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ON UNIFORM CONVERGENCE OF
TRIGONOMETRIC INTEGRAL-SERIES

JIGNESHKUMAR BACHUBHAI SHINGOD* AND BHIKHA LILA GHODADRA

Abstract. In this paper, we give sufficient conditions for the uniform regular convergence of
trigonometric integral-series, which are also necessary if the sequence of functions is non-
negative. The new results also bring necessary and sufficient conditions for the uniform regular
convergence of trigonometric integral-series in complex form.

1. Introduction

There are a great number of interesting results in Fourier analysis established by
assuming the monotonicity of Fourier coefficients. Chaundy and Jolliffe [1] treat the
fundamental theorem in the theory of uniform convergence of sine series with coef-
ficients being a monotonic null sequence. Recently, the monotonicity condition has
been relaxed by several authors. For instance, many generalizations consider coeffi-
cients as a sequence of bounded variation. Uniform convergence or boundedness of
sine series with a sequence of coefficients being monotone and null are generalized to
a certain subclass of the quasi-monotone decreasing sequence (Rest Bounded Variation
Sequences and Head Bounded Variation Sequences, see [15]). Among others, uniform
convergence of trigonometric series with coefficients of General Monotone Sequences,
Mean Value Bounded Variation Sequences, Supremum Bounded Variation Sequences,
(p, B)-General Monotone Sequence are considered in [6,8,16,17,21-23]. Many results
on uniform convergence of single trigonometric series are extended to two-dimensional
settings as well. For example, necessary and sufficient conditions for uniform conver-
gence of double sine series with coefficients from a new class, Double General Mono-
tone, of double numerical sequences are obtained in [5]. Also, a sufficient condition for
uniform convergence of trigonometric series and double sine series with coefficients
being a sequence of p-bounded variation are obtained in [9, 10].

Parallel to the study of uniform convergence of trigonometric series, one inter-
esting topic, which we often encounter in literature, is the uniform convergence of
integrals. One of the basic results of uniform convergence of sine integrals

F(x)= /Omf(t) sinxtdt
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of f canbe foundin [18], where f: R, — C is a measurable function with the property
that f is non-increasing and ¢f(t) € L}, (R, ), where R, is the set of all positive
real numbers. In this direction also, many authors studied uniform convergence of
sine integrals, in particular, and trigonometric integrals, in general, while considering
a bigger class of functions than the class of non-increasing functions. For example,
uniform convergence of sine integrals of general monotone functions can be found in
[2,12] and their integrability can be found in [4,16,17]. Such results are extended to two
dimensions also. For instance, uniform convergence of double sine integrals has been
studied by Méricz [19, 20], Kérus and Moéricz [14], and Debernardi [3]. Koérus [13]
has also studied uniform convergence of double cosine integrals, sine-cosine integrals,
and double sine integrals of double general monotone functions extending the results
studied earlier by Méricz.

Recently, Kérus, Kransniqi, and Szal [11] studied uniform convergence in the reg-
ular sense of the sine integral-series with the general monotone sequence of functions.
To state their results and for our results, first, we give some preliminaries.

Let {fi(t)} i {0c(t) b, {we(r) )z, and {gk(r)};_, be sequences of func-
tions such that fi, ¢, Wi, gr : Ry — C for every k € N, where R := [0,0). Then the
integral-series given by

/ Y filt)sinkusintvde, (u,v) € R, (1)
0 =1
/ S 0u(1)sinkucostvdt, (u,v) €T, 2)
0 k=1
/ Y, wi(t) coskusintvde, (u,v) € Ki, 3)
0 =1
/ Y gi(r)coskucostvdt, (u,v) € R, “4)
0 k=1
are called sine, sine-cosine, cosine-sine, and cosine integral-series, respectively.
We say that
Y hi(t)dt
0 =1

converges in the regular sense (see [11]), if
xy 12
/ Z h(t)dt — 0 as max{nj,x;} — oo, ny =ny, x> xj.
X1 k=ny

Throughout the paper, we build upon some assumptions. We assume that f,
O, Wi, and g (or iy if we do not distinguish between them) (k € N) are of locally
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bounded variation on R, (that is, of bounded variation on every closed interval of
R, ), shortly, 7 (t) € BVjoe(R+), and to ensure local integrability, 7f;(t) € L} (R4),
o(t) € L), (Ry), ty(t) € L}, (Ry), and gi(t) € L} (R;). We call such functions
admissible (for (1), (2), (3), or (4), respectively).

In [11] Kérus et. al. defined the following class GMSF (¢, 3,7) of General Mono-
tone Sequence of Functions with majorants o, B, and y. Also, they defined four

classes based on the choices of majorants o, 3, and v, and gave relations of them.

