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STABILITY OF HOMOMORPHISMS ON JB∗ –TRIPLES ASSOCIATED

TO A CAUCHY–JENSEN TYPE FUNCTIONAL EQUATION
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(communicated by M. A. Noor)

Abstract. In this paper, we investigate homomorphisms between JB∗ -triples, and derivations
on JB∗ -triples associated to the following Cauchy–Jensen type additive functional equation
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= 2[f (x) + f (y) + f (z)].

The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem
that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer.
Math. Soc. 72 (1978), 297–300.

1. Introduction

The stability problem of functional equations originated from a question of Ulam
[26] concerning the stability of group homomorphisms : Let (G1, ∗) be a group and let
(G2, �, d) be a metric group with the metric d(·, ·) . Given ε > 0 , does there exist a
δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1 , then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1?
In other words, we are looking for situations when the homomorphisms are stable,

i.e., if amapping is almost a homomorphism,then there exists a true homomorphismnear
it. In 1941, Hyers [6] considered the case of approximately additivemappings in Banach
spaces and satisfying the well-known weak Hyers inequality controlled by a positive
constant. In 1978, Th. M. Rassias [17] provided a generalization of Hyers’theorem
which allows the Cauchy difference to be unbounded.
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THEOREM 1.1. (Th. M. Rassias). Let f : E → E′ be a mapping from a normed
vector space E into a Banach space E′ subject to the inequality

‖f (x + y) − f (x) − f (y)‖ � ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E , where ε and p are constants with ε > 0 and p < 1 . Then the limit

L(x) = lim
n→∞

f (2nx)
2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

‖f (x) − L(x)‖ � 2ε

2 − 2p
‖x‖p (1.2)

for all x ∈ E . If p < 0 then inequality (1.1) holds for x, y �= 0 and (1.2) for x �= 0.
Also, if the mapping t → f (tx) is continuous in t ∈ R for each fixed x ∈ X, then L is
R -linear.

In 1990, Th. M. Rassias [18] during the 27 th International Symposium on Func-
tional Equations asked the question whether such a theorem can also be proved for
p � 1 . In 1991, Z. Gajda [4] following the same approach as in Th. M. Rassias [17],
gave an affirmative solution to this question for p > 1 . It was shown by Z. Gajda [4],
as well as by Th. M. Rassias and P. Šemrl [22] that one cannot prove a Th. M. Rassias’
type theorem when p = 1 . The counterexamples of Z. Gajda [4], as well as of Th.
M. Rassias and P. Šemrl [22] have stimulated several mathematicians to invent new
definitions of approximately additive or approximately linear mappings, cf. P. Găvruta
[5], S. Jung [10], who among others studied the Hyers–Ulam–Rassias stability of func-
tional equations. The inequality (1.1) that was introduced for the first time by Th. M.
Rassias [17] provided a lot of influence in the development of a generalization of the
Hyers–Ulam stability concept. This new concept is known as Hyers–Ulam–Rassias
stability of functional equations (cf. the books of P. Czerwik [3], D. H. Hyers, G. Isac
and Th. M. Rassias [7]).

J. M. Rassias [16] following the spirit of the innovative approach of Th. M. Rassias
[17] for the unbounded Cauchy difference proved a similar stability theorem in which
he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with p + q �= 1.

P. Găvruta [5] provided a further generalization of Th. M. Rassias’ theorem. In
1996, G. Isac and Th. M. Rassias [9] applied the Hyers–Ulam–Rassias stability theory
to prove fixed point theorems and study some new applications in Nonlinear Analysis.
In [8], D. H. Hyers, G. Isac and Th. M. Rassias studied the asymptoticity aspect of
Hyers–Ulam stability of mappings. During the past few years several mathematicians
have published on various generalizations and applications of Hyers–Ulam stability
and Hyers–Ulam–Rassias stability to a number of functional equations and mappings,
for example: quadratic functional equation, invariant means, multiplicative mappings
– superstability, bounded n th differences, convex functions, generalized orthogonality
functional equation, Euler–Lagrange functional equation and Navier–Stokes equations.
Several mathematicians have contributed works on these subjects; we mention a few:
C. Park [11]–[15], Th. M. Rassias [19]–[21], F. Skof [25].



