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FRACTIONAL ORDER EULER DIFFERENCE

SEQUENCE SPACES BY USING MODULUS FUNCTION

RAVI KUMAR AND SUNIL K. SHARMA ∗

Abstract. In this paper, we introduces new classes of Euler fractional difference sequence spaces
defined by modulus function. These spaces generalize the classical difference sequence spaces
by incorporating the fractional difference operator and a modulus function, providing a more
flexible and comprehensive framework. The study investigates the topological properties of
these spaces and determines their dual spaces, offering significant insights into their structural
characteristics.

1. Introduction and preliminaries

Let ω represent the set of all real-valued sequences. The classical spaces �∞,c
and c0 denotes the Banach spaces of bounded sequences, convergent sequences, and
sequences converging to zero, respectively, equipped with the norm ‖x‖ = supk |xk| .
The spaces bs,cs, �1 and �p , respectively, the space of all bounded, convergent, abso-
lutely convergent and p -absolutely convergent series (1 � p < ∞) .

The study of difference sequence spaces has gained significant attention due to
their applications in summability theory, functional analysis, and matrix transforma-
tions. Early contributions to this field include the work of Ahmad and Mursaleen [2],
who investigated Köthe-Toeplitz duals of specific sequence spaces and their matrix
transformations, highlighting foundational aspects of sequence spaces and duality rela-
tionships. Subsequent contributions by Başar [13] provided a comprehensive overview
of summability theory and its applications, offering a broad framework for the study of
sequence spaces.

In the context of difference sequences, Et and Başarir [20] introduced general-
ized difference sequence spaces, extending the scope of classical sequence spaces to
accommodate generalized difference operators and specific modulus functions. Build-
ing on these ideas, Et and Çolak [21] focused on further generalizations, introducing
new sequence spaces through innovative formulation of difference operators. Building
upon this line of research, Kadak [24] introduced fractional order generalized lacunary
statistical difference sequence spaces, thereby bridging the concepts of statistical con-
vergence and fractional calculus.
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Mursaleen and Noman [33] also contributed significantly by studying difference
sequence spaces of non-absolute type and their dual spaces in various settings, provid-
ing insights into the transformations and relationships within such spaces. Malkowsky
et al. [30] examined the dual spaces of higher order sets of difference sequences spaces
and their associated matrix transformations, expanding the applicability of difference
sequence theory to a broader mathematical context. For additional studies on differ-
ence operators and their applications in sequence spaces, see [27, 41, 42] and their
references.

This paper seeks to extend these foundational studies, particularly those by Kadak
and Baliarsingh [24, 25] investigating new generalizations of difference sequence spaces
through the incorporation of fractional-order difference operators. The inclusion of
modulus functions enables a more refined analysis of matrix transformations, providing
a versatile framework to study the statistical properties and summability behaviors of
these spaces. This approach bridges the gap between classical sequence space theory
and modern developments in generalized difference operators, offering new perspec-
tives and applications within summability theory. For more details regarding these see
[12, 17, 26, 43] and their references. For further details on fundamental theorems in
functional analysis, summability theory, sequence spaces, and related topics, readers
can refer to the recent textbook [32] and to the articles devoted to the new spaces of
difference sequences [7, 15, 16, 36], and [14].

For real number ψ , the Euler gamma function Γ(ψ) is defined by an improper
integral

Γ(ψ) =
∫ ∞

0
e−ttψ−1dt, for ψ > 0. (1)

Baliarsingh and Dutta [8, 9] (see also [11, 19]) proposed the generalized fractional
difference operator Δ(ψ) for a positive proper fraction ψ , which is defined as follows:

Δ(ψ)(xk) =
∞

∑
i=0

(−1)i Γ(ψ +1)
i!Γ(ψ − i+1)

xk−i. (2)

The series in equation (2) is convergent for x ∈ ω . Specifically, the difference operator
Δ(ψ) can be expressed in a triangular form as follows

(Δ(ψ))mk =

⎧⎨
⎩(−1)m−k Γ(ψ +1)

(m− k)!Γ(ψ −m+ k+1)
, 0 � k � m,

0, k > m.

