

CRITERIA FOR NORMAL AND φ -NORMAL FUNCTIONS

BANARSI LAL*, VIRENDER SINGH AND PRIYANKA

Abstract. We establish the following result: Let f(z) be meromorphic in the unit disk \mathbb{D} , and let $S = \{\alpha_1, \alpha_2, \alpha_3\}$ be a set of three distinct complex numbers in \mathbb{C} and A > 0. If $f(z) \in S$ implies |L(f)| < A, then f(z) is a normal function on \mathbb{D} . The result is further extended to φ -normal functions.

1. Introduction

The purpose of this paper is to establish a normality criterion pertaining to differential inequalities for a function defined on unit disk \mathbb{D} . A meromorphic function f on the unit disk \mathbb{D} is considered *normal* on \mathbb{D} if and only if the family $\mathscr{F} := \{fo\tau : \tau \in \mathscr{T}\}$ is normal on \mathbb{D} , where \mathscr{T} represents the collection of all conformal self-maps of \mathbb{D} . Usually, there is a relationship between normal functions and normal families, leading to the expectation that the criteria for normal families will align with the established criteria for normal functions, and vice versa. A classic instance of this is the criterion put forth by Lehto and Virtanen [3], which modifies Marty's criterion for a normal family to provide a criterion for a function to be classified as normal: A necessary and sufficient condition for a meromorphic function f on unit disc \mathbb{D} to be normal is

$$\sup_{z \in \mathbb{D}} \{ (1 - |z|^2) f^{\#}(z) \} < \infty.$$

In this paper, we examine specific differential inequalities that lead to criteria for determining normal functions. We denote by

$$L(f) := f^{(k)}(z) + \sum_{m=0}^{k-1} a_m(z) f^{(m)}(z),$$

where $k \in \{1, 2, \dots, p\}$ $(p \in \mathbb{N})$ and $a_0(z), \dots, a_{k-1}(z)$ are fixed holomorphic functions. The starting point of this paper is the following result by Chen and Tong [2] concerning normal functions:

THEOREM 1. Let f(z) be holomorphic in unit disk \mathbb{D} , and $\alpha_1, \alpha_2, \alpha_3$ be three distinct complex numbers in \mathbb{C} , and A > 0. Suppose that $|f'(z)| \leq A$ whenever $f(z) = \alpha_i$, i = 1, 2, 3, then f(z) is a normal function.

Mathematics subject classification (2020): 30D35, 30D45.

Keywords and phrases: Normal function, meromorphic function, differential inequalities.

^{*} Corresponding author.

This theorem establishes a crucial condition under which a holomorphic function can be considered normal, specifically by bounding the derivative of the function at certain values. In this paper, we prove the following generalization of Theorem 1:

THEOREM 2. Let f(z) be meromorphic in unit disk \mathbb{D} all of whose poles are of multiplicities at least three, and let $S = \{\alpha_1, \alpha_2, \alpha_3\}$ be set of three distinct complex numbers in \mathbb{C} , and A > 0. If

$$f(z) \in S \quad implies \quad |L(f)| < A,$$
 (1)

then f(z) is a normal function on \mathbb{D} .

The following example demonstrate the necessity of condition (1) in Theorem 1:

EXAMPLE 1. Consider $f_n(z) = n(e^{\alpha_1 z} - e^{\alpha_2 z})$ $(\alpha_1 \neq \alpha_2)$, for $z \in \mathbb{D}$ and $n \in \mathbb{N}$. Then clearly $f_n(z)$ is not normal on \mathbb{D} . Note that whenever $f_n(0) = 0 \in S = \{0, 1, -1\}$, we have

$$|L(f)| = |f'_n(0) + f_n(0)| = |n(\alpha_1 - \alpha_2) + 0| \to \infty$$
 as $n \to \infty$.

The concept of normal functions has been extended to φ -normal functions by Aulaskari and Rattya [1]. This extension involves a smoothly increasing function φ : $[0,1) \to (0,\infty)$ satisfying $\varphi(r)(1-r) \to \infty$ as $r \to 1^-$, and

$$\mathscr{R}_a(z) := \frac{\varphi(|a+z/\varphi(|a|))}{\varphi(|a|)} \to 1, \ |a| \to 1^-,$$

uniformly on compact subsets of \mathbb{C} . For such function φ , a meromorphic function f on unit disc \mathbb{D} is said to be φ -normal if

$$\sup_{z\in\mathbb{D}}\frac{f^{\#}(z)}{\varphi(|z|)}<\infty.$$

We extend Theorem 2 to φ -normal function as:

THEOREM 3. Let $\varphi: [0,1) \to (0,\infty)$ be a smoothly increasing function. Let f(z) be meromorphic in the unit disk $\mathbb D$ all of whose poles are multiplicities at least three, and let $S = \{\alpha_1, \alpha_2, \alpha_3\}$ be set of three distinct complex numbers in $\mathbb C$, and A > 0. If $f(z) \in S$ implies $|L(f)| < A\varphi^k(|z|)$, then f(z) is φ -normal function on $\mathbb D$.

