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EXPLORING GENERALIZED IDEAL CONVERGENCE WITH
ORLICZ FUNCTIONS IN NEUTROSOPHIC n-NORMED SPACES

NESAR HOSSAIN AND RAHUL MONDAL *

Abstract. This paper introduces the concept of .7 -convergence within the framework of neu-
trosophic n-normed spaces. Leveraging this notion alongside Orlicz functions, we construct
novel sequence spaces that extend the theoretical landscape of neutrosophic n-normed linear
spaces. Our investigation delves into the structural properties of these spaces, exploring funda-
mental attributes such as linearity and Hausdorffness while establishing significant results. This
study deepens the understanding of neutrosophic n-normed spaces and also contributes to the
broader mathematical framework by unveiling new perspectives in sequence space theory.

1. Introduction and basic fundamentals

Zadeh [54] is widely celebrated as the visionary pioneer who revolutionized clas-
sical set theory through the groundbreaking introduction of fuzzy set theory. This
paradigm-shifting concept has since evolved into a cornerstone of modern mathematics,
driving innovations and applications across diverse domains of science and engineer-
ing, including chaos control [15], nonlinear dynamical systems [21], and beyond. An
intriguing advancement in the realm of fuzzy sets is the introduction of intuitionistic
fuzzy sets by Atanassov [1]. These sets enrich the classical fuzzy framework by in-
tegrating a non-membership function alongside the membership function, offering a
more nuanced perspective. This innovation has catalyzed the development of numer-
ous groundbreaking concepts in mathematical analysis, further broadening the scope of
fuzzy set theory.

Smarandache [51] introduced the revolutionary concept of neutrosophic sets, of-
fering a comprehensive generalization of intuitionistic fuzzy sets. By incorporating
an indeterminacy function, neutrosophic sets characterize each element with a triplet:
truth-membership, indeterminacy-membership, and falsity-membership functions. This
innovative framework enables a more nuanced representation, where every element in
the universe is precisely defined by its unique degrees of these three notions. The evolu-
tion of fuzzy normed spaces, first introduced by Felbin [14] in 1992, has unfolded into
a dynamic field of study. Saadati and Park [52] extended this framework to intuitionis-
tic fuzzy normed spaces in 2006, paving the way for Karakus et al.’s [29] exploration
of statistical convergence in 2008 and Kumar et al.’s [30] subsequent generalization to
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ideal convergence in 2009. More recently, Kirigci and Simsek [31] introduced neutro-
sophic normed linear spaces, advancing the field by investigating statistical convergence
and inspiring further research into diverse types of sequence convergence within these
spaces. For deeper exploration, see [4, 33, 34, 36]. The concept of 2-normed linear
spaces, later extended to n-normed linear spaces, was pioneered by Gihler [16, 17],
igniting significant interest among researchers. Murtaza et al. [45] introduced the
groundbreaking concept of neutrosophic 2-normed linear spaces in 2023-a profound
extension of neutrosophic normed spaces-while exploring their statistical convergence
and completeness. More recently, Kumar et al. [40] advanced the field further with the
innovative notion of neutrosophic n-normed linear spaces, delving into their conver-
gence structures and defining Cauchy sequences within this novel framework. How-
ever, early studies reveal intriguing parallels in the behavior of sequence convergence
within these spaces. Building on these observations, we define and explore the concept

of newly introduced spaces such as €7+ () (@), %ny(%) (®). We nurture some im-
portant properties including linearity and topological of the spaces within the frameork
of neutrosophic n-normed linear space.

Now, we present an overview of key definitions and terminology essential for de-
scribing our main results. Throughout the study, N denotes the set of all natural num-
bers.

Ideals

A family .# of subsets of a non-empty set 2 is called an ideal [27] if the follow-
ing conditions hold:

1. 0e .7,

2. A Bed = JUBEcI,

3. eSS ad BC oA = Bes.
An ideal . is called non-trivial if 2~ ¢ .# and . # 0. Moreover, a non-trivial ideal
# C2% istermed admissible if {{x}:x€ 2} C .#. Forinstance, the class .#; of all

finite subsets of N forms an admissible ideal on N. Unless otherwise stated, .7 will
denote a non-trivial admissible ideal throughout this paper.

Filters

A non-empty family .% of subsets of a non-empty set 2" is called a filter [27] if:
1. 0¢ .7,
2. A RBeF — INABET,

3. e and A CHB — Bec.F.
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If .# C2% is a non-trivial ideal, then the class .7 (%) = {2\ & : &/ € ¥} forms
a filter on 2", known as the filter associated with the ideal .# [27]. Ideal and statisti-
cal convergence are generalizations of the classical notion of sequence convergence in
mathematical analysis. These concepts are particularly useful in summability theory,
real analysis, and functional analysis. In recent years, the study and application of these
concepts has been growing rapidly in various settings [37, 38, 39].

Generalized de la Vallée-Poussin mean and summability

Let A = A, be a non-decreasing sequence of positive numbers tending to infinity
such that A,,.1 < A, +1 and A; = 1. Throughout this discussion, A denotes such a
sequence A,. The generalized de la Vallée-Poussin mean of a sequence w = {wy} is
given by: o,(w) 1= %n Ykes, Wi» Where J, = [n— A, + 1,n]. A sequence w = {wy} is
referred to as (V,4)-summable [41] to a number & if o, (w) — & as n — .

