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PROPERTIES FOR THE CLASS OF UNIVALENT
FUNCTIONS DEFINED BY DOUBLE SUBORDINATION
ASSOCIATED WITH PETAL SHAPED DOMAIN

TRAILOKYA PANIGRAHI AND BIVEK KUMAR BEHERA *

Abstract. In this paper, with the help of double subordination the authors introduce a new sub-
class of analytic univalent functions % defined in the open unit disk D:= {z € C: |z < 1} and
examine the initial bounds for the first four coefficients of functions that belong to this newly
defined class. Furthermore, we investigate the upper bounds of Fekete-Szeg6 inequality, Hankel
determinant of different orders, Zalcman conjecture, logarithmic coefficients and Inverse coeffi-
cients for such family. Our results are new as per the existing literature.

1. Introduction and motivation

Let A represents the family of all holomorphic functions of the form:
h(z) =z+ Y, and", (D
n=2

which are analytic in the open unit disk D := {z € C: |z| < 1}. By .¥/, we mean
the subclass of 21 which are univalent in D and normalized by h(0) = #'(0) — 1 =0.
For fi, f> € 2, we say f; is said to be subordinate to f>, denoted by f| < f» (or,
more precisely fi(z) < f»(z)) if there exists a Schwarz function  analytic in D with
B(0) =0 and [B(z)| <1 forall z € D, such that f1(z) = 2(B(z)) (z€D). If f, is
univalent in D, then

f1(2) < f2(2) © f1(0) = /2(0) and fi(D) C f2(D). 2)

The well-investigated subfamilies of univalent functions i.e class of starlike and convex
functions defined as follows,

= {hEQl:Re (i’;g) >0, ZGID)},

th::{hem:Re <1+ZZH((Z;)> >07ZED}.
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In term of subordination Ma and Minda (see [16]) discussed the more general class
() by

o) o ()
(@) = {he%l. ) < (p(z)},

where ¢ satisfied the condition stated in [16] i.e @ is a regular function with Re (¢(z)) >
0 in D together with gives value one at origin and positive first derivative at origin. In
addition, the function ¢ maps D onto a star-shaped region with respect to ¢(0) = 1
and is symmetric with respect to the real axis. Taking particular function ¢, we can
derive different subclasses of .*(¢), and for details see [6] and reference within.

Motivated by the works of above researchers, we will consider the non-vanishing
analytic functions ¢ and ¢ in D that satisfy the condition @(0) = ¢(0) = 1. In this
paper we define the class of functions & € 2 that fulfill the following condition

2h"(z)

q(z)

< 9(2),
where g and ¢ need to be specific functions. Now, we introduce the following class.

DEFINITION 1. A function & € 2 given by (1) is belong to the class € defined
by

2" (z) 3
% 4 Z
€= hte:T)(Z)<l+ln(z+ 2HDa@<1+i-S. Q)

REMARK 1. (i) It may be noted that the function ¢ defined above should be
Zh//(Z)
"(z)

q(2)
(ii) In(z++v72+ 1) =sinh~!z, is a multi-valued function and has the branch cuts
along the line segment (—ieo, —i) U (i,ie) on the imaginary axis and hence analytic in

D.

analytic in D with ¢(0) = 1 such that the is also analytic in D.

2 (2)
(iii) If we take w = q(hzl)@ where h € € where the class ¢ can be written

as e" ! < z4+ 722+ 1 where z+ /72 + 1 represents the Crescent shaped domain (see
[21]).

REMARK 2. (i) Ifwelet ¢(z):=1+In(z+Vvz2+ 1), then ¢(0)=1 and ¢'(z) =

\/lz—H ,hence ¢'(0) =1+ 0. Further,
Z

wo w2
0(2)—0(0)  @@@)—1 In(z+VZ+1)
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We can see in the Figure 1(a) that

1
(A=)
2+1

P(z):=Re | — Y2 | 50 ;eD,

log (z+vVz>+1)

and combined with ¢’(0) =1#0 it follows that @(z) = 1 +1In(z++v/z> + 1) is a starlike
(univalent) function in . Moreover, since @(Z) = ¢(z), z € D, the domain ¢(D) is
symmetric with respect to the real axis.