STABILITY OF HOMOMORPHISMS ON JB∗ -TRIPLES 85

The stability problems of several functional equations have been extensively in-
vestigated by a number of authors and there are many interesting results concerning this
problem (see [1, 5, 11, 14, 20]).

We recall that a (complex) JB∗ -triple is a complex Banach space J with a
continuous triple product J × J × J � (x, y, z) 	→ {x, y, z} ∈ J which is bilinear
and symmetric in the outer variables and conjugate linear in the middle variable, and
satisfies:

(i) (Jordan Identity) L(a, b){x, y, z} = {L(a, b)x, y, z}−{x, L(b, a)y, z}+{x, y, L(a, b)z}
for all a, b, x, y, z ∈ J, where L(a, b)x := {a, b, x};

(ii) The operator L(a, a) : J → J is an hermitian operator with non-negative spec-
trum;

(iii) ‖L(a, a)a‖J = ‖a‖3
J for all a ∈ J.

Every C∗ -algebra is a (complex) JB∗ -triple with respect to {a, b, c} = 1
2 (ab∗c+

cb∗a). Also, every JB∗ -algebra is a JB∗ -triple with respect to {a, b, c} = (a ◦ b∗) ◦
c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗. Conversely, every JB∗ -triple with a unitary element e
(that is, {e, e, a} = {a, e, e} = a for every a ) is a unital JB∗ -algebra with product
a ◦ b = {a, e, b}, involution a∗ = {e, a, e}, and unit e. We refer to [2], [23] and [24]
for recent surveys on the theory of JB∗ -triples.

A C -linear mapping H : J1 → J2 between JB∗ -triples is called a JB∗ -triple
homomorphism if

H({x, y, z}) = {H(x), H(y), H(z)}
for all x, y, z ∈ J1. A C -linear mapping d : J → J is called a JB∗ -triple derivation if

d({x, y, z}) = {d(x), y, z} + {x, d(y), z} + {x, y, d(z)}

for all x, y, z ∈ J (see [12]).

2. Stability of homomorphisms between JB∗ -triples

Throughout this section, assume that J is a JB∗ -triple with norm ‖.‖J and that
K is a JB∗ -triple with norm ‖.‖K .

We will use the following Lemma in this paper:

LEMMA 2.1. [13] Let X and Y be linear spaces and let f : X → Y be an additive
mapping such that f (μx) = μf (x) for all x ∈ X and all μ ∈ T1. Then the mapping
f is C -linear.

LEMMA 2.2. Let X be a uniquely 2-divisible abelian group and Y a linear space.
A mapping f : X → Y satisfies

f
(x + y

2
+ z

)
+ f

(x + z
2

+ y
)

+ f
(y + z

2
+ x

)
= 2[f (x) + f (y) + f (z)] (2.1)

for all x, y, z ∈ X if and only if f : X → Y is additive.
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Proof. Suppose that f satisfies (2.1). Letting y = z = x in (2.1), we get
f (2x) = 2f (x) for all x ∈ X. So f (0) = 0 and 2f (x/2) = f (x) for all x ∈ X.
Therefore by letting y = −x and z = 0 in (2.1), we get f (−x) = −f (x) for all
x ∈ X. Letting z = −y in (2.1), we get

f
(x + y

2

)
+ f

(x − y
2

)
= f (x) (2.2)

for all x, y ∈ X. Replacing x and y by x+ y and x− y in (2.2), respectively, we infer
that f (x + y) = f (x) + f (y) for all x, y ∈ X. So the mapping f : X → Y is additive.

It is clear that each additive mapping satisfies (2.1). �

Let X and Y be linear spaces. For a given mapping f : X → Y, we define

Df (x, y, z) : = f
(x + y

2
+ z

)
+ f

(x + z
2

+ y
)

+ f
(y + z

2
+ x

)
− 2f (x) − 2f (y) − 2f (z),

Dμ f (x, y, z) : = f
(μx + μy

2
+ μz

)
+ f

(μx + μz
2

+ μy
)

+ f
(μy + μz

2
+ μx

)
− 2μf (x) − 2μf (y) − 2μf (z)

for all μ ∈ T1 := { λ ∈ C : |λ | = 1 } and all x, y, z ∈ X.
NOTATION. Let X be a linear space. x ∈ X� means x ∈ X or x ∈ X \ {0}.
PROPOSITION 2.3. Let X and Y be linear spaces and let f : X → Y be a mapping

such that
Dμ f (x, y, z) = 0 (2.3)

for all μ ∈ T
1 and all x, y, z ∈ X. Then the mapping f : X → Y is C -linear.

