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UNIQUENESS FUNCTIONS CONCERNING DIFFERENCE

OPERATOR SHARING A POLYNOMIAL WITH FINITE WEIGHT

HARINA P. WAGHAMORE ∗ AND NAVEENKUMAR B. N.

Abstract. In this study, we examine the uniqueness results when two difference polynomials of
meromorphic (entire) functions share a nonzero polynomial of finite weight, using the notion
of weighted sharing of values. Additionally, we examine the various possibilities for P(z). The
results of the paper improve and generalize the recent results due to Liu et al. [14] and Liu et al.
[15].

1. Introduction and main results

The study of difference equations in the complex domain has experienced great in-
terest in recent decades, not only due to its inherent interest and numerous applications
but also motivated by and leaning on different previous theories.

On the one hand, one can point out different works based on Nevanlinna value
distribution theory treating meromorphic solutions to difference equations. There has
been an increasing interest in studying difference equations and difference product in
the complex plane. Halburd and Korhonen [6] established a version of Nevanlinna
theory based on difference operators. Bergweiler and Langley [4] considered the value
distribution of zeros of difference operators that can be viewed as discrete analogues
of zeros of f ′(z). In recent years, the difference variant of the Nevanlinna theory has
been established in [5, 14, 15]. Using these theories, some mathematicians in the world
began to study the uniqueness questions of meromorphic functions sharing values with
their shifts and study the value distribution of the nonlinear difference polynomials and
produced many fine works; for example, see [2, 3, 8, 10, 11, 16, 17, 18, 19, 20, 21, 23,
24, 25]. To state their results and some related ones in this direction, first of all, we
recall the following notations.

It is assumed that the readers are accustomed to Nevanlinna theory and its stan-
dard notations for a meromorphic (entire) function f , such as T (r, f ) (the Nevanlinna
characteristic function), m(r, f ) (the proximity function), N(r, f ) (the counting func-
tion), and N(r, f ) (the reduced counting function) (for details, we refer the reader to
[9, 26]). For such a meromorphic function f , a meromorphic function ω such that
T (r,ω) = o(T (r, f )), where r → ∞ outside a possible exceptional set of finite logarith-
mic measure, is called a small function of f . The family of all small functions of f is
denoted by S( f ) , and S̃ = S( f )∪{∞} .
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Let k ∈ N∪{0}∪ {∞}. For a ∈ C∪ {∞}, we denote by Ek(a; f ) the set of all
a -points of f (z), where an a -point of multiplicity m is counted m times if m � k and
k + 1 times if m > k. If we have for two meromorphic functions f (z) and g(z) that
Ek(a; f ) = Ek(a;g), then we say that f (z) and g(z) share a with weight k. The IM
and CM sharing correspond to the weights 0 and ∞ , respectively. If a(z) is a small
function, we define that f (z) and g(z) share a(z) IM or a(z) CM or with weight κ
depending on whether f (z)− a(z) and g(z)− a(z) share (0,0) or (0,∞) or (0,κ) ,
respectively.

As usual, the order ρ( f ) and the hyper-order ρ2( f ) of f are defined, respectively,
by

ρ( f ) = limsup
r→∞

log+ T (r, f )
log r

, ρ2( f ) = limsup
r→∞

log+ log+ T (r, f )
log r

.

DEFINITION 1. [12] Let a ∈ C∪ {∞}. For p ∈ N, we denote by N(r,a; f | �
p), the counting function of those a -points of f (counted with multiplicities) whose
multiplicities are not greater than p. By N(r,a; f | � p), we denote the corresponding
reduced counting function.

In an analogous manner, we can define N(r,a; f | � p) and N(r,a; f | � p).

To begin the statement of our results, we recall the following theorems, which are
proved by K. Liu, X. L. Liu, and T. B. Cao [14] in 2011.

THEOREM 1. Let f and g be two transcendental meromorphic functions with
finite order. Suppose that c ∈ C \ {0} and n ∈ N. If n � 14 , f n(z) f (z + c) and
gn(z)g(z+ c) share 1 CM, then f ≡ tg or f .g ≡ t, where tn+1 = 1.

THEOREM 2. Let f and g be two transcendental meromorphic functions with
finite order. Suppose that c ∈ C \ {0} and n ∈ N. If n � 26 , f n(z) f (z + c) and
gn(z)g(z+ c) share 1 IM, then f ≡ tg or f .g ≡ t, where tn+1 = 1.

In 2015, Y. Liu, J. P. Wang, and F. H. Liu [15] improved Theorems 1 and 2 and
obtained the following results.