DEFINITION 1. Let o, f8,7: Ki — R, be functions. Then a sequence of admis-
sible functions {(t)};_,, where h; : Ry — C for every k € N, is said to belong to
the class GMSF (a, 3,7) (called the class of General Monotone Sequence of Functions
with majorants o, 3,7) if there exists a positive constant C which depends only on
{h(x)}72_, and satisfy the conditions

2n—1

Y |Ah(t)| < Cau(n,t) forall n,t>0,
k=n

/ (i ()] < CB(k,x) forall kx>0,

2x2n—1
/ 2 |d; Al (1)] < Cy(n,x) forall n,x>0,

where Ahk = hk — hk+1 .
If we choose majorants

OCO(k7t) = ﬂO(kat) = YO(kvt) = |hk(t)|7

then the class GMSF (0w, Bo,Y) can be considered as the class of Rest Bounded Vari-
ation Sequence of Functions (RBVSF') (see [11]).

Other notable mojorants of General Monotone Sequence of Functions for a real
number A > 2 are:

(2n]

1

ca(nt) =~ 3 |m(r)l,
L7y
1 [Ax

mu@x):; [, ol

Ax ME':]
nx ‘hk ‘dl‘

oy [n/A]

and the class GMSF (o, 1,71) can be called the class of Mean Value Bounded Varia-
tion Sequence of Functions (MVBVSF) (see [11]).
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In the case of functions

OCz(l’l,t)Z

S| =

B (n)<m<cBj(n

pe) =1, max [Tl

1 2y 2m
B, [ w3 ) t]

m+y=B3(n+x)

l max 2|hk]

where B is a positive sequence which tends to infinity, By,B3 : R, — R, such that
lim By (x) = lim B3(x) = oo and ¢ > 2, the class GMSF (05, 3,,7:) can be called the
X—00 X—00

class of Supremum Bounded Variation Sequence of Functions of first type (SBVSF)
(see [11]), while for

o3(n,x) = —[ sup Z | (x ]

N m=B(n) k=m
1
ﬁa(k7X)=—[Sup / |hk<>|dr]
X |y=B(x) 7y
1 2y 2m
pox)=—| s[O3 molar|,
nx m+y=B(n+x)7Y  k=m

where B: R, — R, such that lim B(x) = o, the class GMSF (03,[3,73) can be

X—00

called the class of Supremum Bounded Variation Sequence of Functions of second type
(SBVSF;) (see [11]).
The inclusion relations

GMSF(O{()7[30,’J/0) g GMSF(ahﬁhYI) g GMSF((X27B27Y2) g GMSF((X37[337Y3)7

hold.
Concerning these classes they proved the following two theorems.

THEOREM 1. If {fi(t)};_, belongs to the class GMSF(os,Bs3,73), where
fi:Ry — C forevery k€N and
kifi(t) — 0 as max{k,r} — oo, k,t >0, (5)

L. . . . . =2
then the sine integral-series (1) converges in the regular sense uniformly in (u,v) € R .

THEOREM 2. If {fi(t)}7, belongs to the class GMSF (0w, B2,7,), where fi :
R, — Ry forevery k€ N and the regular convergence of (1) is uniform in (u,v), then
condition (5) is satisfied.

In the present paper, we have studied the uniform regular convergence of integral-
series (2)—(4) with a sequence of admissible functions {/(r)};_, belonging to the class
GMSF (o, B,7).
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2. Main results

We prove three results for trigonometric integral-series with the sequence of func-
tions from the class SBVSF, (or one of its subclasses). The conditions we give for
uniform convergence are sufficient for the sequence of complex-valued functions and
are necessary for the sequence of non-negative functions.

THEOREM 3. (i) If {¢x(t)}7_, € SBVSF», where ¢ : Ry — C forevery k€N
and for x; >0, 0 <x <xyp,

kxgp(x) — 0 and k/xl |9k (t)|dt — 0 as max{k,x} — oo, (6)

then sine-cosine integral-series (2) converges in the regular sense uniformly in
=2
(u,v) e RY.

(ii) Conversely, if {¢(t)}7_, € SBVSF1, where ¢y : Ry — R, for every k € N and
the regular convergence of (2) is uniform in (u,v), then condition (6) is satisfied.

THEOREM 4. (i) If {wi(t)};_, € SBVSF,, where Wi : Ry — C for every k €
N and for nj e N, 1 <n < ny,

ny
ntyy(t) — 0 and 1Y [y(t)] — 0 as max{n,t} — oo, (7
k=n
then cosine-sine integral-series (3) converges in the regular sense uniformly in
=2
(u,v) e RY.

(ii) Coversely, if {wi(t)}y_, € SBVSF1, where y : Ry — Ry for every k € N and
the regular convergence of (3) is uniform in (u,v), then (7) holds.

THEOREM 5. (i) If {g(t)};_, € SBVSF,, where g : Ry — C forevery k€N
andfor x1 >0, n €N, 0<x<x;and 1l <n<ny,

X ]
miga() =0, 1 [ [ga(t)]dr =0, x 3 [gx(x)] 0.
X

k=n
x1 11
/ Y gk(t) — 0 as max{n,x} — oo, (8)
X k=n
then cosine integral-series (4) converges in the regular sense uniformly in (u,v) €
=2
R
L.