Proof. Letting y = z = 0 in (2.3) and using Lemma 2.2, we get f (μx) = μf (x)
for all x ∈ X. Now by using Lemmas 2.1 and 2.2, we infer that the mapping f : X → Y
is C -linear. �

LEMMA 2.4. Let X and Y be linear spaces. A mapping f : X → Y satisfies
(2.1) for all x, y, z ∈ X \ {0} if and only if f : X → Y is additive.

Proof. Suppose that f satisfies (2.1). Letting y = z = x in (2.1), we get

f (2x) = 2f (x) (2.4)

for all x ∈ X \ {0}. Letting y = z = −x in (2.1), we get

2f (−x) + 2f (x) = f (0) (2.5)

for all x ∈ X \ {0}. Letting y = 3x, z = −x in (2.1) and using (2.4), we get

f (3x) = f (x) − 2f (−x) (2.6)
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for all x ∈ X \ {0}. It follows from (2.4) that 2f (x/2) = f (x) for all x ∈ X \ {0}. So
by letting y = x and z = 2x in (2.1) and using (2.4), we get

f (5x) + f (3x) = 8f (x) (2.7)

for all x ∈ X \ {0}. Putting y = 5x and z = −x in (2.1) and using (2.5), we get

f (5x) − f (3x) = 2f (x) − f (0) (2.8)

for all x ∈ X \ {0}. It follows from (2.7) and (2.8) that

2f (3x) = 6f (x) + f (0) (2.9)

for all x ∈ X \ {0}. It follows from (2.6) and (2.9) that

4[f (x) + f (−x)] + f (0) = 0 (2.10)

for all x ∈ X \ {0}. It follows from (2.5) and (2.10) that f (0) = 0. Hence it follows
from (2.5) that f is odd. Therefore by letting z = −x in (2.1), we get

f
(x + y

2

)
+ f

(y − x
2

)
= f (y) (2.11)

for all x, y ∈ X \ {0}. Since f is odd, then (2.11) holds for all x, y ∈ X. Replacing x
and y by x − y and x + y in (2.11), respectively, we get f (x + y) = f (x) + f (y) for
all x, y ∈ X. So the mapping f : X → Y is additive.

It is clear that each additive mapping satisfies (2.1). �

PROPOSITION 2.5. Let X and Y be linear spaces and let f : X → Y be a mapping
satisfying (2.3) for all μ ∈ T1 and all x, y, z ∈ X \ {0}. Then the mapping f : X → Y
is C -linear.

Proof. Letting x = y = z in (2.3) and using Lemma 2.4, we get f (μx) = μf (x)
for all x ∈ X. Now by using Lemmas 2.1 and 2.4, we infer that the mapping f : X → Y
is C -linear. �

THEOREM 2.6. Let ϕ : J × J × J → [0,∞) and ψ : J × J × J → [0,∞) be
functions such that

ϕ̃(x) :=
∞∑

n=0

1
2n
ϕ(2nx, 2nx, 2nx) < ∞, lim

n→∞
1
2n
ϕ(2nx, 2ny, 2nz) = 0, (2.12)

lim
n→∞

1
8n
ψ(2nx, 2ny, 2nz) = 0 (2.13)

for all x, y, z ∈ J. Suppose that f : J → K is a mapping satisfying

‖Dμ f (x, y, z)‖K � ϕ(x, y, z), (2.14)

∥∥∥f ({x, y, z}) −
{

f (x), f (y), f (z)
}∥∥∥

K
� ψ(x, y, z) (2.15)
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for all μ ∈ T1 and all x, y, z ∈ J. Then there exists a unique JB∗ -triple homomorphism
H : J → K such that

∥∥f (x) − H(x)
∥∥
K � 1

6
ϕ̃(x) (2.16)

for all x ∈ J.