(a) The visual of P (re”), relo,1], (b) The visual of p (D)
1 €10,2m)

Figure 1: Figures for the Remark 2 (i) and (ii)

(ii) The function ¢(z) ;== 1+z— é is also correctly choose because ¢'(z) =
(1—2%), hence ¢/(0) = 1 # 0. Also, we observe that

q' (@) o @) -2
Re i R 1 R () 0 €D

and using this fact together with ¢’'(0) = 1 # 0 it follows that g(z) = 1 +z— é is also
a starlike (univalent) function in . Moreover, from the Figure 1(b) we can see that
q(z) #0 forall ze D.

(iif) The class is well choose if we could prove that it isn’t empty. First, from
the above items (i) and (ii) both of the functions ¢(z) = 1 +In(z+ vz2+1) and
q(z)=1+4z— é are univalent in D. To show that € # 0 for some appropriate choices
of t, let consider the functions

h(z) :=z+8-107%2 A, t(z) :=1+0.36z+0.0833333333Z".

(a) From the Figure 2(a) we see that t (D) C ¢ (D), and using that t(0) = ¢(0) =1
together with the fact that g is univalent in D which was previously proved, from the
equivalence (2) we deduce that t(z) = 1 +0.36z+0.08333333332 < ¢(z2).
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02 04 06\08 10 12 14 16 Y8

(a) The images of t(ei’ ) (blue color) and ~ (b) The images of R(eit) (blue color)
q (ei’) (red color), t € [0,27) and @ (eit) (red color), t € [0,2m)

Figure 2: Figures for the Remark 2 (iii)

(b) If we denote

" (2) 1.6x10~7
R@= T P ieim
' t(2) 1+ 0.36z+0.083333333373’

from the Figure 2(b) we get R(D) C ¢ (D), and using that R(0) = ¢(0) = 1 and the

zh”(z)
1 + 7(z)

above proved fact that ¢ is univalent in D, from (2) we obtain Q) < 0(z2).
z

Concluding, from (a) and (b) we get that for h(z) :=z+ 8- 107822 € 2 we have

3

t(z) = 14+0.362+0.0833333333° < g(z) = 1 +z— %
zh"(z)
1+ h’(z)

@ <@(Z)=1+In(z+vV2+1),
where t(0) = 1 with t(z) # 0 in D. Therefore, h(z) :=z+8-10732 € A € &,
hence there exist appropriate choices of the functions q and % such that i € €7, that is
Cq #0.

All the figures of this paper were made by using the MAPL
ware.

E™ computer soft-

Investigating the upper bounds of the moduli of Hankel determinants for differ-
ent subclasses of analytic univalent functions remains an important topic in Geometric
Function Theory. In 1976, Noonan and Thomas [18] presented the expression for the
q-th Hankel determinant, for ¢ > 1 and n > 1, for functions & € 2 of the form (1), as
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outlined below.

dn Apt+1 -+ Apig—1
an-1 apt+2 ... dptgq
Hl]-,n(h) = . . . s (a1 = 1).
Apt+q—1 Apnyq—2 -+ Apy2g-2
For example:
ap az 2 az as 2
H> (h)= =a3—a H»(h) = =ayas—a 4
2,1(h) > as 3—day, 22(h) as as 204 — a3 4)
a az as 5 5
Hz(h) = |as a3 as| = as (a3 - a2) — a4 (a4 — apasz) +as (a2a4 - a3) . 5)
as dg as

The bounds of the third-order Hankel determinant |H3 ; (k)| for the families of .”* of
starlike functions, J#~ of convex functions and % of functions with bounded turning
were investigated for the first time by Babalola [4]. Recently, the sharp bounds of
|H3,1(h)| of various subclasses of analytic univalent functions were obtained by several
researchers. For details, see [3, 6, 11, 13, 14, 17, 22, 24, 26].

2. Preliminaries

Let & denote the classical Carathéodory class, which refers to the family of holo-
morphic functions / defined in D that satisfy the condition Re (I(z)) > 0 forall z€ D,
and can be written in the following form.

l(z):l—i—ilnz"7 z€D. (6)

n=1

We need the following lemmas in order to prove our results.