When A, = n, (V,A)-summability reduces to (C,1)-summability. For the sets of
sequences w = {wy} strongly (V,A)-summable and strongly (C,1)-summable to &,
we define:

[V,X]Z{WZ{wk}:HéeR, nlgrgo% Z Wk-&zO},

ke,
12
n—eo

A -density
Let .# C N. The A-density of .# , denoted by 8, (.#), is defined as:

8, () = lim %\{ke]n ke,

n—o0

provided the limit exists. Notably, the A -density of a finite set is always zero, and for
subsets o7 C 4, it holds that 8, (&) < 0, (4).

DEFINITION 1. (%) -density) [19] Let .# C N. Then the .#) -density of .#,
denoted by & (.#), is defined as

n—oo

87 (M) =7 — lim %erjn ke HY,

provided the limit exists, where the vertical bars denote the cardinality of the enclosed
set.

Let A = {ki <ky <---<kp<--} and {w,} is a subsequence of {w}. If
87 (M) =0, then {wr, } is referred to as thin subsequence of {wy}. Meanwhile, if
5;“ () # 0, which means either .#, -density of ./ is positive number or it fails to
have .7, -density, then {wy,} is referred to as nonthin subsequence of {wy}.
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REMARK 1. If A, = n, then Definition 1 coincides with the notion of .# -natural
density [44]. And, if A, =n and ¥ = .#¢, then Definition 1 coincides with the notion
of natural density [13].

Continuous 7 -norm and 7 -conorm

[50] A binary operation B : ¢ x # — ¢, defined on ¢ =[0,1], is termed a
continuous -norm if it meets the following criteria, for each vi,v»,v3,v4 € ¢

1. ® exhibits both associativity and commutativity;
2. exhibits continuous behavior;

3. viBl=v forall vie #;

4. vi®E v, < v3H V4 whenever vi < vz and v < V4.

A binary operation ® : ¢ x _# — ¢ ,where ¢ =[0,1] is named to be a continuous
t-conorm if for each vi,v2,v3,v4 € ¢, the below conditions hold:

1. ® exhibits both associativity and commutativity;
2. ® exhibits continuous behavior;
3. vi®0=v forall vie #;
4. vi® vy, < v3® V4 whenever vi < vz and v, < V4.
The continuous 7-norms are Vi B v, = min{v;,v,} and v| & v, = v;.v,. On the other

hand, continuous #-conorms are V| @ v, = max{vy,v,} and Vi ® Vo = V| + Vo — V.V,
[28].

n-normed linear space

[18] Let n € N and % be a real vector space having dimension d > n (d is finite

or infinite). A real valued function ||-,...,|| on #' X # x ...x W =W", gratifying
—_—————
n times

the below four axioms:
L. ||®,D,..., 0 =0 if and only if ¥, 1,...,1, are linearly dependent;
2. ||®1,,...,0,|| remains invariant under any permutation of ¥y, 0,,...,0,;

3. |09, .., B, || = | o] || 91, Do, - - ., D1, By for @ € R (set of real num-
bers);

4' “19171927"'a19}’1—1a1+w|| g ||l913192?"'719n—17r||+||l9131923"'319}’1—13w”;
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is called an n-norm on % and the pair (#,]|,...,-||) is named to be an n-normed
linear space. As an illustration of n-normed linear space we take # = R" equipped
with the Euclidean norm

Wil Win
||W13W23'~~7wn|| Zabs
Wnl W"}’l
where w; = (Wi, wi,...,win) € R". For instance, we get ||wy,wa,...,wy|| >0 in an

n-normed linear space.

Neutrosophic 7-normed linear space

[40] Let # be a vector space over .% and & and ® be continuous 7-norm and
t-conorm respectively. Let ¢4, R, % be the functions from #” x (0,) to [0, 1]. Then
a six tuple (#,9, R, % ®,®) is named to be a neutrosophic n-normed linear space
(in short Nn-NLS), (wi,wa,...,wy_1,wn; &) € #" x (0,00) — [0, 1], if the below con-
ditions hold:

L. (19171927 Oy 17Wn9€)+9{(191»1927 Uy l»Wn,C)
+g(19171927"'7l9n—17wn7g) < 3’

2. (19171927 n laWn3C)>O;

3. 9(01,0,...,%-1,w,:§) =1 if and only if w; are linearly dependent,
I<j<n;

4. G(%,D,...,0_1,wy; ) is invariant under any permutation of wy,wy,...,wy;
5. (01,00, 01,k 8) =G (01,0, 01, Waig), KA 0 and K € F

6. G(01,0,..., 001, Wa+w,:{+T)
>g(ﬂ1?1927"'3ﬂn—lawn;g)g(ﬂl7l927"'7l9n—17w;1;r);

7. G (%, D,...,%_1,w; ) is non-decreasing continuous in §;

8. limg .9 (%, 0,...,0-1,ws;§) = 1 and
llmé‘—?Og(ﬁh%a n I»Wn,C)ZO;

9. E)‘{(’0171927'”719}1717"1}71;5) >0,

10. R(Vy,,...,0-1,w,;¢) =0 if and only if w; are linearly dependent,
I<j<n;

1. R(%,D,...,%—1,ws;§) is invariant under any permutation of wi,wa, ..., wy;

12. RO, 02, -, O 1, kw03 §) = R(D1, B, Oy 1, Wi 57), K #0 and K € F
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13 (19171-927 n 17Wn+Wn’c+T)
RO, Do, Oy 103 ) OR(DY, B, By 1, W)

14. R(S,Da,...,0—1,wn;§) is non-increasing continuous in {;

15. lim C (1917192, n 17Wn,C):0 and
llmé‘qog’{(ﬂ171927 n 17WnsC):l;