Proof. Letting μ = 1 and x = y = z in (2.14), we get

‖3f (2x) − 6f (x)‖K � ϕ(x, x, x) (2.17)

for all x ∈ J. If we replace x by 2nx in (2.17) and divide both sides of (2.17) by
3 × 2n+1, we get

∥∥∥ 1
2n+1

f (2n+1x) − 1
2n

f (2nx)
∥∥∥
K

� 1
3 × 2n+1

ϕ(2nx, 2nx, 2nx)

for all x ∈ J and all non-negative integers n. Hence

∥∥∥ 1
2n+1

f (2n+1x) − 1
2m

f (2mx)
∥∥∥
K

=
∥∥∥ n∑

k=m

[ 1
2k+1

f (2k+1x) − 1
2k

f (2kx)
]∥∥∥

K

�
n∑

k=m

∥∥∥ 1
2k+1

f (2k+1x) − 1
2k

f (2kx)
∥∥∥
K

� 1
6

n∑
k=m

1
2k
ϕ(2kx, 2kx, 2kx)

(2.18)

for all x ∈ J and all non-negative integers n � m � 0. It follows from (2.12) and
(2.18) that the sequence { 1

2n f (2nx)} is a Cauchy sequence in K for all x ∈ J. Since
K is complete, the sequence { 1

2n f (2nx)} converges for all x ∈ J.Thus one can define
the mapping H : J → K by

H(x) := lim
n→∞

1
2n

f (2nx)

for all x ∈ J. Moreover, letting m = 0 and passing the limit n → ∞ in (2.18) we get
(2.16). It follows from (2.12) that

∥∥∥DμH(x, y, z)
∥∥∥
K

= lim
n→∞

1
2n

∥∥∥Dμ f (2nx, 2ny, 2nz)
∥∥∥
K

� lim
n→∞

1
2n
ϕ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ J. So DμH(x, y, z) = 0 for all μ ∈ T1 and all x, y, z ∈ J. By
Proposition 2.3 the mapping H : J → K is C -linear.
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It follows from (2.13) and (2.15) that∥∥∥H({x, y, z}) −
{

H(x), H(y), H(z)
}∥∥∥

K

= lim
n→∞

1
8n

∥∥∥f ({2nx, 2ny, 2nz}) −
{

f (2nx), f (2ny), f (2nz)
}∥∥∥

K

� lim
n→∞

1
8n
ψ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ J . Therefore

H({x, y, z}) =
{

H(x), H(y), H(z)
}

for all x, y, z ∈ J. Therefore the mapping H : J → K is a JB∗ -triple homomorphism.
Now, let T : J → K be another JB∗ -triple homomorphism satisfying (2.16).

Then we have from (2.12) that

‖H(x) − T(x)‖K = lim
n→∞

1
2n

‖f (2nx) − T(2nx)‖K

� 1
6

lim
n→∞

1
2n
ϕ̃(2nx)

=
1
6

lim
n→∞

∞∑
k=n

1
2k
ϕ(2kx, 2kx, 2kx) = 0

for all x ∈ J. So H(x) = T(x) for all x ∈ J. This proves the uniqueness of H. Thus
the mapping H : J → K is a unique JB∗ -triple homomorphism satisfying (2.16). �

COROLLARY2.7. Let ε, θ be non-negative real numbers and let p1, p2, p3, q1, q2, q3

be real numbers such that p1, p2, p3 < 1 and q1, q2, q3 < 3. Suppose that f : J → K
is a mapping satisfying

‖Dμ f (x, y, z)‖K � θ(‖x‖p1
J + ‖y‖p2

J + ‖z‖p3
J ), (2.19)

∥∥∥f ({x, y, z}) −
{

f (x), f (y), f (z)
}∥∥∥

K
� ε(‖x‖q1

J + ‖y‖q2
J + ‖z‖q3

J ) (2.20)

for all μ ∈ T1 and all x, y, z ∈ J �. Then there exists a unique JB∗ -triple homomor-
phism H : J → K such that

∥∥f (x) − H(x)
∥∥
K � θ

3

3∑
i=1

1
2 − 2pi

‖x‖pi
J

for all x ∈ J �.