(ii) Coversely, if {gi(t)}r_; € SBVSF}, where g : R — R, for every k € N and
the regular convergence of (4) is uniform in (u,v), then the conditions in (8) are
satisfied.

COROLLARY 1. The results of Theorem 5 also hold for the integral-series

/ N hi(t)e e at, (u,v) EKi. )
0 k=1
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3. Auxiliary results

To prove our main results we need the following lemmas, first two of them are
used in the investigations of the uniform regular convergence of sine integral-series as
well.

LEMMA 1. [11,Lemma 3.1] Let {h(t)};_, be a sequence of functions belong-
ing to the class SBVSF,, where hy : R, — C for every k€ N. If

kthi(t) — 0 as max{k,t} — oo,
then

kx/ |dih(2)] — 0 as max{k,x} — oo;

nt Z |ARi(t)] — 0 as max{n,t} — oo}
nx/ 2 |d; A (t)] — 0 as max{n,x} — oo.

LEMMA 2. [11,Lemma 3.2] Let {h(t)}_, be a sequence of functions belong-
ing to the class SBVSF |, where h; : R, — R for every k € N. Then for all n,x >0,
we have

nxhy,(x) < C
m+y=2B3(n+x)7Y  k=m

sup /2y 22@{ hk(t)dt]

2x 2n 2cBy(x) 2n 2x 2¢By (n
+/ th dt+C/ Ehk t)dt+C 2 hk
X X Bl

where C >0 and ¢ > 2

LEMMA 3. Let {l(t)};2_, be a sequence of functions belonging to the class
SBVSF,, where h : Ry — C for every k € N. If

X1
k / (1) d — 0 as max{k,x} — oo, (10)
then
X 2
n / S [Al(r)]dr — 0 as max{n,x} — oo,
X k=n
and if

t2|hk )] — 0 as max{n,t} — oo, (11)
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then

niy oo
x Z/ |dihi(t)| — 0 as max{n,x} — oo.
k=n"*

Proof. Let {h}y_, € SBVSF, be such that (10) is satisfied. Then we have

X oc2]+1
n/ S Ak (1) dr = / (2 D () )
X k=n

=0 2in

g/ln S w S ba
X j=0 2Jnm>B(2/n)k:m

| 2m
:CZ sup Z/ | (2)| dt

':O m>B 2/n) k=m

2m 1 x|
_CZZJ sup 2%{](/;( hk(t)dt}—>0

m=B(2n) k=m

as max{n,x} — oo.
Now, let {h;}7_, € SBVSF, be such that (11) is satisfied. Then we have

ny o ny oo 2/+l
xZ/ ()] =x Y 2/ oy (1)
fe=n % k=ni=0
ny oo 2y
<x Y, Z 27 sup |l (1) | dt
k=nl= y>B(2[x) y
ng oo 2y
=CY Z ? sup |y ()| dt
k=n = y=B(2lx) 7Y
2y m
:CZ? sup Z\hk (t)|dt
y=B(2lx) 7Y
oo 1 2yl ny
=CY = sup =31y |h(2)] pdr —0
=02 oy | i

as max{n,x} —oo. [

LEMMA 4. Let hy : R, — R for every k € N belong to SBVSF|. Then for all
0<x<x; and 1 <n<ny, we have

X1 2CBI X1 2n
n/ ot / 2 hk dt+/ th(z)dt
* Y k=Bi(n Y k=n

np 2ch nj 2x
xS () < / (0de+ 3 [ o).
k=n k=n"*X
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Proof. For all n < j < 2n, we calculate

2n—1

i1
0= T A0+ < S O]+
k=n

Since {h}y_, € SBVSF; and hy : Ry — R, forevery k € N, we have

C ¢ 2¢B1(
h,(t) < — ma I ( — .
(1) n (31( )<m<X¢B1 Z e ) n :BZ i)
By summing both sides with respect to j € [n,2n], we have
2¢B(n) 2n
nha(t) <C Y () + Y, ()
k=B (n) j=n

Now, integrating both sides with respect to 7 € [x,x;], we get

2¢By ( x| 2n

X1
n/ I (2 / 2 hk dt+ th(z)dt.
x =n
Next, for all x < < 2x, we calculate

() = — / o (6) + (1) < / )]+ D).