16. Z(V1,0,...,0_1,wn;§) > 0;

17. % (01,%,...,0-1,w,;§) =0 if and only if w; are linearly dependent,
l<j<n;

18. #(%,,...,0—1,wy; ) is invariant under any permutation of wy,wy,... ,wy;
19, (D1, 00,0, Bt kw3 §) = (01,0, 1w ), K70 and Kk € F
20 g(ﬂ17l927 19}’1 l,Wn+w;17C+T)

(19171927 n 17Wn,c)®@(191,192, n laW ,T),
21. & (%,D,...,0_1,wn; ) is non-increasing continuous in & ;

22. limg o, # (91,0, 19,, 1,wn;§) =0 and
llmé‘_@@(ﬁl,%, n 17Wn,C):l.

In the sequal, we shall use the notation .7 for neutrosophic n-normed linear space
instead of (¥ ,¥,R,% ,®,®) and we denote .4, to mean neutrosophic n-norm on

I

EXAMPLE 1. [40] Let (#,],...,+]|) be an n-normed linear space. Also, let
Vi B Vv, = min(vy,v2) and v; ® v, = max(vy, ;) forevery v, v, € [0,1]. If we define
4, R and ¥ as

¢
Y, %, U, Wi =
7o D) = 0 O O om]
||19171~927 n laWn”
V1,0, e, Wy =
( ! : C) C+Hl91a a~~~7l9n—17WnH

and

“19171327 n 17wnH
C

Then (¥ ,9,R,% ,H,®) is a neutrosophic n-normed linear space.

(19171927 n 17W}’Z9C)_



GENERALIZED IDEAL CONVERGENCE WITH ORLICZ FUNCTIONS IN N#n-NLS 219

Convergence in 7

[40] A sequence {wy} belonging to ## is named to be convergentto v € # in re-
lation to .#;, (in short .4;, -convergence)if forevery 6 >0, { >0 and ¥y, 1,,...,0,_1 €
W there can be found ko € N in a way that

g(ﬁla‘ﬂz7 19}’1 laWk—U;C)>1—G and
(19171927 n 1, Wk — D,C)<G7
(19171927 n 1L, Wi — U,C)<O-

for all k > kg . In this scenario, it is denoted as .4, — limw; = v or w;y —> V.
A sequence {wy} belonging to 7 is referred to as Cauchy sequence in relation
to A, if for every 6 > 0, > 0 there can be found ky € N in a way that

g(ﬂh%r"aﬂn—lawk_wm;c)>1_6 and
%(§17l%3 1-9}1 I;Wk—Wm;C)<G,
(19171927 Op1, Wi — Wm;C)<G

for all k,m > k.

THEOREM 1. [40] Let {wy} be a sequence in # . Then {wy} is convergent in
(W |- sell) i Ak} is convergent in A with respect to neutrosophic n-norm as
defined in Example 1.

Recall from [25] that an Orlicz function is a mapping @ : [0,00) — [0,c0) that is
continuous, convex, and non-decreasing, satisfying ®(0) =0, ®(¢¥) > 0 and ®(?) —
oo as 1 — oo. If the convexity condition is replaced by the inequality ®( + o) <
() + D(ax), the function is known as a modulus function. This concept, introduced
by Nakano [46], was further explored with applications to sequence spaces by Musielak
[43], and Tripathy [53]. It is well known that if @ is a convex function with ®(0) =0
then it satisfies the inequality ®(A19) < A®(H) for all A with 0 < A < 1. Linden-
strauss and Tzafriri [42] utilized the notion of Orlicz functions to define the sequence
space

{w mleo: Z(D<|V;;k> <oof0rsomep>0}

which is known as the Orlicz sequence space. This space forms a Banach space with

the norm
|| = 1nf{p>0 ch(:”)"')gl}.

For ®(19) = ¥ with 1 < p < o, the space (g coincides with the classical sequence
space [,,. An Orlicz function is sald to satisfy the condition A;-condition if there exists
aconstant K > 0 such that ®(y9) < Ky®(¥) forall y > 1. Building on the concept of
# -convergence, Tripathy and Hazarika [53] introduced a new class of sequence spaces
defined using the Orlicz function, further enriching the study of sequence spaces and
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their structural properties. In recent years, this notion has garnered significant attention
and development by numerous researchers including Bilgin [8], Debnath et al. [10],
Esi [11], and Hazarika [22] across diverse mathematical frameworks such as 2-normed
spaces [20], n-normed spaces [12], and intuitionistic fuzzy n-normed spaces [32].

2. Main results

In this section, we explore the concept of A -convergence and the associated ideal
#, in neutrosophic n-normed linear spaces. We introduce novel neutrosophic 7-
normed .#) -convergent sequence spaces, incorporating the Orlicz function @, and
investigate their fundamental topological and algebraic properties. Additionally, we
establish various inclusion relations related to these newly developed spaces, providing
deeper insights into their structural framework.