THEOREM 3. Let c ∈ C \ {0} and let f and g be two transcendental meromor-
phic functions with finite order, and n(� 14) , k(� 3) be two positive integers. If
Ek(1, f n(z) f (z + c)) = Ek(1,gn(z)g(z + c)), then f ≡ t1g or f g ≡ t2, for some con-
stants t1 and t2 satisfying tn+1

1 = 1 and tn+1
2 = 1.

THEOREM 4. Let c ∈ C \ {0} and let f and g be two transcendental meromor-
phic functions with finite order, and n(� 16) be a positive integer. If E2(1, f n(z) f (z+
c)) = E2(1,gn(z)g(z+ c)), then f ≡ t1g or f g ≡ t2, for some constants t1 and t2 sat-
isfying tn+1

1 = 1 and tn+1
2 = 1.

THEOREM 5. Let c ∈ C \ {0} and let f and g be two transcendental meromor-
phic functions with finite order, and n(� 26) be a positive integer. If E1(1, f n(z) f (z+
c)) = E1(1,gn(z)g(z+ c)), then f ≡ t1g or f g ≡ t2 for some constants t1 and t2 satis-
fying tn+1

1 = 1 and tn+1
2 = 1.
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We define shift and difference operators of f (z) by f (z+ c) and Δc f (z) = f (z+
c)− f (z), respectively. Note that Δn

c f (z) = Δn−1
c (Δc f (z)), where c is a nonzero com-

plex number and n � 2 is a positive integer.
For further generalization of Δc( f ), we now define the linear difference operator

of an entire (meromorphic) function f as Lc( f ) = f (z + c)+ c0 f (z), where c0 is a
finite complex constant. Clearly, for the particular choice of the constant c0 = −1, we
get Lc( f ) = Δc( f ).

As Theorems 1, 2, 3, 4, and 5 deal with only the shared value of 1 CM for the
shift operator, it would be desirable to explore the problem of the shared polynomial
with finite weight for the difference operator as well as the linear difference operator of
functions. Moreover, it becomes interesting to investigate how far the conclusions of
Theorems 1, 2, 3, 4, and 5 hold for these functions and the various possibilities for P(z)
(where P(z) = amzm +am−1zm−1 + · · ·+a1z+a0 is a non-zero polynomial). We prove
the following theorems and corollaries in this regard:

THEOREM 6. (Main) Let f and g be two transcendental meromorphic functions
of hyper order ρ2( f ) < 1 and ρ2(g) < 1. Let c ∈ C\ {0} be a complex constant such
that Lc( f ) �≡ 0 and Lc(g) �≡ 0 . Let p(z) be a non-zero polynomial with finite degree,
n,m be two positive integers, and P(z) = amzm +am−1zm−1 + · · ·+a1z+a0 be a non-
zero polynomial. Suppose f nP( f )Lc( f )− p(z) and gnP(g)Lc(g)− p(z) share (1,κ) ,
and if one of the following conditions holds;

(I) κ � 2 and n > m+22.

(II) κ = 1 and n > 3
2m+25.

(III) κ = 0 and n > 4m+40,

then one of the following conclusions holds;

1. If P(z) = amzm + am−1zm−1 + · · ·+ a1z+ a0 is a non-zero polynomial, then one
of the following holds;

(a) f = tg, for a constant t such that td = 1, where d = gcd{n+1,n+2, . . .,
n+m+1− i, . . .,n+m+1}.

(b) f and g satisfying the algebraic equation R( f ,g) = 0, where

R(ω1,ω2) = ωn
1P(ω1)Lc(ω1)−ωn

2P(ω2)Lc(ω2).

2. If P(z) reduces to a non-zero monomial, namely P(z) = aizi �≡ 0, for i ∈ {0,1,
2, . . . ,m}, then one of the following holds;

(a) If p(z) is a non-zero polynomial, then

a2
i f n+iLc( f )gn+iLc(g) ≡ p2.



134 H. P. WAGHAMORE AND NAVEENKUMAR B. N.

(b) If p(z) is a non-zero constant d, then

(i) For c0 = 0 , f = eU and g = te−U , where d and t are constants such
that tn+i+1 = d2 and U is a non-constant polynomial.

(ii) For c0 �= 0 , f = c1eα(z) , g(z) = c2e−α(z), where α,c1,c2 and d are
non-zero constants satisfying

a2
i (c1c2)n+i+1(eαc + c0)(e−αc + c0) = d2.

3. If P(z) = (zm − 1), then one of the conclusion (1) holds, and if c0 = 0 , then
f ≡ tg for a constant t such that tm = 1.

4. If P(z) = (z−1)m (m � 2), then one of the conclusion (1) holds.

5. If P(z) = x0, some constant, then f nLc( f ) ≡ gnLc(g) and if c0 = 0, then f = tg,
for a constant t such that tn+1 = 1.

If Lc( f ) = Δc( f ), then one can easily get the following theorem.