Again, using {h}7_, € SBVSF; and hy: Ry — R forevery k € N, we have

C 2y C [2cB2(x)
hk(x) < — ( max / hk(l)dl) +hk(l) < —/ hk(l)dl+hk(l)
By (x) y X JB

X X)<y<cBa(x) 2(x)

By summing both sides with respect to k € [n,n;], we have

ny 2¢By(x) M1
th(x) < — / th dl+2hk
k=n

Now, integrating both sides with respect to [ € [x, 2x], we get

ny 2¢By(x) M1
x Y () < / th dt+2 .0
k=n
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4. Proofs of the main results

Proof of Theorem 3. To shorten the proof, for 0 <x; < x; and 1 < n; < ny, let

Ly (Qrx1,x25m1,1m2) = 2 Ok (1) sinkucostvdt.
k= ny

Part (i): Let € > 0 be given. Then by (6), Lemma 1, and Lemma 3, there exists
No = Ny(€) so that

Iy (v)] < e, (12)
myZlA@ )| <e, (13)
k/ \0u(1) dr < e, (14)

m/ S [Ag(r)]di <, (15)

Y k=m

a0, (1)| < €, 16

my / didm(1)] < & (16)

my / S ldAg(r)| < e, (17)
Y k=m

for 0 <y <y; with max{m,y} > Ny. From now on, we always suppose that 0 < x| <
X2, 1 <nyp <np and max{n,x;} > Ny. We will prove that for any u,v € R,

Ly (Or; X1, x25m1,m2)| < (5+157)e, (18)

which is equivalent to the required uniform regular convergence of (2).

By Fatou’s lemma, we may assume that x; > 0. Since sinku is an odd function
and 27 -periodic with respect to u we should prove (18) only for u € [0,7]. For u=0
and arbitrary v, (18) is trivial. Now, let 0 < u < 7 and v=0. Denote u = p(u) = [l],

u
the integral part of % For v=0 and 0 < u < 7, we distinguish two basic cases.

Case (i): ny <ny < U. Then by sinku < ku and (14), we have

ny
L0 (s x1,x25m1,m2)| = Z ¢y (t) sin kudt

X1 k= ni
/ Sl (1)
X k= ny
/k|¢k )|dr < e.

”knl
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Case (ii): 1 < n; < ny. Using summation by parts (see [7, (7.1.12)])

ny np—1
Y e(r)sinku= 3 A¢(t)Dy(1e) + @y (1) Dy (1) = Gy (1) Dpy—1 ()~ (19)
k=ny k=ny

where

k
u) =y sinju,
=

is the conjugate Dirichlet kernel. Using well-known estimate |ﬁk(u | T for u €
(0,7], we get
np T nz—l
2 oult)sinkul < — {3 [AG()] 4|9, ()] + [0n, ()] | - (20)
k=n k=n;
Using (20) and then (14) and (15), we obtain
n
Lo (Osx1,x25m1,m2)| = Z ¢y (¢) sin kudt
X k=ny
/ Z O (¢) sinku|d
X k=n,
T XD nz—l
<E [T 0]+ 100 0]+ 10 (0] )
X1 k=n,

< iy Z |A¢k |dt+7rn2/ ‘¢n2(1)|dl‘

X1 k= ni
X2
[ 160 (1) dr
X1

< 3rme.

For arbitrary u,v > 0, we distinguish four basic cases, which together guarantee
(18).
Case (a): n; <ny < U and x; < xp < 1/v. Then, by Case (i) and (12), we have

/ Z¢k smku<1—2sm —)dt

xlk}’ll

‘ uv(¢k,x17x2 n17n2 | -

dt

xy 12 1
/ D 2¢k(t)sinkusin25v

1 k*nl

Xy 12
< / S () sinkudt| +

1 k:nl

X2
< NLo(Prxr,x25n1,m2)[ 42 2 | (2 |k14

xlknl

1/v
<e+— / Ekt\(bk )|dt < 2e.

X kn1
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Case (b): p <ny <ny and x; <x, < 1/v. Then, proceeding as in Case (a), we
get

Ly (Qrsx1,x25m1,n2)| =

/ Zq)k smku(l—Zsm —)dt

xlk}’ll

< |Luo(Qrsx1,x23n1,m0 |+V/

X1

Z O (¢) sinku|d

knl

Now, using Case (ii), (20), (12), and (13), we get
Ly (G x1,x25m1,1m2) |

X np—1
<3n8+%/x t(Z |A¢k(t)+|¢n2(t)|+|¢nl(t)l> dt

k=n1

1/v s
< 3ne+nv/ (tm 2 |AQ ()] + 112 | @, (1) + 113 |(I),,1(t)|> dt
1 k=n1

< 3me+3me =6mE.

Case (¢): ny <np < and 1/v <x; < xp. Integrating by parts we get

X2 X2 1 X2
/ 0 (1) costvdr = [(bk Smtv] - / sintvd, g (¢)
X1 X

1

= % <¢k Xp) sinxyv — @ (x1) sinxyv — /x2 sintvd,d)k(t)) . 2D

X1

Using sinku < ku, |sinzv] < 1, (21), (12), and (16), we get

2
Z @ (7) sinkucostvdt

xlknl

Ly (Qrsx1,x05n1,m0)| =

X
2 sinku/ O (1) costvdt
x|

k=n1

guik

k*nl

<1 3 k(mlotlenlati+ 1 [ idoo))

k=ny

/ ’ @ (1) costvdt

I
<;11 Z (kx2¢k(x2)|—|—kx1|¢k(x1 |+k)€1/ |d; i (t )|>

k=ny
< 3e.
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Case (d): u<nj; <nyand 1/v<x; <x;.Using (19), we have