DEFINITION 2. Consider {wy} to be a sequence in aNn-NLS .77 . Then {w;} is
referred to as A -convergentto v € # in relation to .4, if forevery { >0, o € (0,1)
and nonzero ¥y, %,..., %1 € # there can be found ny € N in a way that

Eg W, h,. ..,ﬁn_l,wk—v;§)>l—a and
”keJn

1
A,_ Z]’ %(ﬁl,l%,~~~,l9n—lawk_v;g) <o

1
A, Z@ﬂl?%;"'aﬂn—lawk_v;g)<6

" kely
for all n > ng. In this scenario, we express A,(A) —limw; = .
DEFINITION 3. Consider {wy} to be a sequence in aNn-NLS 7. Then {wy} is

referred to as .# -convergentto v € # in relation to 4, if forevery { >0, o € (0,1)
and nonzero 191,192,...,19,1,1 € W the set

Zgﬂ17%7 wﬂnflawk_v;c)gl_o- or
" ked,

neN: Z (%1,02,..., O-1,wx —v;{) >0 and €7
kD,

2 19171927 wﬂnf],Wk_U;C))G
ke,

. . . I (N .
In this scenario, we express %) (4;,) —limwy = or wy M V. And, v is called

I, () -limit of {wy}.

LEMMA 1. Consider {wy} to be a sequence in a Nn-NLS . Then, for every
>0, 0€(0,1) and nonzero ¥1,%,...,0,_1 € ¥, the statements enlisted below are
met:
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I (Nn)
w2

~

{neN:ﬁzke,nm(ﬁl,m,...
{HENI 7 Skes, 7 (01,00,

%’12/{6]" g(ﬁla 192a
n€N: & iy, R0, 0,
= Skes, Y (01,0,

4. {nEN: %nZkeJng(ﬁlﬂ%wn
{nEN %HZkeJng{(ﬂl7l927"'

nEN: LS, 9(01, 0., Ot wi— 0:E) <1—a} €7

1, W —038) > O'} €7;
U1, W —058) = G} €.7;

s O, —0;8)>1—0 and
"'aﬂn—lawk_v;c)<67 Eg\(ﬂ)’

...,l?nfl,wk—"!);C) <O

e —0:0) > 1 _o} e F(F);
1w = vil) <o} € F(S);

{neN: L5y, #0102, 001wk —v:0) 20} € F(F);

5. f,l(,/l{q)—lim%(ﬁl,ﬁg,...,ﬁn,hwk—D;C) =1,
I (M) —mR (D, 2, ..., 1, W — V;§) =0 and
fk(%)—limg/(ﬂl,ﬁg,...,ﬂn_l,wk—U;C) =0.

THEOREM 2. Consider {wy} to be a sequence ina Nn-NLS 7 . Then, .7 (Ny)-

limit of {wy} is uniquely determined.

Proof. If possible, let .7 (A7) —limwy = vy and 7 (A;,) — limwy, = vy where
V] # V2. For a specified o € (0,1), choose @ € (0,1) such that (1 —®@)= (1 —@) >
l1—0and @®®® < 0. Then, for any { > 0 and nonzero ¥,s,...,%,_ | € #, we

define

Cgfél((mo:{”eN % Zg<6171927"'70nlawk_vl;£) < l_w}7

1
%cﬁ,l(wag) = {HEN A{_ 2 9’t<‘l917“927'"71971—17"‘%_DN%) 26}7

%W,I(GLC):{’/[ENL Z g<ﬂl7ﬁ2a'“7ﬁn—lywk_vl;g> 26}7

@%,2(675): neN: — Zg<1~9171927'”719n17wk_v2;£) gl_w}v

2
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1
99{,2(G7,C)={"€N1)L—Z%<§1,ﬁ2,~~-,ﬂn—1,wk 1)2, Gf}

" ked,

kel

Dy 2(@,8) = {nEN A—Z@<01,027 Gp1, Wi — vz, 117}

Since 7, (A7) —limwy, = vy, all of Gy | (@,8), € (@,¢) and €1 (@,{) belong
to 7. Again, since %) () —limwg = V2, Dy »(® C) D 2(@,8) and Doy (@, )
e .. Let (0,8) = {%.1(@,0) U Dy 2(0,0)} N {1 (0,0) U P o(@,0)} 0
{Cw 1(0,0)U%y »(@,8)}. So, /(0,0) € I andconsequently, d(0,0)e F(I).
So, there is n € &7°(0,{). So, whenever n € {6y 1 (@,{)U Py »(@,8)}°, we get

. 254(1917192, Op1, Wi — Ul;%)>l—&7

" ked,

_Zg<ﬂla 5. nlawk_1)27§)>l_w

” kedy

Let i:max{g (ﬂl,ﬂz,...,ﬂn_l,wk—vl;%> ,g<z91,192,...,19,,_1,wk—1)2;§) ke
Jn}.Then,

g (1-917192a"'719n—17wi_vl;%>

1
> 2 g<l917"-92a"'719n—17wk_vl;£>
k"ke],, 2

>1-o

and
RPN S
g 1-917192a"'719n—17w1_1)27§

1
> T 2g<1-9171-92a"'7l9n—17wk_1)2;%>

" keld,
>1—-o

Therefore, we arrive at

g(ﬂl,%,...,ﬁn_l,vl _UZ;C)

(’0171927 n lvwl vl;%) (6171927 n lawl 1)2;%)
>(l-o)E(l—-o)

>1—o0
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Since, ¢ > 0 is arbitrary, 4 (%, D,..., 01,01 — 02;§) = 1. This, yields v; = v,.
For other two cases in relation to R and %, we will arrive at v; = V2. Hence,
I, (Ay)-limit of {wy} is unique. Thus, the proof stands established. [J

We now introduce the concept of A-Cauchy sequences within the framework
of ideals and explore some results concerning .#; -convergence and .#, -Cauchy se-
quences in the setting of neutrosophic n-normed linear spaces.