REMARK 1. We can generalize Theorem 2 and Theorem 3 by considering a set $S = \{1, 2, \dots, q\}$ consisting q-distinct complex numbers in \mathbb{C} , where $(q \ge 3)$.

2. Proof of the main results

We require the following results to support the proof of our main results:

LEMMA 1. [2] If a meromorphic function f(z) is not normal on unit disk \mathbb{D} , then there exists a sequence of points $z_n \in \mathbb{D}$ and positive numbers $\rho_n \to 0$ such that $g_n(\zeta) = f(z_n + \rho_n \zeta)$ converges locally uniformly with respect to the spherical metric to $g(\zeta)$, where $g(\zeta)$ is a non-constant meromorphic function on \mathbb{C} .

LEMMA 2. [4] Let $\varphi:[0,1) \to (0,\infty)$ be a smoothly increasing function, and f be a meromorphic function on unit disk \mathbb{D} . Assume that all zeros and all poles of f have multiplicity at least p and q respectively. Let α be a real number satisfying $-p < \alpha < q$. If f is not φ -normal, then there exists

- (i) a sequence $\{a_n\} \subset \mathbb{D}, |a_n| \to 1$,
- (ii) a sequence $\{z_n\} \subset \mathbb{D}$ with $z_n \to z^* \in \mathbb{D}$ and $w_n = a_n + \frac{z_n}{\varphi(|a_n|)}$,
- (iii) a sequence of positive numbers $\rho_n : \rho_n \to 0$,

such that $g_n(\zeta) := \rho_n^{\alpha} f(w_n + \frac{\rho_n}{\phi(|a_n|)}\zeta)$ converges locally uniformly with respect to the spherical metric to $g(\zeta)$, where $g(\zeta)$ is a non-constant meromorphic function on \mathbb{C} , all of whose zeros and poles have multiplicity at least p and q respectively.

Proof of Theorem 2. Assume, for the sake of contradiction, that f(z) is not normal at a point $z_0 \in \mathbb{D}$. By applying Lemma 1, we can find sequence of points $z_n \in \mathbb{D}$ that converges to z_0 , and positive numbers ρ_n that converges to zero such that $g_n(\zeta) = f(z_n + \rho_n \zeta)$ converges locally uniformly with respect to the spherical metric to $g(\zeta)$, where $g(\zeta)$ is a non-constant meromorphic function on \mathbb{C} . Additionally, all the poles of g are of multiplicity at least three.

On differentiating 'k' times, we get

$$g_n^{(k)}(\zeta) = \rho_n^k f^{(k)}(z_n + \rho_n \zeta) \to g^{(k)}(\zeta)$$
 in $\mathbb{C} \setminus P_g$,

where P_g denotes the set of poles of g. Clearly, g must assume at least one value from the set S; otherwise, by Picard's theorem, g would be constant. Let ζ_0 in $\mathbb C$ be such that $g(\zeta_0) - \alpha_i = 0$ (i = 1, 2, 3). Since $g(\zeta) \not\equiv \alpha_i$, by Hurwitz theorem, there exist a sequence ζ_n converging to ζ_0 such that for sufficiently large n, we have

$$g_n(\zeta_n) = f_n(z_n + \rho_n \zeta_n) = \alpha_i \in S.$$

By hypothesis, $f(z) \in S$ implies |L(f)| < A, it follows that

$$\left| f^{(k)}(z_n + \rho_n \zeta_n) + \sum_{m=0}^{k-1} a_m(z_n + \rho_n \zeta_n) f^{(m)}(z_n + \rho_n \zeta_n) \right| < A.$$
 (2)