LEMMA 1. (see[7,9, 20]) Let | € & be of the form (6). Then

| <2 (n>1). )
. o . 1+ 2z
The inequality is sharp for the function 1(z) = . [A|=1.
— Az
LEMMA 2. [3,Lemma2.2.] If | € & has the form (6), then
o} = Bl +vi3| < 2(|otf + |B 20| + |or— B+ 7). (8)

LEMMA 3. [, Lemma 3, p. 66] Let | € & and has the expansion of the form
(6). If B€[0,1] with B2B—1) < D < B, then

|l3— 2Bl + DI} | <2. 9)
LEMMA 4. [16] If 1 € & of the form (6) then for any u € C, we have
[l — ulf] < 2max {1, [2u — 1]}, (10)
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3. Initial coefficients estimates for the class %q*

In this section we explore the upper bounds for the first four initial coefficients
and for Fekete-Szego functional |a3 — ;,La%| for the new defined function class % .
Our first main result deals with finding the upper bounds of the first four coefficients
for the functions from <7 .

THEOREM 1. Let h € 2 specified by (1) is in the class € . satisfies,

28
o as| < —. (11)

<
 ladl 45

la] <1, a3| <

AN W
W1 N

Proof. Assume that i € €7 . Hence by Definition 1 there exists a Schwarz function
B with (0) =0 and |B(z)| < 1, z€ D, such that

e
W:l—kln(ﬁ(z)—i—\/ﬁ(z)ﬁ), (ze D) (12)
where .

The relation (12) is equivalent to

1+ZZ,”(S) = (1+10g(B(2) + /BRI + )alz) (D), (1)

while the subordination (13) implies that there exists another Schwarz function y(z)
with y(0) =0 and |y(z)| <1, z € DD, such that

¥(2)*

q(z) = l—i—y(z)—T' (zeD). (15)

Expressing the Schwarz function 8 in terms of d € &2, that is

_1+B()
1-B(2)

which equality is equivalent to

=1+diz+dr>+..., z€D,

d(z)

1 1 I 5\ » 1 5 1 1 3
ﬁ(z)—zdlz‘f' <2d2 4d1>Z + <8d1 2d1d2+2d3)z

1 1
~d?
4

o1 3
216

1 1
+ <§d4—§d1d3— d;‘+8d%d2)z4+..., zeD.

Similarly, we can write the Schwarz function ¥ in terms of ¢ € &, that is

1+
e(z)—ﬂzl—kelz—i—ezzz-i-m, zeD,

C1—-7(z)
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or equivalently

1 1 1 1 1 1
Y(z) = §e1z+ (562 — Ze%) 2+ <§ef — Eelez + 563) z3

1 1 1, 1,4 3
+(564—§ele3—Zez—ﬁeﬁ—gelez)z +..., z€D.
It follows that
(1+In(B(z)+1/B(2)?+1))
=1+ %dlz—i— (% - d%) 2+ (1613 + 48d1 d1d2) 2
+<%d4+ 17—6d2d%—%d1d3—id2—3—2d4> ey (z€D), (16)
and

¥(z)? 1 1 1,\, [es 1 e\ ;
1 — :1 — — _—— _—— =
+7(z) 3 +2611+ €2 7€1 )2 + > 2e1e2+12 Z

1 1 1
+ (564—56163—Ze%+—e2e1>z4+..., (zeD). (17)

Then multiplying the relations (16) and (17) we get

(1+In(B(z) +1/B(2)2+1)) (1 (@) - %Zm

ey d er 1 d 1, 1,5\,
=1 a. 2 2, A
—|—<2+2)Z+<2—|—4d1e1+2 4d1 161 )2

T (48d3 63 d1€2 T eldz _ eldl dlel d3 e? d1d2 6162) 13

4 4 8 8 212 2 2

S Dp_ahd_dee od o d & 8
32 4 4 4 "2 "2 4 4
_dids  ees _d 7 die} dies  exdy
2 2 16 24 " 4 " 4
d%e% €2d% dze% e1ds 7eldf
e A Ll R A s A § ., z€D. 18
6 8 8 4 96 SRR (18

