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ON THE CONVERGENCE OF DOUBLE VILENKIN SERIES

JIGNESHKUMAR BACHUBHAI SHINGOD ∗ AND BHIKHA LILA GHODADRA

Abstract. In this paper, we proved regular convergence and convergence in Lr -norm (0 < r < 1)
of double orthogonal series with respect to any multiplicative (bounded Vilenkin) systems with
coefficients of generalized bounded variation.

1. Introduction

We will study the convergence behavior of the double Vilenkin series of the form

∞

∑
j=0

∞

∑
k=0

c jkχ j(x)χk(y) (1)

where {c jk}∞
i, j=0 is a sequence of real (or complex) numbers and {χi(x)χ j(y)}∞

i, j=0 is
the Vilenkin orthonormal system. For that, first we present introductory material for
multiplicative (bounded Vilenkin) systems as follows. Let P = {p j}∞

j=1 be a sequence
of natural numbers such that 2 � p j � B for all j ∈ N and Z(p j) = {0,1, . . . , p j −1} .
If m0 = 1, mj = p1 · · · p j for j ∈ N , then every x ∈ [0,1) admits a representation of
the form

x =
∞

∑
j=1

x jm
−1
j , x j ∈ Z(p j). (2)

It is uniquely defined if for number of the type x = k
mn

, 0 < k < mn , k,n ∈ Z+ :=
{0,1,2,3, . . .} , we choose representations, where only a finite number of x j �= 0. Let
G(P) be the group of sequences x = (x1,x2, . . . ,xn, . . .) , x j ∈ Z(p j) with the operation
x ⊕ y = z , where z j = x j + y j (mod p j ), j ∈ N . In a similar way, we can define the
inverse operation x � y = z . That is, x � y = w , where

wj = x j − y j (mod p j) =

{
x j − y j, x j � y j,

p j + x j − y j, x j < y j.

Every k ∈ Z+ can be uniquely represented in the form

k =
∞

∑
j=1

k jmj−1, k j ∈ Z(p j), (3)
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where the sum is finite. If n,k ∈ Z+ are represented in the form (3), then we define n⊕
k := l = ∑∞

j=1 l jm j−1 , where l j = n j + k j (mod p j ). We also define n� k analogously.
That is, n� k = s , where

s j = n j − k j (mod p j) =

{
n j − k j, n j � k j,

p j +n j − k j, n j < k j.

For x ∈ [0,1) , written in the form (2), and k ∈ Z+ of the form (3) we put, by definition,

χk(x) = exp

(
2π i

∞

∑
j=1

x jk j

p j

)
.

The system {χk(x)}∞
k=0 is said to be multiplicative; this fact is connected with the

following properties (for the proofs see [4, p. 30]):

(1) χm(x)χn(x) = χm⊕n(x) for all m,n ∈ Z+ , x ∈ [0,1) ;

(2) χn(x⊕ y) = χn(x)χn(y) for all n ∈ Z+ and for almost all y ∈ [0,1) for fixed
x ∈ [0,1) .

Analogous properties take place for χn�m(x) and χn(x� y) . That is, χm(x)χn(x) =
χm�n(x) and χn(x� y) = χn(x)χn(y) for m,n ∈ Z+ and x,y ∈ [0,1) . The system
{χk(x)}∞

k=0 is orthonormal and complete in L1[0,1) (see [4, p. 25]). Therefore, for
f ∈ L1[0,1) we can define its Fourier series and Fourier coefficients according to the
formulas

∞

∑
j=0

f̂ ( j)χ j(x), f̂ ( j) =
∫ 1

0
f (x)χ j(x)dx, j ∈ Z+. (4)

The k -th Fourier partial sum of the series (4) is defined as

Sk( f )(x) =
k

∑
j=0

f̂ ( j)χ j(x), k ∈ N. (5)

For more details about the system {χk(x)}∞
k=0 see [4, Section 1.5]. As usual, the

space Lr[0,1) , 1 � r < ∞ , is equipped with the norm ‖ f‖r =
(∫ 1

0 | f (t)|r dt
) 1

r
.