1
/ > Oc(t) sinkucostvdt
X

I k= ni
xp [m2—1 B B
-/ (2 AQe(1) D (1) + 9y (1) Dy () —¢m<t>Dn11<u>) costvdr.
X1 k=ny

Now, integrating by parts, we have

2
/ Y oc(t) sinkucostvdr
X

1 k=n;

-1 inrv ]
- l<2A¢k<z>Dk<u>+¢nz<z>D (1) = 00, (1), 1 (s >> Svt]

k=n1

x|
1 X np—1 5 5
_;/ sintv (Y. diAQw (1) Di() + dy iy (1) Dy (1) — i@, (1) Dy 1 (1) |
X1 k:nl
Therefore, by using (12), (13), (16), and (17), we get

Ly (Qrs X1, X2511,m2))|

ny—1 ny—1
<= ( D [AG(x2) |+ 9y (x2)] + [, (62) |+ A¢k(x1)|+|¢nz(xl)+¢n1(x1)|>

uy k=n1 k=n1

XD np— 1
( 2 1 AG (1) + [d; gy (1) + Idz¢n1(t)|> d

uv w \uS,

<7 (nm i | Ay (x2)| 4 122 | @, (x2) ] + 11x2 |¢n1(x2)|>

k=n1

np—1
+7T<nm > A¢k(x1)|+"2x1|¢nz(x1)|+"1x1|¢m(x1))

k=ny

oy —1
+7r<n1x1 / S 1diAg (1) dt + o, / oy (1) it + 1 / o, ( )|dt>
X

1 k=n,

< 9re.

The following cases: ny <ny < and x; < 1/v<xy; g <ny<mpand x; <1/v<
xym<u<mandx <xp<1l/v;n<u<ngand 1/v<x <xp;n; <U<npand
x1 < 1/v < x, can be split into two or four cases which fall under cases (a)—(d).

Part (ii): Let € > 0 be arbitrary. Suppose {@(r)};>, € SBVSF, where ¢ :
R, — R, for every k € N and the regular convergence of (2) is uniform in (u,v).
There exists N = N'(g) such that

2cx 2¢n

L o(Qsx,2¢x;n,2¢n) = / 2 @ (1) sinkudt < €, (22)
X —
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for max{n,x} >N and c>2. Forn>1, set u= H' Clearly, for all n < k < 2c¢n,
sinku > sin % and for all n < k < 2n, sinku > sin = 46. Since Bj(n) — e as n — e and
B> (y),B3(y) — oo as y — oo, there exists N” > 0 such that for max{n,x} > N” implies
n+x>N', Bi(n)+x>N', n+By(x) >N and B3(n+x) > N'. Then by (22) and
Lemma 2, for max{n,x} > N” and C > 0 we get

T T 2y 2cn T 2cx 2n
sin =nx@, (x) <Csin——  sup /y > i(r)dt +sin v / > x(r)dr

c c m+y=B3(n+x) k=n X k=n

T [2cBa(x) 2 Z T [2ex ZCBXIE ) ( )
+Csin—/ o (2 dt+C51n—/ O (2)dt
N 4c Jx k=B (n)

<C  sup  Lo(@ksy,2yin,2en) + L, o( @i x, 2x3n, 20)
m+y>B3(n+x)

+ClL,o(9x; B2(x),2¢Ba(x);n,2n) + CL, o($x; X, 2x; B1 (n), 2¢B1 (n))
< (3C+1)e.

That is, nx@,(x) — 0 as max{n,x} — . Also by (22) and Lemma 4, for max{n,x}
>N",0<x<xp,and C >0 we get

2LB| )

sm—(/ On (1) dt) Csm—/x 2 q)k dt+51n—/x§¢k

Cluﬂo((bk;x,xl ;Bl (n), 2¢By(n)) + L o( ks x,x131,2n)

<
<(C+1)e.

Hence, n [! ¢,(t)dt — 0 as max{n,x} — e. And hence we have obtained (6). O
Proof of Theorem 4. To shorten the proof, for 0 <x; < x; and 1 < n; < ny, let

uv(llfk X1,X2; I’ll,l’lz 2 l[/k(t)coskusintvdt.
X k= ny

Part (i): Let € > 0 be given. Then by (7), Lemma [, and Lemma 3, there exists
My = My(e) so that

Imyym ()| <€, (23)

my 2 Ay (y)| <&, (24)
k=m

y Z lwi(y)| <€, (25)

k=m
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mp oo
S [Clawol <e 26)
—n’y
my [ ldym(0)] <, @7)
y
my /y Y |dAvi(r)] < e, 28)
k=m

for 0 < m < m; with max{m,y} > My. From now on, we always suppose that 0 <
x1 <x2, 1 <np <ny and max{ny,x;} > My. We will prove that for any u,v € Ry,

[ (W3 x1,x23n1,m2)| < (8+12m)e, (29)

which is equivalent to the required uniform regular convergence of (3).

