

UNIVERSAL MEANS

GHEORGHE TOADER

(communicated by A. Čižmešija)

Abstract. A mean U is called universal if there exists a constant p such that every mean M be comparable with pU. Some known examples of means are analyzed, establishing which of them are universal.

1. Means

As an abstract definition of means (on \mathbb{R}_+), usually is given the following

DEFINITION 1. A *mean* is a function $M: \mathbb{R}^2_+ \to \mathbb{R}_+$, which has the property

$$\wedge (a,b) \leqslant M(a,b) \leqslant \vee (a,b), \ \forall a,b > 0$$

where

$$\wedge (a,b) = \min(a,b), \quad \forall (a,b) = \max(a,b), \quad \forall a,b > 0.$$

The mean M is called symmetric if

$$M(a, b) = M(b, a), \forall a, b > 0.$$

Each mean is reflexive that is

$$M(a,a) = a, \forall a > 0,$$

which is taken as definition, if it is necessary.

We use ordinary operations with means (as functions) and order relation between means. For instance, given the means M and N and the real numbers p and q, define pM + qN by

$$(pM + qN)(a, b) = pM(a, b) + qN(a, b), \forall a, b > 0$$

and write $pM \leqslant qN$ if

$$pM(a,b) \leqslant qN(a,b), \ \forall a,b>0.$$

Of course, \wedge and \vee are means. We use also the following means (most of them were studied in [1]):

Key words and phrases: Gini means, Stolarsky means, Muirhead means, Greek means, universal means.

Mathematics subject classification (2000): 26E60.

— the weighted Gini mean defined by

$$\mathcal{B}_{r,s;\lambda}(a,b) = \left[\frac{\lambda a^r + (1-\lambda)b^r}{\lambda a^s + (1-\lambda)b^s}\right]^{\frac{1}{r-s}}, \ r \neq s$$

and

$$\mathcal{B}_{r,r;\lambda}(a,b) = \exp\left[\frac{\lambda a^r \log a + (1-\lambda) b^r \log b}{\lambda a^r + (1-\lambda) b^r}\right],$$

with $\lambda \in (0,1)$ fixed;

- the special case $\mathcal{B}_{r,0;\lambda} = \mathcal{P}_{r;\lambda}$ called *weighted power mean*;
- another special case, $\mathcal{B}_{r,r-1;\lambda} = \mathcal{C}_{r;\lambda}$ represents the weighted Lehmer mean;
- the weighted Muirhead mean

$$S_{r,s;\lambda}(a,b) = \left[\lambda a^r b^s + (1-\lambda)b^r a^s\right]^{\frac{1}{r+s}}, rs > 0, \lambda \in (0,1);$$

- for $\lambda = 1/2$ we get symmetric means which we denote by $\mathcal{B}_{r,s}$, \mathcal{P}_r , \mathcal{C}_r respectively $\mathcal{S}_{r,s}$;
 - the Stolarsky mean given by

$$\mathcal{E}_{r,s}(a,b) = \left(\frac{s}{r}\frac{b^r - a^r}{b^s - a^s}\right)^{\frac{1}{r-s}}, rs(r-s) \neq 0;$$

— the generalized logarithmic mean

$$\mathcal{L}_r(a,b) = \mathcal{E}_{r,0}(a,b) = \left(\frac{b^r - a^r}{r(\log b - \log a)}\right)^{\frac{1}{r}}, r \neq 0,$$

with the special case of *logarithmic mean* $\mathcal{L} = \mathcal{L}_1$;

— the generalized identric mean

$$\mathcal{I}_r(a,b) = \mathcal{E}_{r,r}(a,b) = rac{1}{e^{1/r}} \left(rac{b^{b^r}}{a^{a^r}}
ight)^{1/(b^r-a^r)}, r
eq 0$$

and its special case of *identric mean* $\mathcal{I} = \mathcal{I}_1$;

— the geometric mean

$$G(a,b) = \mathcal{E}_{0,0}(a,b) = \sqrt{ab}$$
:

— an exponential type mean (defined in [3])

$$T(a,b) = \frac{ae^a - be^b}{e^a - e^b} - 1;$$

— the *Greek means* defined by the Pythagorean school: the arithmetic mean $\mathcal{A} = \mathcal{P}_1$, the geometric mean \mathcal{G} , the harmonic mean $\mathcal{H} = \mathcal{P}_{-1}$, the contraharmonic

mean $C = C_2$, and six unnamed means F_i , (i = 5, ..., 10), given by the following expressions (see [4] for more details):

$$\begin{split} \mathcal{F}_5 &= \frac{\vee - \wedge + \sqrt{(\vee - \wedge)^2 + 4 \wedge^2}}{2}; & \qquad \mathcal{F}_6 &= \frac{\wedge - \vee + \sqrt{(\vee - \wedge)^2 + 4 \vee^2}}{2}; \\ \mathcal{F}_7 &= \frac{\vee^2 - \vee \wedge + \wedge^2}{\vee}; & \qquad \mathcal{F}_8 &= \frac{\vee^2}{2 \vee - \wedge}; \\ \mathcal{F}_9 &= \frac{\wedge(2 \vee - \wedge)}{\vee}; & \qquad \mathcal{F}_{10} &= \frac{\wedge + \sqrt{\wedge(4 \vee - 3 \wedge)}}{2}. \end{split}$$

2. Upper universal means

Let us introduce the following

DEFINITION 2. A mean U is called *upper universal* if there exists a constant p>0 such that

$$p \lor \leqslant U \leqslant \lor$$
.

REMARK 3. Of course U is an upper universal mean if and only if the inequality

$$M \leqslant \frac{1}{p}U$$

holds for every mean M.

THEOREM 4. The following means are upper universal: i) $\mathcal{B}_{r,s;\lambda}$ for r > s > 0; ii) $\mathcal{B}_{r,r;\lambda}$ for r > 0; iii) $\mathcal{C}_{r;\lambda}$ for r > 1; iv) $\mathcal{P}_{r;\lambda}$ for r > 0; v) $\mathcal{E}_{r,s}$ for r > 0; vi) \mathcal{F}_{5} ; vii) \mathcal{F}_{6} ; viii) \mathcal{F}_{7} ; ix) \mathcal{F}_{8} .

Proof. i) If a > b then $\mathcal{B}_{r,s,\lambda}(a,b) \geqslant \lambda^{\frac{1}{r-s}}a$. Indeed, for r > s this is equivalent with the condition

$$\lambda (1 - \lambda) a^r \geqslant (1 - \lambda) b^s (\lambda a^{r-s} - b^{r-s}).$$

But this is true as

$$\lambda a^r \geqslant \lambda a^{r-s} b^s \geqslant b^s (\lambda a^{r-s} - b^{r-s}), \text{ for } s > 0.$$

If a < b then $\mathcal{B}_{r,s;\lambda}(a,b) \geqslant (1-\lambda)^{\frac{1}{r-s}}b$ which is equivalent with the condition

$$\lambda (1 - \lambda) b^r \geqslant \lambda a^s \left[(1 - \lambda) b^{r-s} - a^{r-s} \right],$$

or, for s > 0,

$$(1-\lambda)b^r \geqslant (1-\lambda)b^{r-s}a^s \geqslant a^s \left[(1-\lambda)b^{r-s}-a^{r-s}\right].$$

Thus $\mathcal{B}_{r,s;\lambda}$ is an upper universal mean.

ii) If a > b then $\mathcal{B}_{r,r,\lambda}(a,b) \geqslant pa$ holds if and only if

$$(1-\lambda)b^r(\ln b - \ln a) \geqslant \ln p \cdot [\lambda a^r + (1-\lambda)b^r].$$

Denoting $(a/b)^r = t > 1$, we get the condition

$$f(t) = \frac{\ln t}{\lambda t + 1 - \lambda} \leqslant \frac{r}{1 - \lambda} \ln \frac{1}{p}.$$

But $f(t) \le m$, for t > 1, so that we can choose $p = \exp(-(1 - \lambda) \cdot m/r)$. Similar computations can be done for a < b.