Since $g(\zeta_0) = \alpha_i$, it follows that ζ_0 is not a pole of g. Consequently, there exists a neighborhood around ζ_0 in which g is analytic. Therefore

$$a_m(z_n+\rho_n\zeta_n)g_n^{(m)}(\zeta_n)\to a_m(z_0)g^{(m)}(\zeta_0)\in\mathbb{C}$$
 as $n\to\infty$ for $m=0,1,\cdots,k-1$

so that

$$g_n^{(k)}(\zeta_n) + \sum_{m=0}^{k-1} \rho_n^{k-m} a_m(z_n + \rho_n \zeta_n) g_n^{(m)}(\zeta_n) \to g^{(k)}(\zeta_0) \text{ as } n \to \infty.$$
 (3)

For sufficiently large n, and $k = 1, 2, \dots, p$

$$\begin{split} \left| g_n^{(k)}(\zeta_n) + \sum_{m=0}^{k-1} \rho_n^{k-m} a_m(z_n + \rho_n \zeta_n) g_n^{(m)}(\zeta_n) \right| \\ &= \left| \rho_n^k f^{(k)}(z_n + \rho_n \zeta_n) + \sum_{m=0}^{k-1} \rho_n^{k-m} . a_m(z_n + \rho_n \zeta_n) \rho_n^m f^{(m)}(z_n + \rho_n \zeta_n) \right| \\ &= \rho_n^k \left| f^{(k)}(z_n + \rho_n \zeta_n) + \sum_{m=0}^{k-1} a_m(z_n + \rho_n \zeta_n) f^{(m)}(z_n + \rho_n \zeta_n) \right| \\ &< \rho_n^k A \to 0 \text{ as } n \to \infty. \end{split}$$

Thus equation 3 implies that $g^{(k)}(\zeta_0)=0$ for all $k=1,2,\cdots,p$. Consequently, ζ_0 is a zero of $g(\zeta)-\alpha_i$ of multiplicity at least p+1. By the Second Fundamental Theorem of Nevanlinna, we have

$$2T(r,g) \leqslant \sum_{i=1}^{3} \overline{N} \left(r, \frac{1}{g - \alpha_{i}} \right) + \overline{N}(r,g) + S(r,g)$$

$$\leqslant \sum_{i=1}^{3} \frac{1}{p+1} N \left(r, \frac{1}{g - \alpha_{i}} \right) + \frac{1}{3} N(r,g) + S(r,g)$$

$$\leqslant \frac{3}{p+1} T(r,g) + \frac{1}{3} T(r,g) + S(r,g)$$

$$= \left(\frac{p+10}{3p+3} \right) T(r,g) + S(r,g).$$

This leads to a contradiction, and hence f must be normal at z_0 . \square

Proof of Theorem 3. Assume, for the sake of contradiction, that f(z) is not φ -normal function in \mathbb{D} . By applying Lemma 2, there exist

- (i) a sequence $\{a_n\} \subset \mathbb{D}, |a_n| \to 1$,
- (ii) a sequence $\{z_n\} \subset \mathbb{D}$, $z_n \to z^* \in \mathbb{D}$ and $w_n = a_n + \frac{z_n}{\varphi(|a_n|)} \to w_0$ (say) $\in \mathbb{D}$,
- (iii) a sequence $\rho_n^+ \to 0$

such that $g_n(\zeta) = f(w_n + \frac{\rho_n}{\varphi(|a_n|)}\zeta) \to g(\zeta)$ locally uniformly with respect to the spherical metric, where g is non-constant meromorphic function in \mathbb{C} . Additionally, all the poles of g are of multiplicity at least three. On differentiating 'k' times, we obtain

$$g_n^{(k)}(\zeta) = \left(\frac{\rho_n}{\varphi(|a_n|)}\right)^k f^{(k)}\left(w_n + \frac{\rho_n \zeta}{\varphi(|a_n|)}\right) \to g^{(k)}(\zeta) \text{ in } \mathbb{C}.$$

It is evident that g must take on at least one value from S; otherwise, by Picard's theorem, g would be constant. Let ζ_0 be a zero of $g - \alpha_i$ (for i = 1, 2, 3). By applying Hurwitz theorem, we can derive a sequence $\zeta_n \to \zeta_0$ such that

$$f\left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)}\right) = g_n(\zeta_n) = \alpha_i \in S$$

From the given assumption, we have $f(z) \in S$ implies $|L(f)| < A\varphi^k(|z|)$.