The Euler mean matrix Es = (es
mk) of order s , (0 < s < 1) as defined in [25], as

es
mk =

⎧⎨
⎩

(
m
k

)
(1− s)m−ksk, 0 � k � m,

0, k > m.
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Alternatively, this can be expressed as

Es =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1− s s 0 0 · · ·

(1− s)2 2(1− s)s s2 0 · · ·
(1− s)3 3(1− s)2s 3(1− s)s2 s3 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Kadak and Baliarsingh [25] introduced the product matrix Es(Δ(ψ)) by combining the
Euler mean matrix of order s with the difference matrix of order (ψ) . This product
matrix is defined as follows

(Es(Δ(ψ)))mk =

⎧⎪⎨
⎪⎩

m

∑
i=k

(−1)i−k
(

m
m−i

)
Γ(ψ+1)

(i−k)!Γ(ψ−i+k+1)
si(1−s)m−i, 0 � k � m,

0, k > m.

Furthermore, (Es(Δ(ψ)))mk can be written as

Es(Δ(ψ)) =

⎛
⎜⎜⎜⎝

1 0 0 0 · · ·
(1− s)−ψs s 0 0 · · ·

(1− s)2−2ψ(1− s)s+ ψ(ψ−1)
2! s2 2(1− s)s−ψs2 s2 0 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

Let A = (amk) represent an infinite matrix of real numbers amk , where m,k ∈ N0 . For
sequence spaces X and Y , the matrix mapping A : X → Y is defined by

(A x)m = ∑
k

amkxk (m ∈ N0),

where x = (xk) ∈ X . The expression A x is called the A -transform of x , if for each
m ∈ N0 , the series ∑k amkxk converges. The notation (X ,Y ) represents the set of all
infinite matrices A such that A maps from X to Y . Specifically, A ∈ (X ,Y ) if and
only if the series in the above definition converges for every m ∈ N0 .

The matrix domain ΦA of an infinite matrix A in a sequence space Φ is defined
as

ΦA = {x = (xk) ∈ ω : A x ∈ Φ}.
Duality is a important concept in the theory of sequence spaces, particularly in the
investigation of their topological structures. Let X and Y be subsets of ω , the space of
all sequences. The set S (X ,Y ) is formally defined as

S (X ,Y ) = {σ = (σk) : x ·σ = (xkσk) ∈Y for all x ∈ X}. (3)

The α -, β - and γ - duals of sequence space X , by using the notation (3), are defined
as Xα = S (X , �1) , Xβ = S (X ,cs) and X γ = S (X ,bs) . There are some lemmas on
the inverse of matrices, as presented by Kadak and Baliarsingh [25], as
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LEMMA 1. [10, 18] The difference matrix Δ(ψ) has an inverse that can be ex-
pressed in triangular form as

(Δ(−ψ))mk =

⎧⎨
⎩(−1)(m−k) Γ(−ψ +1)

(m− k)!Γ(−ψ −m+ k+1)
, 0 � k � m,

0, k > m.

LEMMA 2. [18] The Euler mean matrix Es has an inverse which is given by the
triangular form as

(E
1
s )mk =

⎧⎨
⎩(−1)(m−k)

(
m
k

)
(1− s)m−ks−m, 0 � k � m,

0, k > m.

LEMMA 3. The inverse of the Euler mean difference matrix Es(Δ(ψ)) is repre-
sented by a triangular matrix (bmk) where

bmk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

∑
j=k

(−1)(m−k)
(

j
k

)
Γ(−ψ +1)(1− s) j−ks− j

(m− j)!Γ(−ψ −m+ j +1)
, 0 � k � m,

s
1
m , k = m

0, k > m.

A modulus function is a function f : [0,∞) → [0,∞) (or simply a modulus) if it
satisfies the following conditions:

1. f (u) = 0 if and only if u = 0,

2. f is an increasing function,

3. f (u+ v) � f (u)+ f (v) for every u,v ∈ [0,∞) ,

4. f is continuous from the right at 0 .

Therefore, the function f must be continuous on the interval [0,∞) . A modulus func-
tion can either be bounded or unbounded. Numerous authors have frequently uti-
lized modulus functions in the construction of various difference sequence spaces see
[29, 35, 38].

The introduction for generalized difference sequence spaces of fractional order,
defined by a modulus function, building on concepts from [39] and [40]. For more
information about on these see ([1, 6, 22, 23, 28]) and references therein.