- iii) It is a simple consequence of i) for s = r 1.
- *iv*) Is not a consequence of *i*) because s = 0, but it can be done on the same way.
- v) It is easy to verify that $\mathcal{E}_{r,s} \geqslant \left(\frac{s}{r}\right)^{\frac{1}{r-s}} \vee$.
- vi) The inequality $\mathcal{F}_5\geqslant p\vee$ is equivalent with the condition $\wedge^2-p\vee\wedge+(p-p^2)\vee^2\geqslant 0$. This holds for $p\leqslant 4/5$.
 - *vii*) Similarly, $\mathcal{F}_6 \geqslant p \lor$ if $(p^2 + p 1) \lor \leqslant p \land$ thus $p \leqslant (\sqrt{5} 1)/2$.
 - *viii*) $\mathcal{F}_7 \geqslant p \lor \text{ if } (1-p) \lor^2 \lor \land + \land^2 \geqslant 0, \text{ hence } p \leqslant 3/4.$
 - ix) $\mathcal{F}_8 \geqslant p \vee \text{ if } (1-2p) \vee +p \wedge \geqslant 0, \text{ thus } p \leqslant 1/2. \quad \Box$

REMARK 5. If $U \geqslant p \lor$, then $U \geqslant p' \lor$ for every p' < p, thus it can be interesting to determine the greatest value of p with the given property. The value given before for p is not the best in the case of $\mathcal{C}_{r;\lambda}$. For instance,

$$C \geqslant p \lor \text{ if } (1-p) \lor^2 -p \lor \land + \land^2 \geqslant 0,$$

thus the best value of p is $2(\sqrt{2}-1)$ not 1/2.

We can prove also general results of following types.

THEOREM 6. If $f: \mathbb{R}_+ \to \mathbb{R}$ is a bijective function and f^{-1} is concave then the quasi arithmetic mean $\mathcal{A}_{f;\lambda}$ defined by

$$\mathcal{A}_{f:\lambda}(a,b) = f^{-1}(\lambda f(a) + (1-\lambda)f(b))$$

is upper universal.

Proof. As f^{-1} is concave then

$$f^{-1}(\lambda f(a) + (1 - \lambda)f(b)) \geqslant \lambda f^{-1} \circ f(a) + (1 - \lambda)f^{-1} \circ f(b) = \lambda a + (1 - \lambda)b,$$

thus $A_{f:\lambda} \ge p \lor$, where $p = \min(\lambda, 1 - \lambda)$. \square

EXAMPLE 7. Take $f = \exp$.

THEOREM 8. If $f: \mathbb{R}_+ \to \mathbb{R}$ is an increasing convex function, then

$$\mathcal{M}_f(a,b) = f^{-1}\left(\frac{1}{b-a}\int_a^b f(x)dx\right), \forall a,b > 0,$$

defines an upper universal mean \mathcal{M}_f .

Proof. The Hadamard inequality for the convex function f gives

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \geqslant f\left(\frac{a+b}{2}\right), \forall a, b > 0.$$

As f is increasing, we get $\mathcal{M}_f(a,b) \ge (a+b)/2$ thus $\mathcal{M}_f \ge \vee/2$. \square

EXAMPLE 9. Take again $f = \exp$.

3. Lower universal means

DEFINITION 10. A mean U is called *lower universal* if there exists a constant p such that

$$\wedge \leqslant U \leqslant p \wedge .$$

REMARK 11. The mean U is lower universal if and only if the inequality

$$M \geqslant \frac{1}{p}U$$

holds for every mean M.

THEOREM 12. The following means are lower universal: i) $\mathcal{B}_{r,s;\lambda}$ for r < s < 0; ii) $\mathcal{B}_{r,r;\lambda}$ for r < 0; iii) $\mathcal{P}_{r;\lambda}$ for r < 0; iv) \mathcal{F}_{9} .