By Fatou’s lemma, we may assume that x; > 0. Since cosku is an even function
and 2m-periodic with respect to u# we should prove (29) only for u € [0,7]. For v=10
and arbitrary u, (29) is trivial. Now, for v > 0 and u = 0, we have two basic cases.

Case (i): x; <xp < 1/v. Then by sinzv < tv and (25), we have

o (Wi x1,x23m1,n2)| =

n
/ Y wi(r)sintvdr.

I k= ni
X
/ Zf\ll/k (t)|dr
X k= ny
l/v n
1Y w(r)]de < e.
X1 k=ny

Case (ii): 1/v <x; < xy. Then integrating by parts and by using (25), (26), and
|costv| < 1, we get

1n
o (Wisx1,x25m1,m2)| = Z v (t) sintvdt

xlk}’ll

(Tt

k=n, v vV Jxy

1 ny "2
—Z\kaxl \+ Z|1ka2|+ / ATAG)
k ny

kn1 knl

//\

<X 2 Wi (x1) ]+ x2 Z [ Wi (x2)[ +x1 2/ |d yi(1)

k=n1 k=n1 k= ny
< 3e.

For arbitrary v > 0 and 0 < u < , we distinguish four basic cases, which together
guarantee (29).
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Case (a): ny <ny < p and x, < xy < 1/v, where = p(u) = [1], the integral

part of % ,0<u<m. Then proceeding as in Case (a) of proof of Theorem 3 and using
Case (i) above and (23), we have

o (Wis X1, X2511,12)|

& 5 ku

/ 2 Wi (1) (1 — 2sin’ 7) sinzvdt
xy 12

< / 2 Wi (1) sintvdt| +

lknl

xy 12
/ S 2y(r)sin® —smtvdt
X

lknl

\Jov(ll/k,xuxz ny,np)|+2 Z | (¢ \—tvdt

A k=ny

1/v
<e+— / Zkt\l//k Ydt <

X k=nm

Case (b): pu <n; <nyandx; <x;<1/v. Then proceeding as in Case (i) of proof
of Theorem 3, except for replacing each conjugate Dirichlet kernel with the appropriate
Dirichlet kernel Dy (u), and using |Dy(u)| < 7 for u € (0,7] and by using (23) and
(24) we get

o (W3 x1,x2311,12) |

2
/ 2 Wi (1) coskusintvdt
X

/ Z Wi (1) cosku|d
X1 k=ny
X2 ny—1
<o [ 3 AYODw) + Yo 00D 1) = i (10D 1)
X1 k:nl

1/v oo
< nv/ (tm Z |Ay(2) ]+ tna |y, (1) 411 y/nl(t)|> dt

1 k=n,

< 3rme.

Case (¢): ny <ny < p and 1/v <x; <x;. Then by Case (ii) above and integrating
by parts and then by using (23) and (27), we get

[y (Wi X1, %2311, 12) |

xy 12 k
= / IR <1—2s1n —) sintvdr
x 2

1]{}’11

n
/ 2 v (1) sintvdt

—|—iku

k=n1

X2
/ Wi (1) sintvdt
X1
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1 /@
+—/ costvd Wi (t)

vV Jx

[—ka(t)

1 H
< Moy (Wi x1,x23m1,n2) |+ m >k

COSIV]XZ
k=n X1

38—|—” 2 <|kx11Vk(x1)|+|kx2l//k(x2 H—kxl/ |dr wie( )|)

k= ny
< 6e.

Case (d): u<nj; <nyand 1/v <x; <x,.Proceeding as in Case (d) of proof of
Theorem 3, first, summation by parts, we have

xy 12
/ 2 Wy (1) cos kusintvdt
X

lknl

X2 np—1
- /x1 ( Y Ay (1) D) + Wiy (1) Dy (1) — l//nl(f)Dnl—1(u)> sintvds.

k=n1

Next, integrating by parts, we have

n
/ Z Wi (1) coskusintvdt

X1
CcoStv

np—1
= [— ( 2 Ai(t) Dic(1e) + Wiy (1) Dy (1) — Wnl(t)Dnl_l(u)>

X2

XD v ny—1
+ / coiz (2 thWk(l)Dk(M)+dth2(Z)Dn2(u)—dtl{/nl(t)Dnl1(u)>,

k=n1

Therefore by using (23), (24), (27) and (28), we get

[ (Wis X1, x23m1,12) |

ny—1 ny—1
<= ( D AW 2) |+ Wy (2) |+ [, (22) |+ |AWI<(X1)|+an(xl)|+|Wn1(xl)>

uy k=n1 k=n1

T XD }’12—1
T ( 3 A A1)+ 1y (1) + L v <t>|>
X1

k=n1

<7 (nm D 1A ()[4 2 [y (2) | 4 1% |1Vn1(x2)|>

k=n1

ny—1
+7T<n1x1 Y Allfk(xl)+"2x1l//nz(xl)+"1x1ll/nl(x1)|>

k=ny

ooy —1 oo oo
+7T<n1x1/ > [diAy (1) \+n2x1/ |dt‘!/nz(l)\+n1x1/ |dt‘!/n1(l)>
X X1 X1

1 k=n,

< Ore.
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The following cases: n; <ny < and x; < 1/v<xy; u<ny<npand x; <1/v<
xym<u<mandx <xp<1/v;np<u<nyand 1/v<x; <xp;n; <U<np and
x1 < 1/v < x, can be split into two or four cases which fall under cases (a)—(d).