The foundational work of Altay and Başar [3] on Euler sequence spaces of non-
absolute type laid a cornerstone for this field, presenting key insights into their structure
and functional properties. These studies further extended to include the investigation of
Euler sequence spaces that summarize the classical spaces �p and �∞ , revealing their
intricate relationships and applications in mathematical analysis (see [4]).
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In the context of difference sequence spaces, the contributions by Altay and Polat
[5] introduced new class of Euler difference sequence spaces, emphasizing their impor-
tance in understanding the behavior of sequences under difference operators. Specifi-
cally, Polat and Başar [34] explored Euler sequence spaces of difference sequences of
order m , uncovering new properties and generalizations.

Building on these foundational works, this paper aims to introduce novel classes
of Euler fractional difference sequence spaces defined via a modulus function. These
spaces generalize the traditional difference sequence spaces by incorporating the frac-
tional difference operator and a modulus function, thereby enriching the existing the-
ory with additional flexibility and broader applicability. Furthermore, we investigate
their topological properties and determine their dual spaces, providing a comprehen-
sive framework for their study.

2. Main results

In this section, we define certain sequence spaces utilizing the Euler mean oper-
ator Es and the fractional difference operator Δ(ψ) , with the construction being based
on the application of a modulus function. In addition, the study explores the topologi-
cal properties of these sequence spaces. Furthermore, their corresponding dual spaces
are systematically identified. Let s be a positive real number such that 0 < s < 1 and
u = (uk) be an arbitrary bounded sequence of positive real numbers. We define the
following classes of Euler fractional difference sequence spaces associated with a mod-
ulus function as

es
p(Δ(ψ), f ,u) =

{
x = (xk) :∑

m

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m−i

)
Γ(ψ+1)

(i− j)!Γ(ψ−i+ j+1)
si(1−s)m−ix j

]∣∣∣∣
uk

< ∞
}

,

es
0(Δ

(ψ), f ,u) =

{
x = (xk) : lim

m→∞

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m−i

)
Γ(ψ+1)

(i− j)!Γ(ψ−i+ j+1)
si(1−s)m−ix j

]∣∣∣∣
uk

= 0

}
,

es
c(Δ(ψ), f ,u) =

{
x = (xk) : lim

m→∞

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m−i

)
Γ(ψ+1)

(i− j)!Γ(ψ−i+ j+1)
si(1−s)m−ix j

]∣∣∣∣
uk

exists

}
,

es
∞(Δ(ψ), f ,u) =

{
x = (xk) : sup

m

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m−i

)
Γ(ψ+1)

(i− j)!Γ(ψ−i+ j+1)
si(1−s)m−ix j

]∣∣∣∣
uk

< ∞
}

.
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It is observed that the spaces es
p(Δ(ψ), f ,u),es

0(Δ
(ψ), f ,u),es

c(Δ(ψ), f ,u) and es
∞(Δ(ψ), f ,u)

can be obtained by applying the Es(Δ(ψ), f ,u)-transform of x in the respective spaces
�p,c0,c , and �∞ over modulus function. Specifically,

es
p(Δ

(ψ), f ,u) = (�p)Es(Δ(ψ), f ,u); es
0(Δ

(ψ), f ,u) = (c0)Es(Δ(ψ), f ,u);

es
c(Δ

(ψ), f ,u) = (c)Es(Δ(ψ), f ,u); es
∞(Δ(ψ), f ,u) = (�∞)Es(Δ(ψ), f ,u).

The sequence y = (yk) is defined as the Es(Δ(ψ), f ,u)-transform of a sequence
x = (xk) , given by:

yk =
k

∑
j=0

k

∑
i= j

(−1)i− j fm

[(
k

k− i

)
Γ(ψ +1)

(i− j)!Γ(ψ − i+ j +1)
si(1− s)k−ix j

]
, k ∈ N0. (4)

THEOREM 1. Let ψ be a positive proper fraction and f be a modulus function.
Then the sequence spaces es

p(Δ(ψ), f ,u),es
0(Δ

(ψ), f ,u),es
c(Δ(ψ), f ,u) and es

∞(Δ(ψ), f ,u)
are linearly isomorphic to the sequence spaces �p,c0,c and �∞ respectively.