DEFINITION 4. Consider {wy} to be asequence in aNn-NLS 7. Then {w;} is
referred to as A -Cauchy sequence in relation to .4;, if forevery { >0, o € (0,1) and
nonzero ¥y, %,...,%_1 € # there can be found pg, p € N in a way that the following
inequalities are satisfied:

1
— %(ﬂl,ﬁz,...,ﬁn_l,wk—wp;é‘)>I—G and
A”kejn

1
A,_ %(ﬁla%a"'7ﬁn—l7wk_wp;c)<G’

" ke,

1
A_ @(19171327"'719}1717“}]{_“}[7;4‘)<O—

" ke,

forall n > py.

DEFINITION 5. Consider {wy} to be a sequence in aNn-NLS 7. Then {wy} is
referred to as .#) -Cauchy in relation to .45, if forevery { >0, o € (0,1) and nonzero
V1, D,..., %1 € # thereisa p € N such that the set

1
2{— 2 %(19171927...,19,,,17wk—wp;§') >1—0 and
n ked,
1
neN: 7— 9{(191,192,...,19”717\4}]{_\4}17;;)<G7 eﬁ(])
)L"kej,,
1
x_ g(‘&l?‘ﬁza"')ﬁn—l;m}k_w[);c)<G
" keld,

THEOREM 3. Let {wy} be a sequence in a neutrosophic n-normed linear space
(Nn-NLS) 2. If {wy} is a A-Cauchy sequence, then it is also an %) -Cauchy se-
quence with respect to the neutrosophic n-norm Ny,

Proof. The proof follows directly from the definitions and is therefore omitted for
brevity. O

THEOREM 4. Let {wy} be a sequence in a neutrosophic n-normed linear space
(Nn-NLS) 7. If {wi} is a &) -convergent sequence, then it is also an %) -Cauchy
sequence with respect to the neutrosophic n-norm Ny,.
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Proof. Let, {wy} is a % -convergent to v € # . For a specified o € (0,1),
choose @ € (0,1) such that ( O)H(l-@)>1—0 and ®®® < . Then, for any
¢ > 0 and nonzero Yy, s,...,9,_1 € # , we define

%1(&77C)={I’ZGNZ%2%(191,192,...1.9" 1,Wg — U %)>l— }7

n ke,

" keld,

%Z(Gag):{nEN % Egt(ﬂla‘l%a'“)ﬁn—lawk_v;%) <w}a

1
%3(&77C)= {I’IGNZ A_ Z@(ﬁ],ﬁg,...,ﬁnhwk—v;g) <CO'}.

" ked,

Since, {wi} is a . -convergentto v, all of €, (®@,§), 6> (@,) and €3(@,{) belong
to Z (7). Let

¢(0,8) =6 (0,5) N6 (®@,§) N6 (@,8).

Hence ¢ (®,() € #(.¥) and thus, € (®,{) is non-empty. Let n € €(@,). So, we
can choose a fixed p € (@, ). Then, we have

(19171927 n 1,Wk — Wp;c)
2% (19131927"'31971—1?‘4)/(_1);%) g (19171927"'a19}’1—1awl7_v;%>
>(l-o)E(l—-0)

>1—o0

This results in

2 (01,02, Oyt Wi —wp3 &) > 1 -0, (1)
kEJy
And,
(19171927 n 1yWk — Wp;c)
19171-927 n 17wk 9£ 19171927 n lawp vsg
2 2
<O®D
< 0.
This yields that

R(%, B, o, Oy, me —wp3 §) < 0. )

S
e
mM
=
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Also,
Y (O, ,...,
<O®D
<o0.

This gives

7L

Bp1, Wi — Wps C)

(1917192, O, Wy — U;g)

Z Y 19171927

n ked,

n 1L, Wi —

(19171327 n 17wp U,£>

2

wp§) <o. 3)

Therefore, from the equations (1), (2) and (3), we conclude that

¢(@,¢) <

AsC(@,0) € F(I

lished. O

neN:

A, Eg 1917

" kedy

1
A_ 2%(&1,1%,...,

N ked,

1
A—Z@(ﬂl,ﬂz,...,

" ked,

e B, Wi —

Op1, Wi —

V1, Wy —

wpi§)>1—0 and

wp;€) <o,

wpil) <o

), {wy} is an .7 -Cauchy sequence. Thus, the proof stands estab-

Now, we introduce novel generalized ideal convergent sequence space defined
by Orlicz function @ in neutrosophic n-normed linear spaces. We further explore
their topological and algebraic properties and establish key inclusion relations for these
newly defined spaces. For some v € # and p > 0, we define new sequence spaces in

relation to ./4;, as below:

@2 (Mn) (D)

= {Wk}GWZ

6 (@)

= {Wk}EWI

neN:

e, 1
% Y @ (5(0171927-"71:;1—17‘4’1( U@) <l-—ocor

" ke,

R(D1,0..
neN: - Zq)( (31,2,

ke,

p

LWk~ UC))ZO‘and c.7

b

AL zq)( Y (91,0,..., 17))1 1 Wk— UC>>G

" kel,

Y (01,0,...

Lyo

kGJ,,

p

19n717wk;5)> <l-oor

p

zq)(ﬁﬁhﬂz ~~~~~ ﬁnlwAC)>>o-and c.7

Ly o2

kGJ,,

(91,09,..., O 1,W
1,0, ;zlkC)/G
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We define an open ball centered at w = {wy} € # with radius o, relative to { > 0 as
follows:

A(w,0,8)(P)

(773 . .
% > (1)(</(191:192~,m~,ﬁl;1—17wk %;6)

)gl—gor
" ke,

1
= : 2@
{u}te# :{neN: 3 2 (

% Y q)({—/y(ﬂl71927~-~719n—lvwk77k;§)) >0
ke,

%(ﬁlaﬁ%ws%—l:w/\'_fk;g)) > o and c.7

THEOREM 5. The €+ (®) and <Kof’t(‘/‘/")(@) form linear spaces over R.