Part (ii). Let € > 0 be arbitrary. Suppose {yi(t)}y | € SBVSF, where y :

R, — R, for every k € N and the regular convergence of (3) is uniform in (u,v),
there exists M' = M’ (¢) such that

2¢x 2cn

Jo(Wisx,2¢x;n,2cn) = / Y wi(t)sintvde < g, (30)
x =

for max{n, x} >M and ¢ >2. For x >0, set v= X. Clearly, for all x <t < 2c¢x,
sintv > sin 7= and for all x < < 2x, sintv > sin . Since Bj(n) — o as n — co and
B> (y),B3(y) — o as y — oo, there exists M" > 0 such that for max{n,x} > M" implies
n+x>N', Bi(n)+x>M, n+By(x) >M and B3(n+x) > M'. Then by (30) and
Lemma 2, for max{n,x} > M" and C > 0 we get

T 2y 2cn 2ex 2n
sin Enx%( x) < Csin - sup / 2 Wit dt+sm—/

4c m-+y>=Bs(n+x)

2¢By(x T 2cx 2CBI( )
+Cs1n—/ El[/k dt+Cs1n—/ Y wi(t)de
dele pw

<C  sup  Joo (Wi, 2y;n,2cn) + Jo (Wi x, 2x;n,2n)
m-+y>B3(n+x)

+CJo (Wi Ba(x),2¢Ba(x);n,2n) + CJo (Wi x,2x; By (1), 2¢B (1))
<(3C+1)e.

That is, nxy, (x) — 0 as max{n,x} — e. Also by (30) and Lemma 4, for max{n,x} >
M",0<x<xy,and C >0, we get

2¢By ( 2n

. T X1 X1
sm%<n/x l//n(t)dt> Csm—/ 2 l//k dt+sm—/ Zl[/k

< JO,v(Wk;x7x1;Bl(n)aZCBl(n))+JO,v(Wk;xaxl;n72n
< (C+1)e.

Hence, n ;! y,(1)dt — 0 as max{n,x} — . And hence we have obtained (7). [

Proof of Theorem 5. To shorten the proof, for 0 <x; < x; and 1 < n; < ny, let

Ty (8k3X1,X25m1,12) = 2 gk(t)coskucostvdt.
k= ny
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Part (i): Let € > 0 be given. By (8), Lemma 1, and Lemma 3, there exists
Lo = Ly(¢), so that

Imygm(y)| < €, 3D
V1
e[ el <. (32)
y 2 lac(y)| <, (33)
my/ dygm (1) dt < €, (34)
my 2 [Agk(v)] <, (35)
ooiml
> ldigi(r)] < e, (36)
Y k=m
24 Wihad
m / 3 a0l <e, (37)
my [ Y ddg(r)] < e. (38)
Y k=m
V1 mj
[ 3 )| <e (39)
Y k=m
forall 0 <y <y and 1 <m < m; with max{m,y} > Ly. From now on, we always

assume that 0 < x; < xo, 1 < ny < np and max{n;,x;} > Ly. We will prove that for
all u,v,

| T (ks x1,x23m1,m2)| < (9+12m)e. (40)

By Fatou’s lemma, we may assume that x; > 0. Since cosku is an even function
and 2m-periodic with respect to u we should prove (40) only for u € [0,x]. If u =
v = 0, then the inequality in (39) immediately implies (40). Now onwards, we use
inequalities in (31) several times. For u = 0 and v > 0, we have two basic cases:

Case (i): x; < xp < 1/v. Then by using (33) and (39), we have

|To,v(gr3x1,X2;n1,m2)| = / Z gkt 1—25111 —> dt
X k=ny
no
< / Y, gi(t)dr +V/ 2 t|gi(t)|dt
X1 k=ny - k=ny
Xy 12 /v m
< / Y, gi(t)dr +v/ 1Y |gk(r)dr < 2e.
X k= ny k=n1
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Case (ii): 1/v <x; < xp. Then integrating by parts and then by using (34) and
(36), we have

|To,v(gr:x1,X2:m1,12)| = /g;< t)costvdt

k=ny
& sinty]™ X2 sintv
=13 (a0 4 [T
k=ny v X1 X1
o N2
<X Z |gr(x2)| +x1 Z |8k (x1 \+x1/ > |digi(r)] < 3e.
k=ny k=ny A k=m

Now, for u > 0 and v = 0, also we have two basic cases:

Case (I): n; < ny < u. Then by using (32) and (39), we have

n
| Tuo(grsxt, x23m1,n2)| = / Z gk (t) cos kudt

VAN
>\
M
)
B
S

U k=n U k=ny
xy 2

</ Y ule)dr| + Zk/ ge(t)dr < 2e.
k= ny k ny

Case (II): u < n; < ny. Then summation by parts and then by using (37) and
(33) we get

| T0(8ks X1, X2511,1m2)]

xy 12
/ Y gk(t) coskudt

1 k=n1
x, [m2—1
= / ( . Agi(r)Di(1t) + gy (1) Doy (1) — g, (t)Dnl—l(u)> di
1 k=n1

X2
n(nl Y lAgi(i |dt+n2/ |gn2(t)|dt—|—n1/ |gnl(t)|dt>

X f=n, x|

< 3rme.