Therefore.

$$\left| f^{(k)} \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) + \sum_{m=0}^{k-1} a_m \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) f^{(m)} \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) \right|
< A \varphi^k \left(\left| w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right| \right).$$
(4)

Since α_i is not a pole of g and $g(\zeta_0) = \alpha_i$, there exist a neighborhood of ζ_0 in which g is analytic. Therefore,

$$a_m\left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)}\right) g_n^{(m)}(\zeta_n) \to a_m(w_0) g^{(m)}(\zeta_0) \in \mathbb{C} \text{ as } n \to \infty \text{ for } m = 0, 1, \dots, k-1$$

so that

$$g_n^{(k)}(\zeta_n) + \sum_{m=0}^{k-1} \left(\frac{\rho_n}{\varphi(|a_n|)}\right)^{k-m} a_m \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)}\right) g_n^{(m)}(\zeta_n) \to g^{(k)}(\zeta_0) \text{ as } n \to \infty.$$
 (5)

Thus for sufficiently large n and for $k = 1, 2, \dots, p$, we have

$$\begin{aligned} \left| g_n^{(k)}(\zeta_n) + \sum_{m=0}^{k-1} \left(\frac{\rho_n}{\varphi(|a_n|)} \right)^{k-m} a_m \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) g_n^{(m)}(\zeta_n) \right| \\ &= \left| \left(\frac{\rho_n}{\varphi(|a_n|)} \right)^k f^{(k)} \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) \right. \\ &+ \sum_{m=0}^{k-1} \left(\frac{\rho_n}{\varphi(|a_n|)} \right)^{k-m} a_m \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) \left(\frac{\rho_n}{\varphi(|a_n|)} \right)^m f^{(m)} \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) \right| \\ &= \left(\frac{\rho_n}{\varphi(|a_n|)} \right)^k \left| f^{(k)} \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) \right. \\ &+ \sum_{m=0}^{k-1} a_m \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) f^{(m)} \left(w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)} \right) \right| \\ &< A \rho_n^k \frac{\varphi^k(|w_n + \frac{\rho_n \zeta_n}{\varphi(|a_n|)}|)}{\varphi^k(|a_n|)} \to 0 \text{ as } n \to \infty, \end{aligned}$$

since
$$\frac{\varphi(|a+z/\varphi(|a|))}{\varphi(|a|)} \to 1$$
, $|a| \to 1^-$.

Thus equation 5 implies that $g^{(k)}(\zeta_0) = 0$ for $k = 1, 2, \dots, p$. Consequently, ζ_0 is a zero of $g(\zeta) - \alpha_i$ of multiplicity at least p + 1. Now, by applying the Second Fundamental Theorem of Nevanlinna, we obtain

$$\begin{split} 2T(r,g) &\leqslant \sum_{i=1}^{3} \overline{N} \left(r, \frac{1}{g - \alpha_{i}} \right) + \overline{N}(r,g) + S(r,g) \\ &\leqslant \sum_{i=1}^{3} \frac{1}{p+1} N \left(r, \frac{1}{g - \alpha_{i}} \right) + \frac{1}{3} N(r,g) + S(r,g) \\ &\leqslant \frac{3}{p+1} T(r,g) + \frac{1}{3} T(r,g) + S(r,g) \\ &= \left(\frac{p+10}{3p+3} \right) T(r,g) + S(r,g) \end{split}$$

which leads to a contradiction, and hence f must be φ -normal function in \mathbb{D} .

Acknowledgement. The authors are grateful to the referee for his/her valuable comments and suggestions which have enhanced the quality of the paper.

REFERENCES

- A. AULASKARI AND J. RATTYA, Properties of meromorphic φ-normal function, J. Michigan. Math. 60 (2011), 93–111.
- [2] Q. CHEN AND D. TONG, Normal functions concerning derivatives and shared sets, Boletin da la Sociedad Mathematica Mexicana 25 (2019), 589–596.
- [3] O. LEHTO, K. L. VIRTANEN, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65.
- [4] T. VAN TAN AND N. VAN THIN, On Lappan's five-point theorem, Comput. Methods Funct. Theory 17 (2017), 47–63.

(Received January 1, 2025)

Banarsi Lal
Department of Mathematics, School of Sciences
Cluster University of Jammu
Jammu-180001 India
e-mail: banarsiverma644@gmai1.com

Virender Singh Department of Mathematics University of Jammu Jammu-180006, India

e-mail: virendersingh2323@gmail.com

Priyanka Department of Mathematics, School of Sciences Cluster University of Jammu Jammu-180001, India

e-mail: priyanka.schmat@clujammu.ac.in