Proof. The result follows by Proposition 2.5 and Theorem 2.6. �
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THEOREM 2.8. Let Φ : J × J × J → [0,∞) and Ψ : J × J × J → [0,∞) be
functions such that

Φ̃(x) :=
∞∑

n=1

2nΦ
( x

2n
,

x
2n

,
x
2n

)
< ∞, lim

n→∞ 2nΦ
( x

2n
,

y
2n

,
z
2n

)
= 0, (2.21)

lim
n→∞ 8nΨ

( x
2n

,
y
2n

,
z
2n

)
= 0 (2.22)

for all x, y, z ∈ J. Suppose that f : J → K is a mapping satisfying

‖Dμ f (x, y, z)‖K � Φ(x, y, z), (2.23)

∥∥∥f ({x, y, z}) −
{

f (x), f (y), f (z)
}∥∥∥

K
� Ψ(x, y, z) (2.24)

for all μ ∈ T1 and all x, y, z ∈ J. Then there exists a unique JB∗ -triple homomorphism
H : J → K such that ∥∥f (x) − H(x)

∥∥
K � 1

6
Φ̃(x) (2.25)

for all x ∈ J.

Proof. Letting μ = 1 and x = y = z in (2.23), we get

‖f (2x) − 2f (x)‖K � 1
3
Φ(x, x, x) (2.26)

for all x ∈ J. If we replace x by x
2n+1 in (2.26) and multiply both sides of (2.26) to

2n, we get ∥∥∥2n+1f
( x

2n+1

)
− 2nf

( x
2n

)∥∥∥
K

� 2n

3
Φ

( x
2n+1

,
x

2n+1
,

x
2n+1

)
for all x ∈ J and all non-negative integers n. Hence∥∥∥2n+1f

( x
2n+1

)
− 2mf

( x
2m

)∥∥∥
K

=
∥∥∥ n∑

k=m

[
2k+1f

( x
2k+1

)
− 2kf

( x
2k

)]∥∥∥
K

�
n∑

k=m

∥∥∥2k+1f
( x

2k+1

)
− 2kf

( x
2k

)∥∥∥
K

� 1
6

n∑
k=m

2k+1Φ
( x

2k+1
,

x
2k+1

,
x

2k+1

)
(2.27)

for all x ∈ J and all non-negative integers n � m � 0. It follows from (2.21) and
(2.27) that the sequence {2nf ( x

2n )} is a Cauchy sequence in K for all x ∈ J. Since
K is complete, the sequence {2nf ( x

2n )} converges for all x ∈ J. Thus one can define
the mapping H : J → K by

H(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ J. Moreover, letting m = 0 and passing the limit n → ∞ in (2.27) we get
(2.25). The rest of the proof is similar to the proof of Theorem 2.6. �
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COROLLARY 2.9. Let ε, θ, p1, p2, p3, q1, q2, q3 be non-negative real numbers
such that p1, p2, p3 > 1 and q1, q2, q3 > 3. Suppose that f : J → K is a mapping
satisfying (2.19) and (2.20) for all μ ∈ T1 and all x, y, z ∈ J. Then there exists a
unique JB∗ -triple homomorphism H : J → K such that

∥∥f (x) − H(x)
∥∥
K � θ

3

3∑
i=1

1
2pi − 2

‖x‖pi
J

for all x ∈ J.

3. Homomorphisms between JB∗ -triples

THEOREM 3.1. Let ε, θ, p1, p2, p3 be non-negative real numbers and let q1, q2, q3

be real numbers such that pi > 0 and qj �= 1 for some 1 � i, j � 3 . Suppose that
f : J → K is a mapping satisfying∥∥Dμ f (x, y, z)

∥∥
K � θ‖x‖p1

J‖y‖p2
J‖z‖p3

J , (3.1)∥∥∥f ({x, y, z}) −
{

f (x), f (y), f (z)
}∥∥∥

K
� ε‖x‖q1

J‖y‖q2

J‖z‖q3

J (3.2)

for all μ ∈ T1 and all x, y, z ∈ J �. Then the mapping f : J → K is a JB∗ -triple
homomorphism.