As function & defined in (1), it gives that

h//
1+ Zh/(S) = 14 2axz+ (6a3 — 4a3)7* + (843 — 18azaz + 12a4)7>

+ (20as5 — 1643 + 48a3a3 — 32aza4 — 18a3)* + ..., zeD,  (19)
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and equating the coefficients of z, z2, z° and z* from the relations (18) and (19) we

obtain
(4] d 1

a, = 1 + R (20)
=24 e+ 2, @1
a4—-§76d3 L ldl ! d161 96dub~+ ifhez 2;861%-;;eub
- %elez + ﬁdg + 563 (22)
and
‘“25%4_I%Tf+sém“f 3;4%'%wfﬁ@+4&fﬂ%_£§%ﬁ
4213061‘11‘12 éoeld‘d2 2 0‘11‘13*‘5_6‘116“‘48061‘1'2 2451
+ %610’3 — %elq 16Od2 1;062+ 410e2d2+ 410e4+ Ed4. (23)

Taking the modulus on the both sides of (20), then applying the triangle inequality and
using the inequality (7) of Lemma 1 we obtain the first desired estimate of (11).
Taking modulus on the both sides of (21) and applying triangle inequality we get

dr| _lea| | |difler] | |da
— “dye duien] | 192
las = ‘12+ RSty T

Application of (7) of Lemma 1 in the above inequality gives

bl 1
BISgTT6 6

Using the triangle inequality on the both the sides of (22) we obtain

5 1 5
\a4\ dl eldl dle% 96d1d2—|—96d1€2 288€1+96€1d2

’576 192 192

1 1
966162 + 24d3 + ﬂeg

1
<57
24

1 I
7 e3—2.§elez—ﬁel

1
— 2 ()2
dy ( 10>d e ( 10)61 .

The expression |d3 2. d1d2+ d3| and }63 6162 — 1261} satisfies the condi-
tions (9) of Lemma 3. Apphcatlons of (7) of Lemma 1, (9) of Lemma 3 and (10) of
Lemma 4 give

1
dydgﬁ@+—df+

EZ

\dl | (24)

+%\€1|

6
lasl S 5+t 55 T
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To determine the upper bound of |as|, rearranging and simplifying the terms of the
relation (23) we get

- dl 5 5 (] 5 3 1
“= ( 120) <d3 6d1d2+ 48d1> (120) (246l 2142 63)
i (240) <d3 d1d2+ 168d ) (240) (42 T gereates

+40<64 462) 40(“’4 4d2) 48061<d2+4d> 40<d2+ 2

(25)

Taking modules on both sides of (25) and then applying triangle inequality we obtain

|d1] 5 5 lell |5 5
< 2 i+ 2B+ 23 ey
lasl <159 16192 T gl T g [4¢1 ~ pe1e2 €3
7.|61| 3 7‘d1 —5 1
ds— 2.~ dyds —d DA~
240 2812 16891 T 240 426 geretes
1 1 )
+E 64—162 +E d4—1d2
—le1*|d +5d2 \e || +Lp (26)
480 sy AT A

Using (7) of Lemma 1, (8) of Lemma 2, (9) of Lemma 3 and (10) of Lemma 4 in the
inequality (26) we conclude that

las| < 4+4 5+1+31+28+28 5+13+17
“ 120 120 12 24 240 240 \42 42 21

2,27 728
40 40 120 ' 60 45

This complete the proof of Theorem 1. [

For the Fekete-Szego functional we obtained the following estimation.
THEOREM 2. If h e ‘5; follows the structure in (1), then for any complex number

U we have
Bu—2[ , [1—py
2 + 2

|a3 ,LLaz} ! max {1 27)

Proof. If h € €, making use of (20) and (21) we obtain
2

S-Sy (- A a d

“ ‘“12_<12Jr 8 +12> “<4+4

/L A N B/ U A N ey
12 (dz 4d> B (e 1 1>+ 3 diey. (28)
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Taking modules on the both sides of (28) and then applying triangle inequality it follows

d2 — 3—“d2

Q- e
4 1

|——ﬂmwn

|a3 Ha2’ I

Application of (7) of Lemma | and (10) of Lemma 4 in the above inequality leads to

1 3u 3u 1—pu
p— 2 —_— . — —_— —_— - —_— —_—
las — pas| < B Zmax{l,’l 2. 4 }—|—12 Zmax{l ’1 2 1 }+4’ 2

)

that proves our result. [

For y =1 in the Theorem 2 reduces to the following special case that we will use
in the following parts of the article.