THEOREM 7. Under the assumptions of Theorem 6. Suppose f nP( f )Δc( f )− p(z)
and gnP(g)Δc(g)− p(z) share (1,κ), and if one of the following conditions holds;

(I) κ � 2 and n > m+22.

(II) κ = 1 and n > 3
2m+25.

(III) κ = 0 and n > 4m+40,

then one of the following conclusions holds;

1. If P(z) = amzm + am−1zm−1 + · · ·+ a1z+ a0 is a non-zero polynomial, then one
of the following holds;

(a) f = tg, for a constant t such that td = 1, where d = gcd{n+1,n+2, . . .,
n+m+1− i, . . .,n+m+1}.

(b) f and g satisfying the algebraic equation R( f ,g) = 0, where

R(ω1,ω2) = ωn
1P(ω1)Δc(ω1)−ωn

2P(ω2)Δc(ω2).

2. If P(z) reduces to a non-zero monomial, namely P(z) = aizi �≡ 0, for i ∈ {0,1,
2, . . . ,m}, then one of the following holds;

(a) If p(z) is a non-zero polynomial, then

a2
i f n+iΔc( f )gn+iΔc(g) ≡ p2.

(b) If p(z) is a non-zero constant d, then f = c1eα(z) , g(z) = c2e−α(z), where
α,c1,c2 and d are non-zero constants satisfying

a2
i (c1c2)n+i+1(eαc + e−αc−2) = −d2.
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3. If P(z) = (zm − 1), then one of the conclusion (1) holds, and if Δc = f (z+ c) ,
then f ≡ tg for a constant t such that tm = 1.

4. If P(z) = (z−1)m (m � 2), then one of the conclusion (1) holds.

5. If P(z) = x0, some constant, then f nΔc( f ) ≡ gnΔc(g) and if Δc = f (z+ c), then
f = tg, for a constant t such that tn+1 = 1.

It is well-established that for meromorphic functions f and g, they reduce to
entire functions in the absence of poles. As a consequence, the following corollaries
are apparent:

COROLLARY 1. Let f and g be two transcendental entire functions of hyper
order ρ2( f ) < 1 and ρ2(g) < 1 . Let c ∈ C \ {0} be a complex constant such that
Lc( f ) �≡ 0 and Lc(g) �≡ 0 . Let p(z) be a non-zero polynomial with finite degree, n,m
be two positive integers, and P(z) = amzm + am−1zm−1 + · · ·+ a1z+ a0 be a non-zero
polynomial. Suppose f nP( f )Lc( f )− p(z) and gnP(g)Lc(g)− p(z) share (1,κ) , and if
one of the following conditions holds;

(I) κ � 2 and n > m+10.

(II) κ = 1 and n > 3
2m+25.

(III) κ = 0 and n > 4m+40,

then one of the conclusions of Theorem 6 holds.

COROLLARY 2. Under the assumptions of Corollary 1. Suppose f nP( f )Δc( f )−
p(z) and gnP(g)Δc(g)− p(z) share (1,κ), and if one of the following conditions holds;

(I) κ � 2 and n > m+10.

(II) κ = 1 and n > 3
2m+25.

(III) κ = 0 and n > 4m+40,

e conclusions of Theorem 7 holds.

EXAMPLE 1. Let P(z) = amzm , f (z) = ez , g(z) = t f (z), where tn+m+1 = 1,
n,m ∈ N. Let c and p(z) are non-zero complex constants, c0 = 0, now it is easy to
see that f nP( f )Lc( f ) and gnP(g)Lc(g) share 1 CM. Clearly, f and g satisfy the con-
clusion (2) (b) (i) of Theorem 6. A simple computation shows that f and g satisfy the
conclusion (2) (b) (i) of Theorem 7.

EXAMPLE 2. Let P(z) = amzm , f (z) = e2πz , g(z) = t 1
f (z) , where tn+m+1 = 1,

n,m∈N and c is a non-zero complex constant. Then f nP( f ) f (z+c) and gnP(g)g(z+
c) share 1 CM. Clearly, f and g satisfy the conclusion (2) (b) (i) of Theorem 6. A
simple computation shows that f and g satisfy the conclusion (2) (b) (i) of Theorem 7.
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EXAMPLE 3. Let P(z) = amzm , f (z) = ez , g(z) = 1
f (z) , p(z) = 2, c =− log(−1).

Then f nP( f )( f (z+c)− f (z)) and gnP(g)(g(z+c)−g(z)) share 2 CM. Clearly, f and
g satisfy the conclusion (2) (b) (i) of Theorem 6.