Proof. Without any loss of generality, we suppose p1 > 0 . By letting x = y =
z = 0 in (3.1), we get f (0) = 0. Letting x = y = 0 and replacing z by 2z in (3.1),
we get

f (2μz) + 2f (μz) = 2μf (2z) (3.3)

for all μ ∈ T1 and all z ∈ J. Letting μ = 1 in (3.3), we get

f (2z) = 2f (z) (3.4)

for all z ∈ J. We get from (3.3) and (3.4) that f (μz) = μf (z) for all μ ∈ T1 and all
z ∈ J. Therefore f is an odd function.

Letting x = 0 and replacing y and z by 2y and 2z in (3.1), respectively, we get

f (y + 2z) + f (z + 2y) + f (y + z) = 4f (y) + 4f (z) (3.5)

for all y, z ∈ J. Replacing y by y + z and z by −z in (3.5) and using the oddness of
f , we get

f (y − z) + f (2y + z) + f (y) = 4f (y + z) − 4f (z) (3.6)

for all y, z ∈ J. Replacing y by z and z by y in (3.6) and using the oddness of f , we
get

− f (y − z) + f (2z + y) + f (z) = 4f (y + z) − 4f (y) (3.7)

for all y, z ∈ J. Adding (3.6) to (3.7) we have

f (y + 2z) + f (z + 2y) = 8f (y + z) − 5f (y) − 5f (z) (3.8)

for all y, z ∈ J. Now, by (3.5) and (3.8), we have f (y + z) = f (y) + f (z) for all
y, z ∈ J . Hence by Lemma 2.1 the mapping f : J → K is C -linear.
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Without any loss of generality, we may assume that q1 �= 1. Let q1 > 1. It follows
from (3.2) that ∥∥∥f ({x, y, z}) −

{
f (x), f (y), f (z)

}∥∥∥
K

= lim
n→∞ 2n

∥∥∥f
({ x

2n
, y, z

})
−

{
f
( x

2n

)
, f (y), f (z)

}∥∥∥
K

� ε lim
n→∞

2n

2nq1
‖x‖q1

J‖y‖q2
J‖z‖q3

J = 0

for all x, y, z ∈ J �. Therefore

f ({x, y, z}) = {f (x), f (y), f (z)} (3.9)

for all x, y, z ∈ J �. Since f (0) = 0, then (3.9) holds for all x, y, z ∈ J when qi < 0
for some 2 � i � 3. Similarly, for q1 < 1, we get (3.9). So the mapping f : J → K
is a JB∗ -triple homomorphism. �

We will use the following lemma in the proof of the next theorem.

LEMMA 3.2. Let X and Y be linear spaces. An odd mapping f : X → Y satisfies

f
(x + y

2

)
+ f

( x
2

+ y
)

+ f
( y

2
+ x

)
= 2[f (x) + f (y)] (3.10)

for all x, y ∈ X \ {0} if and only if f : X → Y is additive.

Proof. Suppose that f satisfies (3.10). Since f is odd, then f (0) = 0. Letting
y = x in (3.10), we get

f
(3x

2

)
=

3
2
f (x) (3.11)

for all x ∈ X \ {0}. Letting y = 2x in (3.10) and using (3.11), we get

f
(5x

2

)
= f (2x) +

1
2
f (x) (3.12)

for all x ∈ X \ {0}. Letting y = −2x in (3.10) and using the oddness of f , we get

f
(3x

2

)
+ f

( x
2

)
= 2f (2x) − 2f (x) (3.13)

for all x ∈ X \ {0}. It follows from (3.13) that

f (3x) + f (x) = 2f (4x) − 2f (2x) (3.14)

for all x ∈ X \ {0}. Letting y = 4x in (3.10) and using (3.11) and (3.12), we get

5f (3x) = 4f (4x) − 2f (2x) + 3f (x) (3.15)

for all x ∈ X \ {0}. It follows from (3.14) and (3.15) that

3f (4x) = 4f (2x) + 4f (x) (3.16)
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for all x ∈ X \ {0}. It follows from (3.11) and (3.13) that

7f (x) + 2f
( x

2

)
= 4f (2x)

for all x ∈ X \ {0}. Replacing x by 2x in the last equation, we get

4f (4x) = 7f (2x) + 2f (x) (3.17)

for all x ∈ X \ {0}. It follows from (3.16) and (3.17) that f (2x) = 2f (x) for all
x ∈ X \ {0}. Since f (0) = 0, then f (2x) = 2f (x) for all x ∈ X. Therefore (3.10)
holds for all x, y ∈ X. Hence the mapping f satisfies (3.5) for all y, z ∈ X. Using the
proof of Theorem 3.1, we get that the mapping f : X → Y is additive.