Proof. Let w = {w;} and 7 = {7} are in ¥“2("2)(®) and y,7, are nonzero
scalars. For a specified o € (0,1), choose @ € (0,1) such that (1 —@) & (1 — @) >
1—0 and @®® @ < ¢. Then, there are v, v, € # for which the sets

G (01,000, Byt Wi — V1 5
ALZ(D< (1 L 12}'1>>>1—6E7and

n kedy p1
R (01,02, D 1 Wk~ V155
M={neN: L 3 @ ( 5 ) <o, e Z(5)
" ke, !
g vl
n T @ ](19171927~-~719nflvwk Ulvzm‘) .
n ke, P1
and
G (01,0200 001, T V213
%Z@ ( 5 2“'20 >1—® and
" kel, 2
R (D1, 020001, T V23
Mry={neN: L 3 @ ( D i), <@, e F(F),
" kel, 2
L&
0 T @ W(ﬁlaﬁ%msﬂnfl:Tk_UZ’ryZ‘) cw
P kedy P2

for some pi,p; > 0. Now, ¢ € (0,1) and p3 are chosen in a way that for any Or-

licz function @ and the sequence A we can have ;%HZke 5, @ (i—f) >1—o0 and
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%ﬂ Ykes, ® (%) < 0. Therefore, by the properties of ® we will get

1 cD( (01,02, ., U 1771Wk+7/2‘5k—(7/1U1+Y21)2);C)>
p3

>i @ g<19171927 n 1, Wk— 1)1326,1').%(19171927 n 1, Tk— vZ;ﬁ)
kel P3
>L cI)((1—(6)(1— ) zq)( )
An ke, P3 ”keJ
>1-—o0,
1 v (D(9?(191,192,-..,ﬁn_l,J/1Wk+J/zrk—(71v1+yzvz);C))
A 7, P3
. ¢ . ¢
<i ® 9‘(191,15‘2,~~~,19n—1,wk—v1,m>@‘K(191,192,---,15‘;1—1,Tk—1)2,m>
P 7, p3
1 [0XDX0] 1 o
< — d)( ) < =— (o} (—)
A 5, P3 M keEJ‘,, P3
<o,
and

1 Z¢<@(1917192, U 1771Wk+7/2‘5k—(7/11)1+7/21)2);C)>

x’" kedy Ps
| S o 4 1917192, V1, Wi — vl,zfyll)@@(ﬁuﬁz, On1, Th— vxﬁ)
A’” kedy P3
1 (6
Yo 2 D —
A‘n ke, P3 " ked, p3
<O
So,
W ARRW/4)
Ly o G (01,02, Oy 1 Nk T~ (Y101+Y202);C)> ~1—0and
" ked, P
R(,0,...., 0,1, ;
cdnen: %ﬂk% @ ( FWLD, 1Y1Wk’;i3-Ysz (nvi+pvs) C)) <o, € F(I).
E n

Ly o ?y(ﬂl71927-"719'1—1771Wl;)+727k7(ﬂ1)1+72v2);§)) <o
ke 3
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Hence, (yiw+ 1) € €72()(®), ie., €72()(®) is a linear space over R. By
similar argument we can easily verify that (yyw+ 1) € ‘50]’1 (A) (®). Thus, the proof
stands established. [J

THEOREM 6. Every open ball B(w,c,{)(®) is an open set in €7»() (®).

Proof. Let T = {1} € #°(w,0,§)(P). Then,

1 n—1, - 5

_Eq)(f(ﬁl,l%, U1, WE — Tk C)>>1_G;
n ke, P

1 cos Un—15 Wk — Tk

i @(9((191,192, s Un—1, Wk — Tk C)><G nd @
n ke, p

i q)<@(19171927“‘719nlvwk_Tk;C)><o_

n kel, p

that

% q)(%(191,15‘2,~~,121—17Wk_Tk;CO)) >1-o0;

’7kEJn

1 <o Un—1, — T

L q)(m(m,ﬁzy als;) 1 Wi — T CO)) <o and 5)
n ke,

1 q)(@(ﬁuﬁmmvﬁnI»Wk_T";CO)> <o.

A‘"kEJn p

SupposeGO:}%nZkeJncD< . )>1—G.From(5) 0y >1—0. So,
J o € (0,1) such that 6y > 1 —@ > 1 —o. Consequently, 01,02 € (0,1) such that
op® o) >1— and (1—0yp)® (1 —02) < @. Let 03 = max{o,0,}. Then,

l-®<oyHEo3, and (1 —0p)® (1 —03) < @. (6)

Now, we show that #°(w,0,§)(®) D % (1,1 — 03,5 — §)(P). Let {04} € B°(1,1—
03,{ — Co)(P). Then,

qu)<§4(191,192,...,19n17Tk—ak§c_co)>>1_(1_G3):o'3;
A’"kGJn p

L q)(9{(191,192,...,19,,_1,’[1(—(Xk§C—CO))<G3 and (7)
nke-]n p

1 q)(g(ﬁl,ﬁz,...,ﬁn_l,n—ak;C—Co)> “ o

nke-]n p
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So,

L ) g(ﬂlamr"aﬂn—lawk_(Xk;g))
P

n
n

>>|,_.(?