EXAMPLE 4. Let P(z) = (zm − 1) , c is a non-zero constant such that ec �= 1,
p(z) = 1. Suppose t is a non-zero constant such that tn+1 = tm = 1. Let f (z) = ez ,
g(z) = tez. Then f nP( f )( f (z+ c)) and gnP(g)(g(z+ c)) share 1 CM. Clearly, f and
g satisfy the conclusion (3) of Theorem 6.

2. Auxiliary lemmas

Let F and G be two non-constant meromorphic functions defined in C . We define
the function H as

H =
(F ′′

F ′ −
2F ′

F −1

)
−

(G′′

G′ −
2G′

G−1

)
. (1)

LEMMA 1. [27] Let f be a non-constant meromorphic function and P( f ) = a0 +
a1 f +a2 f 2 + · · ·+an f n, where a0,a1,a2, . . . ,an are constants and an �= 0. Then

T (r,P( f )) = nT (r, f )+O(1).

LEMMA 2. [5, 22] Let f be a transcendental meromorphic function of hyper
order ρ2( f ) < 1, and let c be a non-zero complex constant. Then we have

(i) T (r, f (z+ c)) � T (r, f (z))+S(r, f ),

(ii) N (r, f (z+ c)) � N(r, f (z))+S(r, f ),

(iii) N
(
r, 1

f (z+c)

)
� N(r, 1

f (z) )+S(r, f ).

LEMMA 3. [13] Let F and G be two non-constant meromorphic functions shar-
ing (1,2). Then one of the following cases holds:

(i) T (r) � N2
(
r, 1

F

)
+N2

(
r, 1

G

)
+N2(r,F)+N2(r,G)+S(r),

(ii) F = G,

(iii) F.G = 1, where T (r) denotes the maximum of T (r,F) and T (r,G) and S(r) =
o{T (r)} as r → ∞, possibly outside a set of finite linear measure.

LEMMA 4. [1] Let F and G be two non-constant meromorphic functions sharing
(1,1) and H �≡ 0. Then

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+

1
2
N

(
r,

1
F

)
+

1
2
N(r,F)

+S(r,F)+S(r,G).
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LEMMA 5. [1] Let F and G be two non-constant meromorphic functions sharing
(1,0) and H �≡ 0. Then

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+2N

(
r,

1
F

)
+N

(
r,

1
G

)

+2N(r,F)+N(r,G)+S(r,F)+S(r,G).

LEMMA 6. Let f be a transcendental meromorphic function of hyper order ρ2( f )
< 1 , and let c ∈ C\{0} be a complex constant, and n,m be two positive integers such
that Lc( f ) �≡ 0 , where Lc( f ) = f (z+c)+c0 f (z) is a linear difference operator, P(z) =
amzm +am−1zm−1 + · · ·+a1z+a0 be a non-zero polynomial and F(z) = f nP( f )Lc( f ),
then

(n+m−2)T(r, f )+S(r, f ) � T (r,F) � (n+m+2)T(r, f )+S(r, f ).

Proof. Since f is a meromorphic function with ρ2( f ) < 1. From Lemmas 1 and
2, we have

T (r,F) = T (r, f nP( f )Lc( f ))+S(r, f )
� (n+m+2)T(r, f )+S(r, f ). (2)

On the other hand, from Lemmas 1 and 2, we have

(n+m+1)T(r, f ) = T (r, f n+1P( f ))+S(r, f )

� T (r, f nP( f )Lc( f ))+T

(
r,

f
Lc( f )

)
+S(r, f )

� T (r,F)+m

(
r,

Lc( f )
f

)
+N

(
r,

Lc( f )
f

)

� T (r,F)+3T(r, f )+S(r, f )
(n+m−2)T(r, f ) � T (r,F)+S(r, f ). (3)

From (2) and (3), we can see that

(n+m−2)T(r, f )+S(r, f ) � T (r,F) � (n+m+2)T(r, f )+S(r, f ). �

LEMMA 7. [4] Let f be a meromorphic function of finite order ρ and let c be a
fixed nonzero complex constant. Then, for each ε > 0 ,

m

(
r,

f (z+ c)
f (z)

)
+m

(
r,

f (z)
f (z+ c)

)
= O(rρ−1+ε).

LEMMA 8. Let f and g be two transcendental meromorphic functions of hyper
order ρ2( f ) < 1 and ρ2(g) < 1 . Let c ∈ C\{0} be a complex constant, and let n and
m be two positive integers such that n > m+ 11. Suppose Lc( f ) �≡ 0 and Lc(g) �≡ 0 ,
let F = f nP( f )Lc( f )− p(z) and G = gnP(g)Lc(g)− p(z) , where p(z) is a non-zero
polynomial with finite degree and P(z) is defined as in Theorem 6. If H ≡ 0, then one
of the following conclusions holds;
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1. If P(z) = amzm + am−1zm−1 + · · ·+ a1z+ a0 is a non-zero polynomial, then one
of the following holds;

(a) f = tg, for a constant t such that td = 1, where d = gcd{n+1,n+2, . . .,
n+m+1− i, . . .,n+m+1}.