COROLLARY 1. if h € €3 has the form (1), then

1
jas —a3| = |Ha ()| < 5.

4. Hankel determinants bounds for the class ‘5;

In this section we investigate the upper bounds of Hankel determinants of order
two and three for the functions that belong to the class .

THEOREM 3. If h € A belongs to the class €, then

55
|azas — a3| = |Haop(h)| < e (29)

Proof. From (20), (21) and (22) it follows that

] 5 ] 1
Hop(h) = aas — a3 = ——ei1d; — =—etdi + =——d L e, — La
22(h) = axas = a3 = gzoerd; 384 2304 1] - 961421 T gg i1
1 5 . 1 1,
24 d &
1152 1+384 2T 3846162+96el 3JF966163+2304
5 ] 1
dzd &’ did d ——d —d?
T agg i T 3y 162+96 143+ ggdies — 144 7242 144 2

el 1 I 4 d1 3
= (e3—2=erer— — 2= —
96 (63 g1 1261> A zzdld2Jr 24“’1
d, 1 1 1,
“ 2. 2= l
+ % <e3 26162+ 24 ) % <d3 2d1d2—|— 6d1)

5 & 15 , 1 1
_d2 2 -2 —d2 30
+ t(e2—ei) 75 ( 27 161 ) 144°2 7 142 (30)
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and using the triangle inequality, the relation (30) implies

) < U Jer 2 Lever - Lt + 5 L+ Ly
+% e3—2 Hete +2_14€? +% d3—2.%d1d2+édf
+35ﬁ\d |2}ez—e%|+% —%e%
+ﬁ\ezlz+ﬁ|d2\2. an

Making use of Lemmas 1, 3 and 4 in the right hand side of (31) we finally get

‘H (h)‘<i+i+i+i+i+i+i+i_£
2201596 796 796 " 96 48 18 ' 36 | 36 144

That completes the proof of Theorem 3. [

THEOREM 4. If h € 2 expressed by (1) belongs to the class €, , then

_ <.
las — araz| < -

Proof. If h € %g‘ has the form (1), using the relations (20), (21) and (22) we get

1 1 1 1

5 5
6162——61'16%—1— dleg——eldf—

I D) 192 T AT 192 3%
+ 5;_661% — %e? + %dg + 2—1463
:% (—f—ze% - %eleg +e3) + 2—14 (%df - %dld2 +d3)
v <ez - %&) v <d2 - %df) . (32)

Considering the modules on the both sides of (32) followed by the triangle inequality
one may get

1 3 11 3
lag — azas]| <ﬂ'_ﬁe?_zele2+e3 +ﬂ ﬂdf—zdldz—f-cb
d 5 e 5
+|3—;‘ 62—66%4—‘3—;‘ dz—gd%. (33)

Using the inequalities (7) of Lemma 1, (8) of Lemma 2 and (10) of Lemma 4 in the
right hand side of (33) we obtain

|a _aa|<£ i+£+l +£ L+%+l +i+i—ﬂ
ATEBIS\12 " 1276) T24\247 3 24) T2 "2 T T2
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This proof the result of Theorem 4. [

Using the previous results we could easily find an upper bound for |Hz (k)| if
h € 6y, as follows.