Y q;( 15‘17192,---,l9n—1,wk—17k;§0)g(ﬁl,ﬁz,m,ﬁn—l,fk—ak;g—CO))

" Kel, P
ogoy>1—-o>1—0

2@( 1917192a"'719n—17wk_ak;g)>

An 55, P

<i Z‘D( (19171927 n 1, Wk — Tk,CO)C’BEK(ﬁI»ﬁL n 1, Tk — (Xk,c—co))

An (55, p

<(l-0p)®(l—03) <@ < 0,

and
L q)<g(ﬂla1927"'aﬁn—lawk_ak;c))
A p

Zq)< (01,02, O Wi — T3 §0) @Y (D1, D, ., Ot Th — Oﬂk;C—Co)>
Kel, p

1
S
<(l-op)®(l—03) <@ <o0.

So, {oy} € B (w,0,8)(D), i.e., B (w,0,8)(®) D A (1,1 — 03,8 — §)(P). Thus,
the proof stands established. [l

DEFINITION 6. Define 774 (M) = {.# C €% (A,): for eachw € ./ one may
find out § > 0 and o € (0,1) such that Z(w,0,{) C A }.

REMARK 2. .774(4;) is a topology on €72 (.A,).

PROPOSITION 1. The spaces €“*(.A;) and %ny (M) are Hausdorff.

Proof. Suppose that w = {w;} and 7 = {7} are in €% (.4;) such that w # 7.

Then for every { > 0, nonzero ¥,1,...,9,_1 € # and by the properties of ¥4, R
and %, we get

i ( 19171927~~~»19n1»Wk—Tk;C)><1

AP b
iz ( ﬂl;%;"'aﬂn—lawk_rk;g))<1,
)L"kej,, p

1.

0 1 2q)(@(ﬁl,ﬁz,...,l;n—l,wk—Tk;§)> -
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Let

i q)<§4 191,1927...,19n1,wk—1k;C)>
l"keJ,, p '
i q)< 1917192,...,19n17wk—1'k;§')>
A’1keJ,, p '

63:i q)(@(15‘1,192,...,ﬂn_l,wk—fk;é‘))’
A”kejn p

and 6 = max{o},l — 02,1 — 03}.

Then, for each 6y > ¢ there can be found 04,05 and Og in a way that 64 04 > Oy,
(1—05)®(1—o05) < (l—0p) and (1 —06) ® (1 —0) < (1 —0p). Now, put o7 =
max{0y, 05,06} and consider the open balls % (w,l — 07, %) and % <’L’,1 — 07, %)
centered at w and T respectively.

We aim to show that A (w,l — o7, %) NnA (T,l — 07, %) = 0. If possible, let
{og} € B (w,l — o7, %) N%A <1,1 — o7, %) . Then, it will happen

o) = i 2 q)<g(l91a1927"'a19n—1awk_Tk;c))

M ST, p
1 S o g(ﬁ‘l,ﬁz,m,ﬁn—l,wk 0 3 )lg(ﬂl,l%, 15‘;1—1,Tk—06k;%>
P ST, p

> o7E 07 = 04E 04 > 0y > O > 0], absurd,
Gzzi q)<g{(19177-927'"71-9n—17wk_1k;€))
=ys P
1 v 93(15‘1,192,---,15‘11—1,Wk—05k;%>@‘K(15‘1,192,---,15‘;1—1,Tk—06k;%>
g_
M 5, P
<(l-o)®(1—07) < (1—05)®(1—05)
< (1-=0p) < (1 —0) < 02, acontradiction,
and
03_% Zq) g(ﬁla‘ﬁza"')ﬂn—lywk_Tk;c)>
=ys P

I (@(ﬁm& Ot =045 ) @F (91,02, 01,7 — 05§ )
P

l—07) < (1—06)® (1 —0p)
1 — 0) < 03, a contradiction.
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Hence the space €4 (.4;) is Hausdorff. By similar argument, we can do the same for
the space %0]’1 (7). Thus, the proof stands established. [J

THEOREM 7. For an element {wy} € €“+(Ny), converging to v if and only if,
for 6 €(0,1), >0 and nonzero ¥,%,..., %1€ ¥,

Eq)< 1917192a"'7l9n—17wk_v;§)>_>1 or
ke, p
—2@( 191’1927"'71971—17‘4)/(_1);@))_}0’ and
k), p
z ( 191»192»~~~77~9nlvwk_v;C)>_>0
&, p ’

as k — oo,

Proof. Suppose that wy b Let o e (0,1) be given. Then for { > 0 there is a

number ny € N such that w € Z(v,0,{) forall k > ny. Building upon this, we arrive
at

l_i2q)(g(ﬁl,ﬁz,~~~,ﬁn—1,wk—U§C)><G or
)L"kej,, P
2@( 1-917192a"'71-9n—1awk_v;€>><G’ and
n kel, p
zq)< 1913192»~~~719n17wk_v;C)><0.
”keJ p
Hence,
i q)(g(ﬂl,l%,...,ﬁn_l,\/\/k—U;C))_)1 or
A’er‘]n p
1 q)(m(ﬁl,ﬁzru,ﬁn—l,wk—U§C)>_}0’ and
A’er‘]n p
1 R O I —V;
Ly o(#0ttiimvd)
l"kejn P

as k — co. We can easily prove the converse part of the Theorem. So, we omit de-
tails. O
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We now present the novel sequence spaces g2 M) (®) and o) (@), defined as
follows:

(L (@)

—d{wle# :38,0€(0,1):VkeN: @ (“(ﬁlﬂ%"'f%hwk?%)) <o,

@( (1917192-~-~I-)19n LWL Co)) <o

O{A (M) (d))

C/ -
A z q)</ 91,02, 0 1,Wk MC)) < l1—ocor
n p

ke,

= {wr el (@) :{neN: Z@(%ﬂ"ﬁz’ ’plw"vg)>>cand c.s

e
(81,025, 01, W —038) ) S
kezjnop( 2 >0

THEOREM 8. ¢+ (@) is a closed subset of o) (D).