(b) f and g satisfying the algebraic equation R( f ,g) = 0, where

R(ω1,ω2) = ωn
1P(ω1)Lc(ω1)−ωn

2P(ω2)Lc(ω2).

2. If P(z) reduces to a non-zero monomial, namely P(z) = aizi �≡ 0, for i ∈ {0,1,
2, . . . ,m}, then one of the following holds;

(a) If p(z) is a non-zero polynomial, then

a2
i f n+iLc( f )gn+iLc(g) ≡ p2.

(b) If p(z) is a non-zero constant d, then

(i) For c0 = 0 , f = eU and g = te−U , where d and t are constants such
that tn+i+1 = d2 and U is a non-constant polynomial.

(ii) For c0 �= 0 , f = c1eα(z) , g(z) = c2e−α(z), where α,c1,c2 and d are
non-zero constants satisfying

a2
i (c1c2)n+i+1(eαc + c0)(e−αc + c0) = d2.

3. If P(z) = (zm − 1), then one of the conclusion (1) holds and if c0 = 0 , then
f ≡ tg for a constant t such that tm = 1.

4. If P(z) = (z−1)m (m � 2), then one of the conclusion (1) holds.

5. If P(z) = x0, some constant, then f nLc( f ) ≡ gnLc(g) and if c0 = 0, then f = tg,
for a constant t such that tn+1 = 1.

Proof. Since H ≡ 0. On Integration (1), we get

1
F −1

≡ bG+a−b
G−1

, (4)

where a,b are constant and a �= 0.
We now consider the following cases.

Case 1. Let b �= 0 and a �= b. If b = −1, then from (4), we have

F ≡ −a
G−a−1

.

Therefore
N (r,a+1;G) = N(r,∞;F) = 3N(r,∞; f ).



UNIQUENESS FUNCTIONS CONCERNING DIFFERENCE OPERATOR. . . 139

So, from Lemma 6 and the second fundamental theorem, we get

T (r,G) � N(r,0;G)+N(r,∞;G)+N(r,a+1;G)+S(r,G),

which implies that

(n+m−2)T(r,g) � (m+6)T(r,g)+3T(r, f )+S(r, f )+S(r,g)
(n−8)T(r,g) � 3T (r, f )+S(r, f )+S(r,g). (5)

Similarly, we can write

(n−8)T(r, f ) � 3T (r,g)+S(r, f )+S(r,g). (6)

By adding (5) and (6), we get

(n−11){T(r, f )+T (r,g)} � S(r, f )+S(r,g),

which is a contradiction since n > 11.
If b �= −1, from (4), we obtain that

F −
(

1+
1
b

)
≡ −a

b2
[
G+ a−b

b

] .

So,

N

(
r,

(b−a)
b

;G

)
= N(r,∞;F) = 3N(r,∞; f ).

By using the same argument as in the case when b = −1, we can get a contradiction.

Case 2. Let b �= 0 and a = b. If b �= −1, from (4), we have

1
F

≡ bG
(1+b)G−1

.

Therefore,

N

(
r,

1
1+b

;G

)
≡ N(r,0;F).

So, in view of Lemma 6 and the second fundamental theorem and by using the same
argument as in Case 1, we get a contradiction as n > m+11.

Therefore, a = b and b = −1, then from (4), we have F.G ≡ 1, i.e.,

( f nP( f )Lc( f )).(gnP(g)Lc(g)) ≡ p2(z). (7)

Suppose P(z) is not a non-zero monomial. For the sake of simplicity, let P(z) =
(z−a), where a ∈ C\ {0}, clearly Θ(0, f )+ Θ(a, f ) = 2, which is impossible. Thus
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P(z) reduces to a non-zero monomial, namely P(z) = aizi �= 0 for some i∈ {0,1,2, . . . ,
m} , and so (7) reduces to

a2
i f n+iLc( f )gn+iLc(g) ≡ p2. (8)

Now, let p(z) be a non-zero constant d . In this case, we see that f (z) and g(z)
have no zeros, and so we can take f (z) and g(z) as follows:

f (z) = eα(z), g(z) = eβ (z), (9)

where α and β are non-constant polynomials.
Now, let p(z) be a non-zero constant d , and from (8) and (9), we obtain

a2
i

[
e(n+i)α(z)

(
eα(z+c) + c0e

α(z)
)]

.
[
e(n+i)β (z)

(
eβ (z+c) + c0e

β (z)
)]

≡ d2, (10)

which implies that

a2
i e

(n+i)(α+β )
[
eα(z+c)+β (z+c) + c0e

α(z+c)+β (z) + c0e
α(z)+β (z+c) + c2

0e
α+β

]
≡ d2(z).