Proof. We establish the proof for the space es
∞(Δ(ψ), f ,u) by showing the spaces

es
∞(Δ(ψ), f ,u) and �∞ are linearly bijective. Define a mapping, by using the equation

(4) as T : es
∞(Δ(ψ), f ,u) → �∞ by x �→ Tx = y. Clearly T is linear. Next, we demon-

strate injectivity. If Tx = θ = (o,o,o, · · ·), then x = θ . Therefore, T is injective. For
surjective, consider y ∈ �∞ . Using Lemma 3, we define the sequence x = (xk) by

xk =
k

∑
i=0

k

∑
j=i

(−1)k−i fm

[(
j
i

)
Γ(−ψ +1)(1− s) j−is− j

(k− j)!Γ(−ψ − k+ j +1)
yi

]
, k ∈ N0. (5)

Then we have

sup
m

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m− i

)
Γ(ψ +1)

(i− j)!Γ(ψ − i+ j +1)
si(1− s)m−ix j

]∣∣∣∣
uk

= sup
m

|ym| = ‖y‖∞ < ∞.

Thus, we have x ∈ es
∞(Δ(ψ), f ,u) so T is surjective. This establish the proof of the

theorem. �

THEOREM 2. Let f be a modulus function. Then the spaces es
p(Δ(ψ), f ,u),

es
0(Δ

(ψ), f ,u), es
c(Δ(ψ), f ,u) and es

∞(Δ(ψ), f ,u) are paranormed spaces with the para-
norm

g(x) = sup
m

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m− i

)
Γ(ψ +1)

(i− j)!Γ(ψ − i+ j +1)
si(1− s)m−ix j

]∣∣∣∣
uk
H

where H = max{1,supk uk}.
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Proof. Consider the space es
0(Δ

(ψ), f ,u) . Clearly, g(θ )= 0 where θ = (0,0,0, · · ·)
and g(−x) = g(x) for all x ∈ es

0(Δ
(ψ), f ,u) . For linearity, suppose that the sequences

x = (xk) , y = (yk) ∈ es
0(Δ

(ψ), f ,u) . By using the definition of modulus function and
Minkowski’s inequality, we have

g(xk + yk)

= sup
m

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m− i

)
Γ(ψ +1)

(i− j)!Γ(ψ − i+ j +1)
si(1− s)m−i(xk + yk)

]∣∣∣∣
uk
H

� sup
m

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m− i

)
Γ(ψ +1)

(i− j)!Γ(ψ − i+ j +1)
si(1− s)m−i(xk)

]∣∣∣∣
uk
H

+sup
m

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m− i

)
Γ(ψ +1)

(i− j)!Γ(ψ − i+ j +1)
si(1− s)m−i(yk)

]∣∣∣∣
uk
H

= g(x)+g(y).

Hence g is subadditive,

g(x+ y) � g(x)+g(y), for all x,y ∈ es
0(Δ

(ψ), f ,u).

Next, consider scalar multiplication, let λ be any scalar. According to the definition of
the modulus function, we have

g(λx) = sup
m

∣∣∣∣ m

∑
j=0

m

∑
i= j

(−1)i− j fm

[(
m

m− i

)
Γ(ψ +1)

(i− j)!Γ(ψ − i+ j +1)
si(1− s)m−i(λx j)

]∣∣∣∣
uk
H

� K
Q
H g(x),

where K represents positive integer such that K = 1+ |λ | . By modulus function, we
have x→ 0 implies g(x). Similarly x→ 0 and λ → 0 implies g(λx)→ 0. Finally, we
fixed x and λ → 0 implies g(λx) → 0. Therefore, es

p(Δ(ψ), f ,u) is a paranorm space.
Similarly, the proof for other sequence spaces can be established. �

THEOREM 3. Let f be a modulus function and ψ be a positive proper fraction.
Then the sequence space es

p(Δ(ψ), f ,u) is a complete normed linear space, with respect
to the co-ordinatewise addition and scalar multiplication of sequences. It is a BK -
space with the norm which is defined as

‖x‖es
p(Δ(ψ), f ,u) = ‖Es(Δ(ψ), f ,u)‖p, 1 � p < ∞.