The sum ∑n−1
k=0 χk(x) := Dn(x) is called the n th Dirichlet kernel, and the sum

1
n ∑n

k=1 Dk(x) := Fn(x) is called the n th Fejér kernel with respect to the multiplica-
tive system {χk(x)} . For all k ∈ N and x ∈ (0,1) , it is well-known (see [1, Chap. 4,
Sec. 3] and [10, Lemma 4] or [6]) that

|Dk(x)| � B
x
, (6)

|kFk(x)| � C
x2 , (7)
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where N is such that pi � B for all i ∈ N , and C .
The system {χi(x)χ j(y)}∞

i, j=0 is orthonormal and complete in L[0,1)2 , which al-

lows to define for f ∈ L[0,1)2 the Fourier coefficients

f̂ (i, j) =
∫ 1

0

∫ 1

0
f (x,y)χi(x)χ j(y)dxdy, i, j ∈ Z+, (8)

and the partial Fourier sums

smn( f ;x,y) =
m−1

∑
i=0

n−1

∑
j=0

f̂ (i, j)χi(x)χ j(x), m,n ∈ N. (9)

The space Lr[0,1)2 is equipped with the norm

‖ f‖r =
(∫ 1

0

∫ 1

0
| f (x,y)|r dxdy

)1/r

.

For m,n � 0, the rectangular partial sums of series (1) is defined as

Smn(x,y) =
m

∑
j=0

n

∑
k=0

c jkχ j(x)χk(y).

Following Hardy [5], series (1) is said to be regular convergent if it converges
in Pringsheim’s sense (see, e.g. [11, Vol. 2, Ch. 17]), and, in addition, each “row
series” of (1) (i.e., when we delete ∑∞

k=0 in (1) and the summation is done only with
respect to j for each k ) as well as each “column series” converges in the ordinary
sense of convergence of single series. F. Móricz [9] rediscovered the notion of regular
convergence by the following equivalent condition: the sum

S(R;x,y) =
M

∑
j=m

N

∑
k=n

c jkχ j(x)χk(y) (10)

tends to zero as max(m,n)→ ∞ , independently of the choices of M(� m) and N(� n) ,
where R = {( j,k) : m � j � M and n � k � N} .

DEFINITION 1. A double sequence {c jk}∞
i, j=0 of complex numbers is called a null

sequence if it satisfies

c jk = o(1) as max{ j,k} → ∞. (11)

For positive integers p and q , the finite order differences Δpqc jk are defined by

Δ00c jk = c jk;

Δpqc jk = Δp−1,qc jk −Δp−1,qc j+1,k (p � 1);
Δpqc jk = Δp,q−1c jk −Δp,q−1c j,k+1 (q � 1).
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DEFINITION 2. A double null sequence {c jk}∞
i, j=0 is said to be of bounded vari-

ation if
∞

∑
j=0

∞

∑
k=0

|Δ11c jk| < ∞. (12)

DEFINITION 3. A double sequence {c jk}∞
i, j=0 is said to be of bounded variation

of order p � 2, if the following three conditions are satisfied:

lim
k→∞

∞

∑
j=0

|Δp0c jk| = 0, (13)

lim
j→∞

∞

∑
k=0

|Δ0pc jk| = 0, (14)

and
∞

∑
j=0

∞

∑
k=0

|Δppc jk| < ∞. (15)

Some authors (see, e.g., [2], [7]) call conditions (13)–(15) as conditions of bounded
variation of order (p,0) , (0, p) , and (p, p) , respectively.

If a double sequence {c jk}∞
i, j=0 is of bounded variation of order p , then it is of

bounded variation of order q (p � q) . But the converse is not true in general, that is,
there is a double sequence which is of bounded variation of order 2, but not of bounded
variation (see, e.g., [3]).

2. Results

Our first main result is an analogue of a result of Móricz [8, Theorem], for any
multiplicative orthogonal series.

THEOREM 1. Let a double sequence {c jk}∞
i, j=0 satisfies the conditions (11) and

(12). Then the series (1)

(i) converges regularly to some function f (x,y) for all x,y ∈ (0,1);

(ii) converges in the Lr(0,1)2 -metric to f for all 0 < r < 1 .

If we take p j = 2 for each j ∈N , the Vilenkin system reduces to the Walsh system,
so Móricz’s result [9, Theorem 1] follows from our Theorem 1. Our second result is an
analogue of a result of Móricz [9, Theorem 2], for any multiplicative orthogonal series.