(11)

Keeping in view of (9), we must have

(n+ i)(α + β )+ α(z+ c)+ β (z+ c)= A1, (12)

(n+ i)(α + β )+ α(z)+ β (z+ c) = A2, (13)

(n+ i)(α + β )+ α(z+ c)+ β (z) = A3, (14)

(n+ i+1)(α + β ) = A4, (15)

where A1,A2,A3,A4 are constants. Let α(z)+β (z) = w. Then (12) can be written as

(n+ i)w(z)+w(z+ c) = A1, (16)

for all z ∈ C. Therefore, from (15), we must have w = B, where B is a constant, and
therefore, we have

β = B−α. (17)

Keeeping in view of (17), (9) can be written as

f (z) = eα(z), g(z) = eBe−α(z). (18)

Now, (11) can be written as

a2
i

[
eA4 + c0e

A3 + c0e
A2 + c2

0e
A4

] ≡ d2(z). (19)

For a non-constant polynomial U , (18) can be written as

f (z) = eU , g(z) = eBe−U . (20)
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Using the above forms of f and g and keeping in mind that p is a constant, say d, (8)
reduces to

a2
i e

B(n+1+i)
(
eU (z+c)−U (z) + c0

)(
e−(U (z+c)−U (z)) + c0

)
≡ d2. (21)

If c0 = 0, (21) reduces to e(n+i+1)B = d2. Set eB = t. Then (20) can be written as
f (z) = eU , g(z) = te−U , where t is a constant such that tn+i+1 = d2.

If c0 �= 0, then from (21), one can say that eU (z+c)−U (z) + c0 has no zeros. Then
Φ(z) = eU (z+c)−U (z) �= 0, −c0 , ∞. By Picard’s theorem, Φ is a constant, and so
deg(U (z)) = 1. Therefore, from (20), we may obtain f (z) = c1eαz , g(z) = c2e−αz,
where α,c1 and c2 are non-zero constants. Using these in (8), we obtain

a2
i (c1c2)(n+1+i) (eαc + c0)

(
e−αc + c0

) ≡ d2.

Case 3. Let b = 0. From (4), we obtain

F ≡ G+a−1
a

. (22)

If a �= 1, then from (22), we obtain

N(r,1−a;G) = N(r,0;F).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (22),
we obtain F ≡ G. i.e.,

f nP( f )Lc( f ) ≡ gnP(g)Lc(g). (23)

Subcase 3.1. When P(z) is a non-zero polynomial as in Theorem 6.
Let h = f

g . If h is a constant, then substituting f = gh in (23), we get

amgm (
hn+m+1−1

)
+am−1g

m−1 (
hn+m−1

)
+ · · ·+a0

(
hn+1−1

)≡ 0,

which implies that hd = 1, where d is the gcd of the elements of J = {p ∈ I : ap �= 0}
and I = {n+1,n+2, . . .,n+m+1− i, . . .,n+m+1}.

Thus f = tg for a constant t such that td = 1, where d is the GCD of the elements
of J = {p ∈ I : ap �= 0} and I = {n+ 1,n+ 2, . . . ,n + m + 1− i, . . . ,n+ m + 1} , i ∈
{0,1,2, . . . ,m}.

If h is not a constant, then we know that by (23) that f and g satisfy the algebraic
equation R( f ,g) = 0, where R(ω1,ω2) = ωn

1P(ω1)Lc(ω1)−ωn
2P(ω2)Lc(ω2) . We now

discuss the following subcases,

Subcase 3.2. When P(z) = zm −1. Then from (23), we have

f n( f m −1)Lc( f ) ≡ gn(gm−1)Lc(g). (24)

Let h = f
g , now the result follows from Subcase 3.1.
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Suppose c0 = 0, then (24) becomes

f n( f m −1) f (z+ c)≡ gn(gm−1)g(z+ c). (25)

Let h = f
g , then from (25), we have

gnhn(gmhm−1)g(z+ c)h(z+ c)≡ gn(gm −1)g(z+ c),

which implies that

gm =
hnh(z+ c)−1

hn+mh(z+ c)−1
. (26)

If 1 is a Picard exceptional value of hn+mh(z+ c), by applying Nevanlinna’s sec-
ond fundamental theorem with Lemma 2, we get

T (r,hn+mh(z+ c)) � N(r,∞;hn+mh(z+ c))+N(r,0;hn+mh(z+ c))

+N(r,1;hn+mh(z+ c))
� 4T (r,h)+S(r,h). (27)

On the other hand, combining the standard Valiron-Mohon’ko theorem with (27) and
Lemma 2, we get