Also, the sequence spaces es
0(Δ

(ψ), f ,u),es
c(Δ(ψ), f ,u) and es

∞(Δ(ψ), f ,u) are complete
normed linear spaces, with operations of addition and scalar multiplication defined
coordinate-wise. These spaces are also BK-spaces, equipped with the norm

‖x‖es
c(Δ(ψ), f ,u) = ‖x‖es

∞(Δ(ψ), f ,u) = ‖Es(Δ(ψ), f ,u)x‖∞.
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Proof. The proof is straightforward, so we omit details. �

THEOREM 4. Let f be a modulus function and for all k∈N0 , Λk=(Es(Δ(ψ), f ,u)x)k .

For fixed k ∈ N0 , the sequence b
(k)
m = {b(k)

m }n∈N0 defined as

b
(k)
m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

∑
j=k

(−1)(m−k) fm

[(
j
k

)
Γ(−ψ +1)(1− s) j−ks− j

(m− j)!Γ(−ψ −m+ j +1)

]
, 0 � k � m,

s
1
m , k = m

0, k > m.

Then

1. The sequence {b(k)
m }n∈N0 forms a basis for the space es

0(Δ
(ψ), f ,u) and any

x ∈ es
0(Δ

(ψ), f ,u) can be uniquely expressed as

x = ∑
k

Λkb
(k)
m .

2. The set {ν,β (k)} is a basis for the space es
c(Δ(ψ), f ,u) and any x∈ es

c(Δ(ψ), f ,u)
has a unique representation of the form

x = lν +∑
k

(Λk − l)b(k),

where l = limk→∞ Λk and ν = (νk), defined by

νk =
k

∑
i=0

k

∑
j=i

(−1)(k−i) fm

[(
j
i

)
Γ(−ψ +1)(1− s) j−is− j

(k− j)!Γ(−ψ − k+ j +1)

]
.

Proof. (1) From the definition of Es(Δ(ψ), f ,u) and b
(k)
m (t) , it follows that

Es(Δ(ψ), f ,u)b(k)
m (t) = e(k),

where e(k) represents the standard basis element in the space es
0(Δ

(ψ), f ,u) .
Let x ∈ es

0(Δ
(ψ), f ,u) . Then

x[v] =
v

∑
k=0

Λkb
(k)
m (t), for v � 0.

By applying Es(Δ(ψ), f ,u) , we have

Es(Δ(ψ), f ,u)x[v] =
v

∑
k=0

ΛkE
s(Δ(ψ), f ,u)b(k)

m (t)

=
v

∑
k=0

Λke
(k)

= ((Es(Δ(ψ), f ,u))x)ke
(k)
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and

Es(Δ(ψ), f ,u)(x− x[v])s =

{
0, if 0 � s � v

((Es(Δ(ψ), f ,u)x)k, if s > v;

where s,v ∈ N0 . For any ε > 0, there exists an integer q0 such that

sup
s�v

∣∣((Es(Δ(ψ), f ,u)x)s
∣∣ uk

H <
ε
2
, for all v � q0.

Thus
g
(
x− x[v]) = sup

s�v

∣∣((Es(Δ(ψ), f ,u))x)s
∣∣ uk

H <
ε
2
, for all v � q0.

Now, suppose that x = ∑k ck(t)b
(k)
m (t) . Since the linear mapping T from es

0(Δ
(ψ), f ,u)

to c0(p) is continuous, we have

((Es(Δ(ψ), f ,u))x)k = ∑
k

ck(t)
(

Es(Δ(ψ), f ,u)b(k)
m (t)

)

= ∑
k

ck(t)e(k) = cm(t).

This is contrary to our assumption that ((Es(Δ(ψ), f ,u)x)k = Λk(t) for each k ∈ N0 .
Therefore, the representation is unique.

(2) It directly follows from part (1). �

3. Duals of the spaces es
p(Δ(ψ), f ,u),es

0(Δ
(ψ), f ,u) , es

c(Δ(ψ), f ,u) and es
∞(Δ(ψ), f ,u)

In this section, we aim to establish and prove the theorems that precisely charac-
terize the α -, β - and γ -duals of spaces of non-absolute type.

For 1 � p < ∞ with 1
p + 1

q = 1, it is well-known that the β -dual {�∞}β of the

space �∞ is �1 and the β -dual {�p}β of the space �p is �q . Throughout this paper,
by F we denote the set of all finite subsets of N . Additionally, we will revisit sev-
eral lemmas from Stieglitz and Tietz [37], which play a crucial role in establishing the
theorems that follow.