THEOREM 5. Let h € 2 expressed by (1) be classified in the class €, . Then,

3511

|H3,1(h)] 1320

Proof. Application of triangle inequality to the relation (5) yields
|H 1 ()] < |as| |a3 — a3 | + |aa| |as — azas| + |as| |azas — &3 . (34)
Making use of the results of Theorems 1, 3, 4 and Corollary 1 to (34), we conclude that

H (h)|<§ 1,230, 5 5 3l
SIS 457373772 76 144 4320

5. The Zalcman functional for the class %;

Zalcman conjectured that the coefficients of every univalent functions & € .%
given by (1) satisfy the inequality

ay—az—1| < (n—1)% n>2, (35)

and the equality holds only for the Koebe function k(z) := 5 and its rotations.

.
(1-2)
The Zalcman functional mentioned above has been extensively examined by various
researchers; for instance, refer to [5, 10, 15].

From the Corollary 1 we can see that the above inequality (35) holds for the class

%y and n= 2. Our next result proves that the Zalcman conjecture (35) is applicable
for the class ¢ when n=3.

THEOREM 6. If h € €3 has the form (1), then

7
’a%—a5’ < E



161

PROPERTIES FOR THE CLASS OF UNIVALENT FUNCTIONS

Proof. If h € %”; then from (21) and (23) we have

19 5 1 1 1 1
2 4 4
- 1y A2 202 e Ay ——
Bmas= 1440 ~ o2t 354 1+ 1440 27 30% T 576°0 T 20 T 1152
] 7 ] 1
did &+ d dy— ——djes — —d & — —d?
48061 192 = G760 ¢19 T 509 T 5ggies 2907 46012
7 1 ] 1
eyds+ —eje3 — eldz—i- elez—|— dlel

80d1€1€2+

240 120 480 240 4 288

1 1 1, 1 ,
(120 @13+ 335¢41¢2 = 57661) * (1152d 192d d”ﬁdl‘k)

7 11 1
* (24061‘13 MR 576oeld1>

11 ; 1 19 ,
J“<240d”33+ aepliere2 ™ 88dlel>+<40 4t 1420 )
-1 19 5
+ (Ed” 1440d2> + (480 12+ 3ppdiel )

1
; <%62d2) ( i e2> (36)

Taking modulus on both sides of the relation (36) and followed by application of
triangle inequality yield

|a§—a5’ g'_z—il %e?—ll—oelez ;634- + 1‘;10 dz — 2-15—6d1d2+%d?
+‘_23:)1 dg—z-%dldz—i- 168d3 ’ 21? Se%—%elez—i-@
+;—; e4—£e%+’;—01 dy— ;z +4§§ af—éd2
+ ggleal|dat —d?|. (37)
First, if we consider the term |d3 —2- 15—6d1d2 + 45—8d% , comparing with the left

5 5
hand side of (9) we get B = 1 =0.3125...,D= 13 =0.10416.... Clearly, B € [0,1]

and

-1
B(2B—1)= Fg =—0.117187...< D =0.10416... < B=0.3125....

Hence by virtue of Lemma 3 we obtain

5 5
2.2 243 <2
d3 =2 sedidy + podi (38)
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In similar manner, we obtained

11 1
dy—2 - —dydy + —
372 gt ey

d3| <2. (39)
Making the use of the inequalities (7) of Lemma 1, (8) of Lemma 2, (10) of Lemma 4
and the relations (38), (39) to the inequality (37) lead to

|a2_a |<£+i+l+£+i+i+£+i—l
3 SIS 360 30 60 90 20 20 120 180 10’

which proofs our result. [

6. Logarithmic coefficients bounds for the class ¢

For each function & € . the logarithmic coefficients p,, n € N, are given by
h o
log % =2 pad', (zeD). (40)
’ n=1

The logarithmic coefficients play a very important role in the theory of univalent func-
tions. The bounds on logarithmic coefficients of / can be transferred to the Taylor
coefficients of univalent functions or to their powers via the Lebedev-Milin inequali-
ties. Little information are known about the logarithmic coefficients of &7 when h € .,
but recently upper bounds of logarithmic coefficients of functions % in some subclasses
of . have been obtained by various authors (see, for example [2, 8, 12, 19, 23, 25]).

In this section, we provide upper bound estimates for the first four logarithmic
coefficients of functions that are members of the class ¢ .