(n+m)T(r,h) = T (r,hn+m)+S(r,h)

� T (r,hn+mh(z+ c))+T(r,h(z+ c))+S(r,h)
� 5T (r,h)+S(r,h),

which contradicts since n > 5−m.
Therefore, 1 is not a Picard exceptional value of hn+mh(z+ c). Thus there exists

z0 such that h(z0)n+mh(z0 + c) = 1 then by (26), we have h(z0)nh(z0 + c) = 1. Hence
h(z0)m = 1, and

N(r,0;hn+mh(z+ c)−1) � N(r,0;hm −1)
� mT (r,h)+O(1). (28)

Denote,

M(z) = h(z)n+mh(z+ c). (29)

We have T (r,M) � (n+m+1)T(r,h)+S(r,h). Applying Nevanlinna’s second funda-
mental theorem to M and using Lemma 2 and (28), we get

T (r,M) � N(r,0;M)+N(r,∞;M)+N(r,1;M)+S(r,M)

� N(r,0;M)+N(r,∞;M)+mT (r,h)+S(r,h)
� (m+4)T(r,h)+S(r,h). (30)
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On the other hand, using (29) and (30), we have

(n+m)T (r,h) = T (r,hn+m)+S(r,h)
� T (r,M)+T (r,h(z+ c))+S(r,h)
� (m+5)T(r,h)+S(r,h),

which is a contradiction since n > 5.
Therefore, hn+mh(z + c) ≡ 1, and hnh(z + c) ≡ 1. Thus hm ≡ 1. Hence we get

f = tg, where tm = 1.

Subcase 3.3. When P(z) = (z−1)m , then from (23), we have

f n( f −1)mLc( f ) ≡ gn(g−1)mLc(g). (31)

Let h = f
g . If m = 1, then the result follows from Subcase 3.2.

For m � 2, first we suppose that h is not a constant, then from (31), we can say
that f and g satisfy the algebraic equation R( f ,g) = 0, where

R(w1,w2) = wn
1(w1 −1)mLc(w1)−wn

2(w2 −1)mLc(w2).

Next, we suppose that h is a constant, then from (31), we get

f nLc( f )
m

∑
i=0

(−1)i
(

m
m− i

)
f m−i = gnLc(g)

m

∑
i=0

(−1)i
(

m
m− i

)
gm−i. (32)

Now, substituting f = gh in (32), we get

m

∑
i=0

(−1)i
(

m
m− i

)
gm−i [hn+m−i+1−1

]≡ 0,

which implies that hd = 1, where d = gcd{n+1,n+2, . . . ,n+m+1− i, . . . ,n+m+1}.
Thus f = tg for a constant t such that td = 1, where d = gcd{n+ 1,n+ 2, . . . ,

n+m+1− i, . . .,n+m+1}.
Subcase 3.4. When P(z) = x0, some constant. Then from (23), we have

f nLc( f ) ≡ gnLc(g). (33)

Suppose c0 = 0, then from (33),

f n f (z+ c) ≡ gng(z+ c). (34)

Let h = f
g . Then by (34), we have

hn(z) =
1

h(z+ c)
. (35)
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Now by Lemmas 1, 2, and 7, we get

nT (r,h) = T (r,hn)+S(r,h) = T

(
r,

1
h(z+ c)

)
+S(r,h)

� N(r,0;h(z+ c))+m

(
r,

1
h(z+ c)

)
+S(r,h)

� N(r,0;h(z))+m

(
r,

1
h(z)

)
+S(r,h)

� T (r,h(z))+S(r,h),

which is a contradiction since n > 1. Therefore, if h is a constant, then substituting
f = gh into (34), we get f = tg for a constant t such that tn+1 = 1. �

3. Proof of the main theorems

Proof of Theorem 6. Let F = f n(z)P( f )Lc( f )
p(z) and G = gn(z)P(g)Lc(g)

p(z) . Then F and G

share (1,κ) except the zeros and poles of p(z). Now we consider the following cases.

Case 1. Let H be defined as above. Suppose that H �≡ 0.

Subcase 1.1. Let κ � 2. Let us assume (i) of Lemma 3 holds. i.e.,

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+S(r,F)+S(r,G). (36)

By Lemma 6, we obtain

(n+m−2)T(r, f ) � N2

(
r,

1
f n(z)P( f )Lc( f )

)
+N2

(
r,

1
gn(z)P(g)Lc(g)

)

+2N(r, f n(z)P( f )Lc( f ))+2N(r,gn(z)P(g)Lc(g))
+S(r, f )+S(r,g)

� 2N

(
r,

1
f

)
+N

(
r,

1
P( f )

)
+N

(
r,

1
Lc( f )

)
+2N

(
r,

1
g

)

+N

(
r,

1
P(g)

)
+N

(
r,

1
Lc(g)

)
+6N(r, f )+6N(r,g)

+S(r, f )+S(r,g)
� (m+10){T(r, f )+T (r,g)}+S(r, f )+S(r,g). (37)

Similarly, we can write

(n+m−2)T(r,g) � (m+10){T(r, f )+T (r,g)}+S(r, f )+S(r,g). (38)

Now adding (37) and (38), we have

(n−m−22){T(r, f )+T (r,g)} � S(r, f )+S(r,g),
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which is a contradiction since n > m+22.