LEMMA 4.

1. Let f be a modulus function. Then the matrix A = (amk) ∈ (c0, �1) = (c, �1) if
and only if

sup
k∈F

∑
m

∣∣∣∣ ∑
k∈K

fkamk

∣∣∣∣ < ∞. (6)

2. Let f be a modulus function. Then the matrix A = (amk) ∈ (c0,c) if and only if

lim
m→∞

amk = �k for all k, (7)

and
sup
m∈N

∑
k

fk|amk| < ∞. (8)
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3. Let f be a modulus function. Then the matrix A = (amk) ∈ (c0, �∞) if and only
if (8) holds.

THEOREM 5. Let f be a modulus function. Define the sets h
ψ
∞(s),hψ (s) and

h
ψ
p (s) as follows

hψ
∞(s) =

{
x = (xk) ∈ z : sup

k∈N

∑
m

∣∣∣∣ m

∑
j=k

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ−m+ j)

×
(

j
k

)
(1−s) j−ks− jx j

]∣∣∣∣
uk

< ∞
}

,

hψ(s) =
{

x = (xk) ∈ z : sup
K ∈F

∑
m

∣∣∣∣ ∑
k∈K

m

∑
j=k

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ−m+ j)

×
(

j
k

)
(1−s) j−ks− jx j

]∣∣∣∣
uk

< ∞
}

,

hψ
p (s) =

{
x = (xk) ∈ z : sup

K ∈F
∑
k

∣∣∣∣ ∑
m∈K

m

∑
j=k

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ−m+ j)

×
(

j
k

)
(1−s) j−ks− jx j

]∣∣∣∣
uk

< ∞
}

.

Then {es
1(Δ

(ψ), f ,u)}α = h
ψ
∞(s) , {es

0(Δ
(ψ), f ,u)}α = {es

c(Δ(ψ), f ,u)}α = hψ (s) and
{es

p(Δ(ψ), f ,u)}α = h
ψ
p (s).

Proof. Since the proofs for the spaces es
1(Δ

(ψ), f ,u) and es
p(Δ(ψ), f ,u) are similar

in structure. Now, we establish the proof for the spaces es
0(Δ

(ψ), f ,u) and es
c(Δ(ψ), f ,u) .

Consider x = (xm) , define the matrix (bψ
mk(s)) as follows

b
ψ
mk(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

∑
j=k

(−1)(m−k) fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ −m+ j)

(
j
k

)
(1− s) j−ks− j

]
, k < m,

1
sm , k = m

0, k > m.
(9)

Consider the equality (5), it follows that

xmzm =
m

∑
k=0

[ m

∑
j=k

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ −m+ j)

(
j
k

)
(1− s) j−ks− jx j

]]
yk

= (bψ
mk(s)y)m, m ∈ N. (10)

Thus, from the equality (10), we observe that xz = (xmzm) ∈ �1 for z ∈ es
0(Δ

(ψ), f ,u) or
es
c(Δ(ψ), f ,u) if and only if b

ψ
mk(s)y ∈ �1 whenever y ∈ c0 or c . By Lemma 4(1), we

have

sup
k∈F

∑
m

∣∣∣∣ ∑
k∈K

m

∑
j=k

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ −m+ j)

(
j
k

)
(1− s) j−ks− jx j

]∣∣∣∣
uk

< ∞.
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Therefore {es
0(Δ

(ψ), f ,u)}α = {es
c(Δ(ψ), f ,u)}α = hψ (s). �

THEOREM 6. Let f be a modulus function. Define the sets d
ψ
1 (s) , d

ψ
2 (s) and

d
ψ
3 (s) by

d
ψ
1 (s) =

{
x = (xk) ∈ z : sup

m∈N

m

∑
k=0

∣∣∣∣ m

∑
j=k

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ−m+ j)

×
(

j
k

)
(1−s) j−ks− jx j

]∣∣∣∣
uk

< ∞
}

,

d
ψ
2 (s) =

{
x = (xk) ∈ z : lim

m→∞

∣∣∣∣ m

∑
j=k

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ−m+ j)

×
(

j
k

)
(1−s) j−ks− jx j

]∣∣∣∣
uk

exists

}
,

d
ψ
3 (s) =

{
x = (xk) ∈ z : lim

m→∞

∣∣∣∣ m

∑
k=0

m

∑
j=k

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ−m+ j)

×
(

j
k

)
(1−s) j−ks− jx j

]∣∣∣∣
uk

exists

}
.