Proof. i) If a > b then $\mathcal{B}_{r,s;\lambda}(a,b) \leq (1-\lambda)^{\frac{1}{r-s}} b$. Indeed, for r < s this is equivalent with the condition

$$\lambda (1 - \lambda) b^r \geqslant \lambda a^s \left[(1 - \lambda) b^{r-s} - a^{r-s} \right].$$

But this is true because

$$(1-\lambda)b^r\geqslant (1-\lambda)b^{r-s}a^s\geqslant a^s\left[(1-\lambda)b^{r-s}-a^{r-s}\right], \text{ for } s<0.$$

If a < b we have $\mathcal{B}_{r,s;\lambda}(a,b) \leqslant \lambda^{\frac{1}{r-s}}a$ which is equivalent with the condition

$$\lambda (1 - \lambda) a^r \geqslant (1 - \lambda) b^s (\lambda a^{r-s} - b^{r-s}),$$

or

$$\lambda a^r \geqslant \lambda a^{r-s} b^s \geqslant b^s (\lambda a^{r-s} - b^{r-s})$$
, for $s < 0$.

Thus
$$\mathcal{B}_{r,s;\lambda} \leqslant p \wedge$$
, for $p = \max \left\{ \lambda^{\frac{1}{r-s}}, (1-\lambda)^{\frac{1}{r-s}} \right\}$.

ii) If a > b then $\mathcal{B}_{r,r;\lambda}(a,b) \geqslant pa$ holds if and only if

$$\lambda a^r (\ln a - \ln b) \leq \ln p \cdot [\lambda a^r + (1 - \lambda) b^r].$$

Denoting $(b/a)^r = t > 1$, we get the condition

$$f(t) = \frac{\ln t}{\lambda t + (1 - \lambda)t} \leqslant \frac{r}{\lambda} \ln \frac{1}{p}.$$

But $f(t) \le m$, for t > 1, so that we can choose $p = \exp(-\lambda \cdot m/r)$. Similar computations can be done for a < b.

- $\begin{array}{ll} \emph{iii)} \ \ \text{If} \ \ a > b \ \ \text{then} \ \ \mathcal{P}_{r;\lambda}(a,b) \leqslant (1-\lambda)^{1/r} \, b, \ \ \text{while for} \ \ a < b \ \ \text{the inequality} \\ \mathcal{P}_{r;\lambda}(a,b) \leqslant \lambda^{1/r} a \ \ \text{is valid. Thus} \ \ \mathcal{C}_{r;\lambda} \leqslant p \wedge, \ \text{for} \ \ p = \max \left\{ \lambda^{\frac{1}{r}}, (1-\lambda)^{\frac{1}{r}} \right\}. \end{array}$
 - iv) We have $\mathcal{F}_9 \leqslant p \land$ if and only if $(2-p) \lor \leqslant \land$ thus p=2. \Box

4. Universal means

DEFINITION 13. A mean U is called *universal* if it is upper universal or lower universal.

REMARK 14. If U is an universal mean then there exists a constant p such that each mean is comparable with pU.

THEOREM 15. The following means are not universal: i) the Gini mean $\mathcal{B}_{r,s;\lambda}$ for s < 0 < r; ii) the logarithmic mean \mathcal{L}_r , $r \neq 0$; iii) the Muirhead mean $\mathcal{S}_{r,s;\lambda}$; iv) the geometric mean \mathcal{G} ; v) the Greek mean \mathcal{F}_{10} .

Proof. In the first four cases, we consider the functions:

i)

$$\frac{\mathcal{B}_{r,s;\lambda}(1,x)}{x} = \left[\frac{\lambda x^{-r} + 1 - \lambda}{\lambda x^{-s} + 1 - \lambda}\right]^{\frac{1}{r-s}},$$

ii)

$$\frac{\mathcal{L}_{r;\lambda}(1,x)}{x} = \left(\frac{x^r - 1}{r \cdot x^r \cdot \ln x}\right)^{\frac{1}{r}},$$

iii)

$$\frac{\mathcal{S}_{r,s;\lambda}(1,x)}{x} = \left[\lambda x^{-r} + (1-\lambda)x^{-s}\right]^{\frac{1}{r+s}},\,$$