Proof. Itis evident that the given space is a subspace of o) (D). We shall show
that Ef*(%)(dD) is closed, i.e., &f’l(%)(d)) = Ef*(%)(dD) where Ef*(%)(dD) denotes
the closure of E;fl(%)(cb). It is obvious that Kfl(%)(cb) C 1 (‘/m((l)) For the re-
verse inclusion, let w = {w;} € e M/")(d)). Then, Z(w,0,§)(®)N VA ( )#£0.

So,let T={1} € B(w,0, C)((I))ﬂﬁfl(%)(q)). For a specified o € (0,1), choose @ €
(0,1) suchthat (1—@)®W(l—®)>1—0 and ®®® < ©. Since, T € B(w,0,{)(D),
there exist a set ¢’ € . (.#) such that for all n € € the following inequalities are sat-
isfied.

1 g(ﬂl,ﬁz,---,ﬂn—l,wk—fk;%

— 0] >1—® and
M iS5, p

1 <191,1927 Op—1, W — Tk§%>

— O <o,

A 5, P

1 S o (19171927 Op—1, Wk — TkQ%)

— <.

A 5, p
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And, as 7 € (2 (‘Ml)(d)) ,thereisaset 7 € &

inequalities hold.

1 g(‘ﬁlv‘ﬁza"')ﬁn—l;rk_v;%)
_Zq) >1—® and
An ey p
1 9'{<19171327"'713}1717Tk_’U;%>
— ) O <o,
M (S, p
1 @(191,1927...,19n71,fk—1);%>
— 0] <.
A 55, p
Thus, for all n € € N2 we have
i Z‘D( (13171327 n 1,Wg — U5 C))
A iS5, P
1 z (‘j<ﬁlv7~92» n 1, W — Tk3c>.g<ﬁ177§27 19",1,7:]{—1);%>
/l ey P
>(l-o)E(l—-o)
>1-—o0,
iZq)(m(ﬁl7l%a"'7ﬂn—lywk_U;C)>
M i3, p
1 (19171927 n 1sWk — Tks 5 )@9{(19171927 19",1,7:]{—1);%>
<=2 @
M 55, P
<O®D
<O
and
iZq)(g(ﬁl7l92a"'7l9n—l7wk_U;C)>
nked, p
1 (19171927 n 1,Wk — Tk’é’)@@(ﬁh%» ﬁn,hfk—v;%)
<20
A (S, p
<O®D

<O.

233

(#) such that for all n € N the following
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Therefore,

ECNG
i q)<g(19171927~~719nlawk_vc)>>l_aand
M iS5, P
1 RO, D, ..., 01, W — V;

C{neN: 3 d)( (1, % L C))<G, c F(5).

" ke, P
1 ¢<@(191,l92,m,l9n—1,wk—vC)><G
M 55, P

Thus, {we} € ¢+ (®). Hence (22" (@) 2 ¢52) (@), ie., ¢+ (@) =
¢ () (®). Thus, the proof stands established. [J

Conclusion

In this paper, we have introduced and explored the innovative concepts of the
newly introduced spaces €4 (A;,), %”0”@’1 (A7) using .7 -convergence and Orlicz func-
tion within summability theory. Through a detailed examination, we have uncovered
topological properties of them including Hausdorffness. Furthermore, we introduced

the novel sequence spaces ) (@) and g A) (D), and established that ¢ ) (D)
forms a closed subset of £ (D).

Applications

Orlicz spaces £, where @ is an Orlicz function, serve as a significant generaliza-
tion of classical [, -spaces and have been extensively studied in mathematical literature
(see, e.g., [26, 47]). Equipped with appropriate norms, these spaces form Banach spaces
and provide a natural framework for extending the analysis of various function spaces.
Notably, Orlicz spaces are closely connected to Hardy-Littlewood maximal functions
and appear as subspaces in certain Sobolev spaces. Furthermore, their structural and
functional relationships with [, -spaces have been thoroughly explored in [5]. Orlicz
spaces have found wide ranging applications across several branches of mathematics,
mathematical physics, and statistics. Foundational concepts and results can be found in
[48]. In recent years, a growing number of research papers have highlighted the versa-
tility and applicability of Orlicz spaces in both pure and applied mathematical sciences.
For detailed discussions and applications, see [2, 7, 9, 23, 24]. This concept has also
been effectively utilized in summability theory to construct several novel and interest-
ing sequence spaces, particularly through the use of ideals, natural density, and multiple
sequences (see, e.g., [3, 6, 35, 49]. Research on sequence convergence in neutrosophic
n-normed linear spaces is still in its early stages. In the future, it holds great poten-
tial for the development of novel sequence spaces by incorporating Orlicz functions
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in combination with tools such as lacunary sequences, multiple sequences, ideals, and
natural density with respect to neutrosophic n-norm.
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