Subcase 1.2. Let κ = 1. Using Lemmas 4 and 6, we obtain

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+

1
2
N

(
r,

1
F

)

+
1
2
N (r,F)+S(r,F)+S(r,G),

which implies that

(n+m−2)T(r, f ) � N2

(
r,

1
f n(z)P( f )Lc( f )

)
+N2

(
r,

1
gn(z)P(g)Lc(g)

)

+2N(r, f n(z)P( f )Lc( f ))+2N(r,gn(z)P(g)Lc(g))

+
1
2
N

(
r,

1
f n(z)P( f )Lc( f )

)
+

1
2
N (r, f n(z)P( f )Lc( f ))

+S(r, f )+S(r,g)

� 2N

(
r,

1
f

)
+N

(
r,

1
P( f )

)
+N

(
r,

1
Lc( f )

)
+2N

(
r,

1
g

)

+N

(
r,

1
P(g)

)
+N

(
r,

1
Lc(g)

)
+6N(r, f )+6N(r,g)

+
1
2

[
N

(
r,

1
f

)
+N

(
r,

1
P( f )

)
+N

(
r,

1
Lc( f )

)]
+

3
2
N (r, f )

+S(r, f )+S(r,g)

�
(

3
2
m+13

)
T (r, f )+ (m+10)T(r,g)+S(r, f )+S(r,g). (39)

Similarly, we can write

(n+m−2)T(r,g) �
(

3
2
m+13

)
T (r,g)+ (m+10)T(r, f )+S(r, f )+S(r,g). (40)

Now adding (39) and (40), we get
(

n− 3
2
m−25

)
{T (r, f )+T (r,g)} � S(r, f )+S(r,g),

which is a contradiction since n > 3
2m+25.

Subcase 1.3. Let κ = 0. Using Lemmas 5 and 6, we obtain

T (r,F) � N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+2N

(
r,

1
F

)

+N

(
r,

1
G

)
+2N (r,F)+N (r,G)+S(r,F)+S(r,G),
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which implies that

(n+m−2)T(r, f ) � N2

(
r,

1
f n(z)P( f )Lc( f )

)
+N2

(
r,

1
gn(z)P(g)Lc(g)

)

+2N(r, f n(z)P( f )Lc( f ))+2N(r,gn(z)P(g)Lc(g))

+2N

(
r,

1
f n(z)P( f )Lc( f )

)
+ N

(
r,

1
gn(z)P(g)Lc(g)

)

+2N (r, f n(z)P( f )Lc( f ))+N (r,gn(z)P(g)Lc(g))+S(r, f )
+S(r,g)

� 4N

(
r,

1
f

)
+3N

(
r,

1
P( f )

)
+3N

(
r,

1
Lc( f )

)
+3N

(
r,

1
g

)

+2N

(
r,

1
P(g)

)
+2N

(
r,

1
Lc(g)

)
+12N(r, f )+9N(r,g)

+S(r, f )+S(r,g)
� (3m+22)T (r, f )+ (2m+16)T(r,g)+S(r, f )+S(r,g). (41)

Similarly, we can write

(n+m−2)T(r,g) � (3m+22)T (r, f )+ (2m+16)T(r,g)+S(r, f )+ S(r,g). (42)

Now, adding (41) and (42), we get

(n−4m−40){T(r, f )+T (r,g)} � S(r, f )+S(r,g),

which is a contradiction since n > 4m+40.

Case 2. Suppose H ≡ 0. Now the result follows directly from Lemma 8. �

Proof of Theorem 7. The proof of Theorem 7 is straightforward, similar to the
proof of Theorem 6. �

Proof of Corollary 1 and 2. Since f and g are entire functions, we can take
N(r, f ) = S(r, f ) and N(r,g) = S(r,g). Now the proof is straightforward, similar to
the proof of Theorem 6. �

For further study, one could use the following open questions:

OPEN QUESTIONS.

1. Is there another way that reduces the value of n in Theorems 6–7 more signifi-
cantly?

2. If f nP( f )Lc( f ) and gnP(g)Lc(g) share any set S instead of a non-zero polyno-
mial p(z), then can the conclusion of Theorem 6 be obtained?
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