For any v > 0 and 0 < u < m, we distinguish four basic cases, which together
guarantee (40).
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Case (a): ny <np < and xp <xp < 1/v. Then by using (31), (32), (33), and
(39), we have

| T (8K X1, X211, 12) |

/ igk(t)<l—25in2]%)<l 2sin® )dt

Xy 2
</ Y, gi(t)dr +u/ 2k|gk )| dt+v Zt|gk )| dt
X k= ny A k= ny X k= ny
+uv/ Zkt|gk (t)|dt
X k=ny
/v m
/ ng(f)dt Zk/ |gx(t) \df—FV/ 1Y |gk(r)|dr
X k=ny k np UM X1 k=ny
v 1/v &
+—/ > ki |gi(1)| dt
HJxy =

< 4e.

Case (b): n<nj; <nyand x; < x; < 1/v. Then by using Case (I) above and by
using (33), we get

xy 12

[Ty (gisx1,x23n1,n2)| = 2 gi(t) cosku (1 — 2sin’ )dt
M k= ny
/ 2 gi(t) coskudt +v/ 2 lgr(2)|dt
X k= ny X1 k= ny
1/v n2
< ITu,o(gk;m,xz;nhnz)l+V/ 1Y |gk(t)|dr
X1 k= ny
<(Br+1)e.

Case (¢): ny <np < W and 1/v < x; < xp. Then by using Case (ii) above and by
(32), we get

[Ty (gksx1,x23m1,m2)| =

& o ku
Z ax(t) (l — 25sin? ?) costvdt

X1 k= ni

XD
/ 2 gi(r) costvdt +u/ 2 k|gk(r)|dt
A k= ny X k= ny

1 >
<|To(grixt,x25n1,n2) | + m Zk/ |gx(t)|dt
=1 /n

< A4e.
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Case (d): p<nj; <nyand 1/v<x; <x. Applying summation by parts and
integrating by parts, we obtain

| T v (grx1, X211, 12) |

X2 ny—1
/X ( 2 Ag(t)Dy(1t) 4 guy (1) Dn, (1) —g,,l(t)Dnl_l(u)> costvdt

k=n1

m ! intv |
=‘ [( > Agi(t)Di(ut) + gy (1) Dy (1) _gnl(t)Dnll(u)> > vt ]

k=n1 X

x ny—1
— %/x sintv ( Z diAgy(t)Dy (u) +dign, (t)Dnz (u) —dign (t)Dnl_l(u)> '

k:nl

o [ "= 1 np—1
v{ D 1Ak (x2) [+ Y 1A (1) + [8ny (42)] + 8y (x2)] + 8y (x1)] + &y (1))
k=ny k=ny

X2 ny—1
+ (z |d,Agk<t>|+d,gn2<t>+dtgm<t>> }

k:nl
Then by using (31), (34), (35), and (38), we have

| Tuv (g3 X1, X211, 12) |

< 7T<n1X2 Y 1Agk(x2)|+nixy Y, [Agk(xi)]
k=ny k=ny
+ 12X gy (%2) | + 11132 [ gy (%2)] 4121 [gny (1) | 4 11x1 gy (1)
X2
fo [ [didge(0)]dr +noxy / \dygny (1))t + nyxy / |d,gnl(t)dt>
X f= ny X1

< 9re.

Part (ii): Conversely, from the regular uniform convergence of (4) at (0,0) we
deduce that

Too(gk:x1,X%2:m1,12) 2 gi(t)dt — 0 as max{ny,x;} — oo,
X k= ny

and hence from Lemma 2 and Lemma 4 we obtain (8). [
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Proof of Corollary 1. Obviously,
xy 12 L
/ 2 hk(t)elkueltvdt
1 k=n1

xy 2
= / Y hi(t) (cosku+ isinku) (costv + isintv)dt
X1

k=ny

xy 2 xy 2
:/ Y hk(t)coskucostvdt—i—i/ Y (t) coskusintvdt
X1 X1

k=ny k=n;
xy 12 xp 2
+i/ D hk(t)sinkucostvdt—/ > hy(t)sinkusintvdt,
X k=n; M k=ny

and then we can apply Theorem | and Theorems 3-5 to conclude the uniform regular
convergence of (9). For the converse part, we just need to use the regular convergence
of (9) at (0,0), and using the converse part of the proof of Theorem 5, we get our
conclusions. [
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