conditions, and applied suitable fixed point theo-
rems to establish sufficient conditions for the existence of nonnegative solutions. We
also provided two examples to illustrate the applicability of established results. This
work improves some previous results and reports some new results.
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