THEOREM 2. Let a double sequence {c jk}∞
i, j=0 satisfies the condition (11) and

for p = 2 , (15),

∞

∑
j=0

|Δ20c jk| is finite for each k and tends to 0 as k → ∞, (16)
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and

∞

∑
k=0

|Δ02c jk| is finite for each j and tends to 0 as j → ∞. (17)

Then the series (1)

(i) converges regularly to some function f (x,y) for all x,y ∈ (0,1);

(ii) converges in the Lr(0,1)2 -metric to f for all 0 < r < 1/2 .

3. Proofs

For proving our results, we need the following lemmas.

LEMMA 1. [9, Lemma 1] If {c jk}∞
i, j=0 satisfies the condition (11) and for p,q �

1 ,

Cpq =
∞

∑
j=0

∞

∑
k=0

|Δpqc jk| < ∞ (18)

then

∞

∑
j=0

|Δp,q−1c jk| � Cpq (k = 0,1,2, . . .),

∞

∑
j=0

|Δp,q−1c jk| → 0 as k → ∞,

sup
k

∞

∑
j=m

|Δp,q−1c jk| → 0 as m → ∞.

Analogous statements hold true for Δp−1,qc jk under the same conditions (11) and (18)
if the roles of j and k are interchanged.

LEMMA 2. [9, Lemma 2] Let {a jk}∞
i, j=0 and {b jk}∞

i, j=0 be two double sequences
of numbers and Bmn = ∑m

j=0 ∑n
k=0 b jk (m,n = 0,1, . . .) be the rectangular partial sums

of {b jk} . Then, for all 0 � m � M and 0 � n � N ,

M

∑
j=m

N

∑
k=n

b jka jk =
M

∑
j=m

N

∑
k=n

B jkΔ11a jk +
M

∑
j=m

BjNΔ10a j,N+1−
M

∑
j=m

Bj,n−1Δ10a jn

+
N

∑
k=n

BMkΔ01aM+1,k −
N

∑
k=n

Bm−1,kΔ01amk +BMNaM+1,N+1

−BM,n−1aM+1,n−Bm−1,Nam,N+1 +Bm−1,n−1amn.
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LEMMA 3. [9, Lemma 3] If {c jk} satisfies the condition (11), then for all m,n �
0 ,

∑
Rmn

b jka jk = ∑
Rmn

B jkΔ11a jk −
m

∑
j=0

BjnΔ10a j,n+1

−
n

∑
k=0

BmkΔ01am+1,k −Bmnam+1,n+1,

where Rmn = {( j,k) ∈ Z+ ×Z+ : either j � m+ 1 or k � n+ 1} and ∑
Rmn

stands for

∑
( j,k)

∑
∈Rmn

.

Proof of Theorem 1. Proof of (i). Let 0 � m � M and 0 � n � N . By using the
notation (10) and Lemma 2, we have

S(R;x,y)

=
M

∑
j=m

N

∑
k=n

Dj(x)Dk(y)Δ11c jk +
M

∑
j=m

Dj(x)DN(y)Δ10c j,N+1 −
M

∑
j=m

Dj(x)Dn−1(y)Δ10c jn

+
N

∑
k=n

DM(x)Dk(y)Δ01cM+1,k −
N

∑
k=n

Dm−1(x)Dk(y)Δ01cmk + cM+1,N+1DM(x)DN(y)

− cM+1,nDM(x)Dn−1(y)− cm,N+1Dm−1(x)DN(y)+ cmnDm−1(x)Dn−1(y). (19)

By using (6), for x,y ∈ (0,1) , we get

B−2xy |S(R;x,y)| �
M

∑
j=m

N

∑
k=n

|Δ11c jk|+
M

∑
j=m

|Δ10c j,+1N |+
M

∑
j=m

|Δ10c jn|

+
N

∑
k=n

|Δ01cM+1,k|+
N

∑
k=n

|Δ01cmk|+ |cM+1,N+1|

+ |cM+1,n|+ |cm,N+1|+ |cmn|.
Since {c jk}∞

i, j=0 satisfies conditions (11) and (15), making use of Lemma 1 (with p =
q = 1) we can see that each term on the right-hand side tends to zero as max(m,n)→∞ .
Thus, the series (1) converges to the some function f (x,y) for all x,y ∈ (0,1) .