It is clear that each additive mapping satisfies (3.10). �

THEOREM 3.3. Let ε, θ be non-negative real numbers and let p1, p2, p3, q1, q2, q3

be real numbers such that pipj < 0 for some 1 � i < j � 3 and qj �= 1 for some
1 � j � 3 . Suppose that f : J → K is a mapping satisfying (3.1) and (3.2) for
all μ ∈ T1 and all x, y, z ∈ J �. Then the mapping f : J → K is a JB∗ -triple
homomorphism.

Proof. Without any loss of generality, we may assume that p3 > 0. Let μ = 1.
Letting z = 0 in (3.1), we get

f
(x + y

2

)
+ f

( x
2

+ y
)

+ f
( y

2
+ x

)
= 2[f (x) + f (y) + f (0)] (3.18)

for all x, y ∈ J \ {0}. We show that f is additive.
Letting y = −x in (3.18), we get

f
( x

2

)
+ f

(−x
2

)
= 2[f (x) + f (−x)] + f (0) (3.19)

for all x ∈ J \ {0}. It follows from (3.19) that

f (x) + f (−x) = 2[f (2x) + f (−2x)] + f (0) (3.20)

f
(3x

2

)
+ f

(−3x
2

)
= 2[f (3x) + f (−3x)] + f (0) (3.21)

for all x ∈ J \ {0}. Letting y = x in (3.18), we get

2f
(3x

2

)
= 3f (x) + 2f (0) (3.22)

for all x ∈ J \ {0}. It follows from (3.22) that

2
[
f
(3x

2

)
+ f

(−3x
2

)]
= 3[f (x) + f (−x)] + 4f (0) (3.23)

2[f (3x) + f (−3x)] = 3[f (2x) + f (−2x)] + 4f (0) (3.24)

for all x ∈ J \ {0}. It follows from (3.21) and (3.23) that

3[f (x) + f (−x)] + 2f (0) = 4[f (3x) + f (−3x)] (3.25)
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for all x ∈ J \ {0}. It follows from (3.24) and (3.25) that

f (x) + f (−x) = 2[f (2x) + f (−2x) + f (0)] (3.26)

for all x ∈ J \ {0}. Now, we get from (3.20) and (3.26) that f (0) = 0. Hence (3.26)
implies that

f (x) + f (−x) = 2[f (2x) + f (−2x)] (3.27)
for all x ∈ J \ {0}. Letting y = −2x in (3.18) and using (3.22) (with f (0) = 0 ), we
get

f
(−x

2

)
+

3
2
f (−x) = 2[f (x) + f (−2x)]

for all x ∈ J \ {0}. It follows from the last equation that[
f
( x

2

)
+ f

(−x
2

)]
+

3
2
[f (x) + f (−x)

]
= 2[f (x) + f (−x)] + 2[f (2x) + f (−2x)]

(3.28)

for all x ∈ J \ {0}. Since f (0) = 0, then it follows from (3.19), (3.27) and (3.28)
that f (−x) = −f (x) for all x ∈ J \ {0}. Since f (0) = 0, then f is odd. Therefore
the odd mapping f : J → K satisfies (3.10) for all x, y ∈ J \ {0}. So by Lemma
3.2, the mapping f is additive. Therefore by letting z = 0 and y = x in (3.1), we get
f (μx) = μf (x) for all x ∈ J \ {0}. Since f (0) = 0, then f (μx) = μf (x) for all
x ∈ J. So by Lemma 2.1, the mapping f is C -linear.

The rest of the proof is similar to the proof of Theorem 3.1. �

THEOREM 3.4. Let ε, θ, p1, p2, p3 be non-negative real numbers and let q1, q2, q3

be real numbers such that q1 + q2 + q3 �= 3 and pi > 0 for some 1 � i � 3 .
Suppose that f : J → K is a mapping satisfying (3.1) and (3.2) for all μ ∈ T1 and all
x, y, z ∈ J �. Then the mapping f : J → K is a JB∗ -triple homomorphism.