respectively

iv)

$$\frac{G(1,x)}{x} = \frac{1}{\sqrt{x}}.$$

Each of them tends to 0 for $x \to \infty$ and to ∞ for $x \to 0$. In the case v), we have

$$\frac{\mathcal{F}_{10}}{\vee} = \frac{1}{2} \left[\frac{\wedge}{\vee} + \sqrt{\frac{\wedge}{\vee} \left(4 - 3 \frac{\wedge}{\vee} \right)} \right],$$

which tends to 0 if $\vee \to \infty$ and $\wedge = 1$. Also

$$\frac{\mathcal{F}_{10}}{\wedge} = \frac{1}{2} \left(1 + \sqrt{4 \frac{\vee}{\wedge} - 3} \right),$$

which tends to ∞ if $\wedge \to 0$ and $\vee = 1$. In each case, the first limit proves that the corresponding mean is not upper universal, while the second limit proves that the mean is not lower universal. \square

REMARK 16. As $\mathcal{B}_{s,r;\lambda} = \mathcal{B}_{r,s;\lambda}$, we can decide about the universality property of each Gini mean using one of the previous results.

REMARK 17. If U is an upper (lower) universal mean and $W \geqslant qU$ (respectively $W \leqslant qU$), then W is also an upper (respectively lower) universal mean.

EXAMPLE 18. The following inequalities

$$\mathcal{H}<\mathcal{G}<\mathcal{L}<\mathcal{P}_{1/3}<\mathcal{I}<\mathcal{A},$$

are well known (see for instance [1]). They imply that the identric mean \mathcal{I} is upper universal.

REMARK 19. In the previous sequence of inequalities the first mean \mathcal{H} is lower universal, then \mathcal{G} and \mathcal{L} are not universal, while the last means are upper universal. In fact this order cannot be changed. Moreover, if U is a lower universal mean, W is an upper universal mean and Z is a non universal mean, then there exist the positive numbers p and q such that

$$pU \leqslant Z \leqslant qW$$
.

REMARK 20. It is not easy to prove directly that \mathcal{I} is upper universal. On the other hand, the inequality $\mathcal{I} \geqslant \frac{1}{8} \vee$, which follows from $\mathcal{P}_{1/3} < \mathcal{I}$ is not the best. For instance, in [2] is proved that $I > \frac{2}{e} \mathcal{A}$ which implies that

$$\mathcal{I} \geqslant \frac{1}{e} \vee .$$

COROLLARY 21. The identric mean I_r is upper universal for r > 0 and lower universal for r < 0.

Proof. As $\mathcal{I}_r(a,b) = \left[\mathcal{I}(a^r,b^r)\right]^{1/r}$, the inequality $\mathcal{P}_{1/3} < \mathcal{I} < \mathcal{P}_1$ becomes $\mathcal{P}_{r/3} < \mathcal{I}_r < \mathcal{P}_r$ if r > 0 and $\mathcal{P}_{r/3} > \mathcal{I}_r > \mathcal{P}_r$ if r < 0. \square

EXAMPLE 22. In [3] is proved that

giving that T is also upper universal.

REFERENCES

- [1] P. S. BULLEN, Handbook of Means and Their Inequalities, Kluwer Acad. Publ., Dordrecht, 2003.
- [2] J. SÁNDOR, On certain inequalities for means, J. Math. Anal. Appl. 189 (1995), no. 2, 602-606.
- [3] G. TOADER, An exponential mean, "Babes-Bolyai" Univ. Preprint 7 (1988), 51–54.
- [4] G. TOADER, S. TOADER, Greek means and the Arithmetic-Geometric Mean, RGMIA Monographs, Victoria University, 2005. (ON-LINE: http://rgmia.vu.edu.au/monographs).

(Received February 27, 2007)

Gheorghe Toader

Department of Mathematics
Technical University
Str. C. Daicoviciu Nr. 15
400020 Cluj-Napoca, Romania
e-mail: gheorghe . toader@math . utcluj . ro