Proof of (ii). From (i) above the series (1) converges pointwise to the function f ,
that is,

f (x,y) =
∞

∑
j=0

∞

∑
k=0

c jkχ j(x)χk(y),

for all x,y ∈ (0,1) . Therefore

f (x,y)−Smn(x,y) = ∑
Rmn

c jkχ j(x)χk(y).
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By Lemma 3,

∑
Rmn

c jkχ j(x)χk(y) = ∑
Rmn

Dj(x)Dk(y)Δ11c jk −
m

∑
j=0

Dj(x)Dn(y)Δ10c j,n+1

−
n

∑
k=0

Dm(x)Dk(y)Δ01cm+1,k −Dm(x)Dn(y)cm+1,n+1. (20)

By using (6), for all x,y ∈ (0,1) , we get

B−2xy| f (x,y)−Smn(x,y)|

� ∑
Rmn

|Δ11c jk|+
m

∑
j=0

|Δ10c j,n+1|+
n

∑
k=0

|Δ01cm+1,k|+ |cm+1,n+1|.

The right-hand side is of o(1) as max(m,n) → ∞ due to (15) (for p = 1), Lemma 1,
and (11). Now, for x,y ∈ (0,1) and 0 < r < 1, we have

| f (x,y)−Smn(x,y)|r � {o(1)}r
{

B2

xy

}r

.

Therefore
∫ 1

0

∫ 1

0
| f (x,y)−Smn(x,y)|rdxdy � o(1)B2r

∫ 1

0

∫ 1

0

dxdy
xryr

= o(1)B2r 1
(1− r)2 .

Hence || f −Smn||r → 0 as max(m,n) → ∞ . This completes the proof. �

Proof of Theorem 2. Proof of (i). Performing one more summation by parts on the
right-hand side double sum of (19) and using the definition of Fejér kernel, we get

M

∑
j=m

N

∑
k=n

Dj(x)Dk(y)Δ11c jk

=
M

∑
j=m

N

∑
k=n

jFj(x)kFk(y)Δ22c jk +
M

∑
j=m

jFj(x)NFN(y)Δ21c j,N+1

−
M

∑
j=m

jFj(x)(n−1)Fn−1(y)Δ21c jn +
N

∑
k=n

MFM(x)kFk(y)Δ12cM+1,k

−
N

∑
k=n

(m−1)Fm−1(x)kFk(y)Δ12cmk + Δ11cM+1,N+1MFM(x)NFN(y)

−Δ11cM+1,nMFM(x)(n−1)Fn−1(y)−Δ11cm,N+1(m−1)Fm−1NFN(y)
+ Δ11cmn(m−1)Fm−1(x)(n−1)Fn−1(y).
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Using (7), for x,y ∈ (0,1) , we have

(C1C2)−1x2y2

∣∣∣∣∣
M

∑
j=m

N

∑
k=n

Dj(x)Dk(y)Δ11c jk

∣∣∣∣∣
�

M

∑
j=m

N

∑
k=n

∣∣Δ22c jk
∣∣+ M

∑
j=m

∣∣Δ21c j,N+1
∣∣+ M

∑
j=m

∣∣Δ21c jn
∣∣+ N

∑
k=n

∣∣Δ12cM+1,k
∣∣

+
N

∑
k=n

|Δ12cmk|+ |Δ11cM+1,N+1|+ |Δ11cM+1,n|+ |Δ11cm,N+1|+ |Δ11cmn| .

By virtue of (15), Lemma 1 (with p = q = 2), and (11), respectively, the right-hand
side tends to zero as max(m,n) → ∞ .

Now, we claim that each of the four single sums on the right-hand side of (19)
tends to zero as max(m,n) → ∞ , for all (x,y) ∈ (0,1) . We show that in the case of the
first single sum. All three other single sums can be estimated analogously. Performing
summation by parts

M

∑
j=m

Dj(x)DN(y)Δ10c j,N+1

=
M

∑
j=m

jFj(x)DN(y)Δ20c j,N+1 +MFM(x)DN(y)Δ10cM,N+1

− (m−1)Fm−1(x)DN(y)Δ10cm,N+1. (21)

Using (6) and (7), we have

(CB)−1x2y

∣∣∣∣∣
M

∑
j=m

Dj(x)DN(y)Δ10c j,N+1

∣∣∣∣∣
�

M

∑
j=m

∣∣Δ20c j,N+1
∣∣+ |cM,N+1|+ |Δ10cm,N+1| .