THEOREM 7. If h € € given by (1), then

3059

7 5
ol <=, Ip3l <5, el < = (41)

< , ) .
Pl 24 24 11520

D =

Proof. If the function & € 20 given by (1) belongs to the function class 47, it
follows that

h 2 a
log% =az+ <a3 — %) 2+ <a4—a2a3 + %) 13

2 G4\ 4
+ <a5—a2a4+a2a3—7—1)z

5
a4

+<a6—a2a5+a%a4—a3a4—a§a3+a2a§+?>zs+..., zeD. (42)
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Equating the first four coefficients of the relations (40) and (42) we get

a

P=%. (43)
1

p2=7 (20 —a3), (44)
1

ps=¢(a a3 —3azas +3as) (45)
1

pa=g (—a‘zt + 4a%a3 —4azas — Zag + 4a5) ) (46)

Using the relations (20)—(23) we replace the values of a;, a3, a4 and as into (43)—(46)
and we obtain

p=0 7)
P2 = %ez—f— w ~=dier + 24d2 614d2 61_46%
214 <d2 §d%> + i (62 - %ﬁ) + 3%61161, (48)
1 1,1 s 1
p3 :—aeleg——d1e1—|—64e1d2+64d162 64d1d2+288d 1152e1
—éeld% 418e3+48d3
:% <d3 idldz—i- 6d3> 418 ( %elez—i- 2—146?)
6 <d2 16942d1) Zzlt (62 - %6%) ’ @
and
pa= 25360 i - 1éoeld1d2+3 30714t 141510 dz_%“d% M
Jr728dz“’1 320d1d3+ 38740626“r 10124 eidf - 3&134110 eldy - %406%
_33%6163_%0‘11“62_617Wd4 1440‘I2Jr d4+ 5 61544 i

(3 25 35 3¢, X
= (—%d1> <d3 — %dldz—F 288d1> (32()) <d3 d1d2+§d1>
N a7 R E 2
U\ 614417 38201 3204 320 T34
1, 15 , 13 33
* (3840 ) <d2 44d1> i (144062) <d2 041 )

7 1 7
dy— —=d3 |+ (es— €3 ). 50
%0 ( 478 2) 50 (e“ 1862) (50)




164 T. PANIGRAHI AND B. K. BEHERA

Using (7) of Lemma 1 in (47) yields

"8 8 S% 8 S
Further, by virtue of Lemma 1 and Lemma 4 give
3, 1 7
dr— d d =
Ip2| < 24 2 24 861 |1\|€1\ 2%

Taking the modules of the both sides of (49) and applying the triangle inequality we get

1 1 3 1
ds— 2. did ,—2.2 —
|p3] < 8 3-2.di 2+6‘+48 86162+24‘
‘L 22 20 1
6|2 10U T a2 D

Applying (7) of Lemma 1, (9) of Lemma 3 and (10) of Lemma 4 in (51) we deduce that

‘ ‘ i+i+l+L—i
PS5 24716 16 24

Finally, taking modules on the both sides of (50) and applying triangle inequality
we get

3 72 35 4|, |3 2 1,
< | Zay||ds—2-Zaa &3 ds—2 Zdids+ =d
P4l ‘320 B2 364 258%| T 320 g1t g
+ e _—Se3 ! e+ — 3d1 %e e
1161421~ 383012 T 320 7 |320 371
11, 15 | | 13 33
el § A 2 ool|dy— 2
+‘384061 27 g +'1440e2 27 104
1
L PR — —eél. 52
+80 ‘TR TR0 | 182 (52)

Making the use of (7) of Lemma 1, (8) of Lemma 2, (9) of Lemma 3 and (10) of Lemma

4 to the inequality (52) we conclude that
pl< i 169 1L 13 13 3059
P4S 80780 7480 73840 ' 40 ' 40 ' 80 ' 360  11520°

Hence, the proof of Theorem 7 is now concluded. [

7. Inverse coefficient bounds for the class %”q*

For each function 4 € . defined on D the famous one-quarter theorem of Koebe
1
(see [9]) ensures that its inverse A~ ! exists at least on a disk of radius 1 having the
Taylor’s series of the form

- 1
Rt w)=w+ Y ", (jw] <~

. (53)
n=2 4)



PROPERTIES FOR THE CLASS OF UNIVALENT FUNCTIONS 165

In this section we are going to find the first four upper bounds of inverse function
coefficients that belongs to the class 6.