Then {es
0(Δ

(ψ), f ,u)}β = d
ψ
1 (s)∩d

ψ
2 (s) and {es

c(Δ(ψ), f ,u)}β = d
ψ
1 (s)∩d

ψ
2 (s)∩d

ψ
3 (s).

Proof. We provide the proof for the space es
0(Δ

(ψ), f ,u) . Let us consider the
equality

m

∑
k=0

xkzk =
m

∑
k=0

[ k

∑
j=0

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ −m+ j)

(
k
j

)
(1− s)k− js−ky j

]]
xk

=
m

∑
k=0

[ m

∑
j=k

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ −m+ j)

(
j
k

)
(1− s) j−ks− jx j

]]
yk

= (bψ
mk(s)y)m (11)

where b
ψ
mk(s) is defined in (9). Therefore, by applying Lemma 4(2) in conjunction with

(11) it follows that (xkzk) ∈ cs whenever z ∈ es
0(Δ

(ψ), f ,u) if and only if b
ψ
mk(s) ∈ c

whenever y = (yk) ∈ c0 . Hence, from (7) and (8), we deduce that

lim
m

b
ψ
mk(s) exists for each k ∈ N and sup

m∈N

m

∑
k=0

|bψ
mk(s)| < ∞.

Hence {es
0(Δ

(ψ), f ,u)}β =d
ψ
1 (s)∩d

ψ
2 (s) . In similar way we can prove that {es

c(Δ(ψ), f ,u)}β

= d
ψ
1 (s)∩d

ψ
2 (s)∩d

ψ
3 (s). �

THEOREM 7. Let f be a modulus function. Then the γ -duals of the spaces
es
0(Δ

(ψ), f ,u) , es
c(Δ(ψ), f ,u) and es

∞(Δ(ψ), f ,u) is d
ψ
1 (s).
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Proof. Consider the space es
0(Δ

(ψ), f ,u) . Suppose that x = (xk) ∈ d
ψ
1 (s) and z =

(zk) ∈ {es
0(Δ

(ψ), f ,u)}γ . Consider the equality

∣∣∣∣ m

∑
k=0

xkzk

∣∣∣∣ =
∣∣∣∣ m

∑
k=0

[ k

∑
j=0

(−1)m−k fm

[
Γ(1−ψ)

(m− j)!Γ(1−ψ −m+ j)

(
k
j

)
(1− s)k− js−ky j

]]
xk

∣∣∣∣
=

∣∣∣∣ m

∑
k=0

b
ψ
mk(s)yk

∣∣∣∣
�

m

∑
k=0

|bψ
mk(s)| |yk|.

By taking supremum over m ∈ N , this leads to

sup
m∈N

∣∣∣∣ m

∑
k=0

xkzk

∣∣∣∣ � sup
m∈N

m

∑
k=0

|bψ
mk(s)| |yk| � ‖y‖∞ sup

m∈N

|bψ
mk(s)| � ∞.

Thus x = (xk) ∈ {es
0(Δ

(ψ), f ,u)}γ . Therefore, d
ψ
1 (s) ⊂ {es

0(Δ
(ψ), f ,u)}γ .

Conversely, suppose that x = (xk) ∈ {es
0(Δ

(ψ), f ,u)}γ and z ∈ d
ψ
1 (s) . Thus we

may deduce that the sequence

( m

∑
k=0

b
ψ
mk(s)yk

)
m∈N

∈ �∞ whenever (xkzk) ∈ bs . This

implies the matrix (bψ
mk(s)) is in (c0, �∞) . Hence

sup
m∈N

m

∑
k=0

|bψ
mk(s)| < ∞

implies that x = (xk) ∈ d
ψ
1 (s) . Therefore, {es

0(Δ
(ψ), f ,u)}γ ⊂ d

ψ
1 (s). This proves that

the γ -dual of the space es
0(Δ

(ψ), f ,u) is d
ψ
1 (s). �
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