By using of (16) and (11), the right-hand side tends to zero as max(m,n)→ ∞ . Finally,
the last four terms on the right-hand side of (19) also tend to zero as max(m,n)→ ∞ , by
using (6) and (11). Combining all estimates, we have S(R;x,y)→ 0 as max(m,n)→∞ ,
for (x,y) ∈ (0,1) . Hence, the series (1) converges regularly to some function f (x,y) ,
for (x,y) ∈ (0,1) .

Proof of (ii). Here, we start with (20). By applying Lemma 3 on the first sum on
the right-hand side of (20) and using the definition of Fejér kernel, we get

∑
Rmn

Dj(x)Dk(y)Δ11c jk = ∑
Rmn

jFj(x)kFk(y)Δ22c jk −
m

∑
j=0

jFj(x)nFn(y)Δ21c j,n+1

−
n

∑
k=0

mFm(x)kFk(y)Δ12cm+1,k −mFm(x)nFn(y)Δ11cm+1,n+1.
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By using (7), for all x,y ∈ (0,1) , we have

x2y2

C1C2

∣∣∣∣∣∑Rmn

Dj(x)Dk(y)Δ11c jk

∣∣∣∣∣� ∑
Rmn

∣∣Δ22c jk

∣∣+ m

∑
j=0

∣∣Δ21c j,n+1
∣∣+ n

∑
k=0

∣∣Δ12cm+1,k

∣∣
+ |Δ11cm+1,n+1| .

Due to (15) (for p = 2), Lemma 1, and (11), the right-hand side of the above inequality
is of o(1) as max(m,n) → ∞ . Therefore, for x,y ∈ (0,1) and 0 < r < 1/2, we have

∫ 1

0

∫ 1

0

∣∣∣∣∣∑Rmn

Dj(x)Dk(y)Δ11c jk

∣∣∣∣∣
r

dxdy � (o(1))r{C1C2}r
∫ 1

0

∫ 1

0

1
x2ry2r dxdy

=
(C1C2)r

(1−2r)2 o(1). (22)

Similar to (21), a single summation by parts on the second single sum on the right-hand
side of (20) and using the definition of Fejér kernel, we get

m

∑
j=0

Dj(x)Dn(y)Δ10c j,n+1 =
m

∑
j=0

jFj(x)Dn(y)Δ20c j,n+1 +mFm(x)Dn(y)Δ10cm,n+1.

By using (6) and (7), for x,y ∈ (0,1) , we have

x2y
C1B

∣∣∣∣∣
m

∑
j=0

Dj(x)Dn(y)Δ10c j,n+1

∣∣∣∣∣�
m

∑
j=0

∣∣Δ20c j,n+1
∣∣+ |Δ10cm,n+1| .

The right-hand side is of o(1) as max(m,n) → ∞ due to (16) (for p = 2) and (11).
Therefore, for x,y ∈ (0,1) and 0 < r < 1/2, we have

∫ 1

0

∫ 1

0

∣∣∣∣∣
m

∑
j=0

Dj(x)Dn(y)Δ10c j,n+1

∣∣∣∣∣
r

dxdy � (o(1))r{C1B}r
∫ 1

0

∫ 1

0

1
x2ryr dxdy

=
(C1B)r

(1− r)(1−2r)
o(1). (23)

Similarly, we can estimate the third single sum of the right-hand side of (20) by

∫ 1

0

∫ 1

0

∣∣∣∣∣
m

∑
j=0

Dm(x)Dk(y)Δ01cm+1,k

∣∣∣∣∣
r

dxdy � (o(1))r{BC2}r
∫ 1

0

∫ 1

0

1
xry2r dxdy

=
(BC2)r

(1−2r)(1− r)
o(1). (24)

For the last term on the right-hand side of (20), using (11), we have∫ 1

0

∫ 1

0
|Dm(x)Dn(y)cm+1,n+1|r dxdy � (o(1))rB2r

∫ 1

0

∫ 1

0

1
xy

dxdy

=
B2r

(1− r)2 o(1). (25)
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Note that for 0 < r < 1/2, (a+b)r � ar +br for all a,b � 0. By using all the estimates
(22)–(25) in (20), as max(m,n) → ∞ we have

∫ 1

0

∫ 1

0

∣∣∣∣∣∑Rmn

c jkχ j(x)χk(y)

∣∣∣∣∣
r

dxdy = o(1).

Therefore, || f − Smn||r → 0 as max(m,n) → ∞ for 0 < r < 1/2. That is, the series
(1) converges in the Lr(0,1)2 -metric to f for all 0 < r < 1/2. This completes the
proof. �
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