THEOREM 8. If h € € is given by (1) and its inverse h=! has the form (53), then

7 101 1741
lha| < 1, \h3|<g» VMKW, |hs| < =30 (54)
. . 1
Proof. Since h(h™'(w)) =w, |w| < 7o Weeet
hy = —ay, (55)
hy = —a3 + 243, (56)
hy = —ag+ Saras —Sa%, 57
hs = —as+ 6aray —2la%a3 —|—3a§+ 14a‘2‘. (58)
Using the relations (20)—(23) into (55)—(58) a simple computation shows that
e1 d1
hy= —— — — 59
2 4 4 5 ( )
1 1 1
h 2 d2 d —d
3= 81+8 +8€11 22 122
1 3 1
= —(ea—= —(a —d2 —d 60
12 (62 261) + 12 ( 2~ 1) +8 1€1, (60)
43 5 1 11 11 23 5
hy=— —— — d —dydy — —d} + d
4= 57601 g T 9192 T og B T g2 T ggg i T gg e
1 5 1
-5 eld1+96dlez Zdle%, (61)
and
—11 11 1 29 35 1
hs =——d did 2d 2 d d d
ST 0 e T ot 30‘31 2T 2406162 gt sghen + 30‘31 3
17 187 25 1
43+ d d —d —d%d d &
240193 T 2gg0 1l T 240 143+ 1€ — gy didat gge 2+384 el
67 55 4, 1 13 , 1 13,
——d}+ e} — — > — —eq+ — 62
T2 T 11524 T 20 T 480" T 20 T 45022 (62)

The inequality (7) of Lemma 1 together with the triangle inequality in (59) gives the
estimates for |h,|.
Taking the modules in the both the sides of (60) and applying triangle inequality
we get
1
+ 12

3

1
_— 2 -
dy—5di |+ gl (63)
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and applying Lemma | and Lemma 4 to the relation (63) we obtain

pi<lelel
3 3726

Next, applying the triangle inequality to the relation (61) we get

1 11 33 1 11 23
ha| < - —|dy — —d\dy + = d}
Ihal S5 |ea = grereat spel|+ g |ds = i+
8 .| 5 8 ,
= -2 = -2 4
+96\€1| dy — 5di +96|d1| 2 5€l (64)
Making use of Lemmas 1, 2 and 4 in (64) we deduce that
<L 8,119 20 1 20 1101
512371276 "9 5 "96 5 727
Now taking modulus and arranging the terms of (62), we get
17¢e; 275 17d;||335 5 125
<| == = U =d - did + d
s\ <| 230 | | 3081 ~ 17412 T4 * | 230 | | 20841 ~ o3 Nt
d1 175 11 187 4
el - geetes +) H—d Nyt ds| + ‘ dy
13 5| |-1 13 ,| |-d» 2 —d3} 115 ,
— B+ | —||es— — — 65
12 +‘4o “ 1262+‘ g0 |22l + |55 | |2 gzl ©9

Making the use of (7) of Lemma 1, (8) of Lemma 2 and (10) of Lemma 4 to the in-
equality (65) we conclude that

217 107 67 79 7 7 1 33 1741

Bs| < oo b o b e b e e b e b e =
sl < 3367360 T80 180 T 120 T 120 75 T 120~ 720

This completes the proof of Theorem 8. [

Concluding remarks

In the present paper, the authors mainly investigated the upper bounds of the first
initial four coefficients, Fekete-Szego functional, Hankel determinant of order two and
three for the class %CT Further, Zalcman conjecture for n = 3 holds for the class ‘5; .
We determined the upper bounds estimates for the first four logarithmic coefficients and
for the coefficients of the inverse function 4! for the class ¢y - We mention here that
the results in these paper are not sharp. Finding the sharp upper bounds remains future
work for the researchers.

Acknowledgement. The authors express their sincere gratitude to the editor and
reviewer for their favourable comment on the manuscript.
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