Proof. It follows from the proof of Theorem 3.1 that the mapping f : J → K is
C -linear. Let q1 + q2 + q3 > 3 . It follows from (3.2) that∥∥∥f ({x, y, z}) −

{
f (x), f (y), f (z)

}∥∥∥
K

= lim
n→∞ 8n

∥∥∥f
({ x

2n
,

y
2n

,
z
2n

})
−

{
f
( x

2n

)
, f

( y
2n

)
, f

( z
2n

)}∥∥∥
K

� ε lim
n→∞

8n

2n(q1+q2+q3)
‖x‖q1

J ‖y‖q2
J‖z‖q3

J = 0

for all x, y, z ∈ J �. Therefore we get (3.9) for all x, y, z ∈ J �. Since f (0) = 0,
then (3.9) holds for all x, y, z ∈ J when qi < 0 for some 1 � i � 3. Similarly,
for q1 + q2 + q3 < 3, we get (3.9). So the mapping f : J → K is a JB∗ -triple
homomorphism. �

THEOREM 3.5. Let ε, θ be non-negative real numbers and let p1, p2, p3, q1, q2, q3

be real numbers such that pipj < 0 for some 1 � i < j � 3 and q1 + q2 + q3 �= 3.
Suppose that f : J → K is a mapping satisfying (3.1) and (3.2) for all μ ∈ T1 and all
x, y, z ∈ J �. Then the mapping f : J → K is a JB∗ -triple homomorphism.
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Proof. It follows from the proof of Theorem 3.3 that the mapping f : J → K is
C -linear. The rest of the proof is similar to the proof of Theorem 3.4. �

REMARK 3.6. If we replace the condition q1 + q2 + q3 �= 3 in Theorems 3.4 and
3.5 by qi +qj �= 2 for some 1 � i < j � 3, then by using the similar proof of Theorem
3.4, we get that the mapping f : J → K is a JB∗ -triple homomorphism.

4. Homomorphisms between unital JB∗ -triples

Throughout this section, assume that J is a unital JB∗ -triple with norm ‖.‖J ,
unit e and that K a JB∗ -triple with norm ‖.‖K and unit e′ .

We investigate homomorphismsbetween unital JB∗ -triples, associated to the func-
tional equation Dμ f (x, y, z) = 0.

THEOREM 4.1. Let ε, θ be non-negative real numbers and let p1, p2, p3, q1, q2, q3

real numbers such that p1, p2, p3 < 1, q1, q2 < 2 and q3 < 3. Suppose that f : J → K
is a mapping with f (0) = 0 satisfying (2.19) and (2.20) for all μ ∈ T1 and all
x, y, z ∈ J �. If there exists a real number λ > 1 (0 < λ < 1) and an element
x0 ∈ J such that limn→∞ 1

λn f (λ nx0) = e′ (limn→∞ λ nf ( x0
λn ) = e′), then the mapping

f : J → K is a JB∗ -triple homomorphism.

Proof. By Corollary 2.7 there exists a unique JB∗ -triple homomorphism H : J →
K such that

∥∥f (x) − H(x)
∥∥
K � θ

3

3∑
i=1

1
2 − 2pi

‖x‖pi
J (4.1)

for all x ∈ J �. It follows from (4.1) that

H(x) = lim
n→∞

1
λ n

f (λ nx),
(
H(x) = lim

n→∞ λ nf (
x
λ n

)
)

(4.2)

for all x ∈ J and all real number λ > 1 (0 < λ < 1). Therefore by the assumption,
we get that H(x0) = e′. Let λ > 1 and limn→∞ 1

λn f (λ nx0) = e′ . It follows from
(2.20) that ∥∥∥{H(x), H(y), H(z)} − {H(x), H(y), f (z)}

∥∥∥
K

=
∥∥∥H({x, y, z}) − {H(x), H(y), f (z)}

∥∥∥
K

= lim
n→∞

1
λ 2n

∥∥∥f ({λ nx, λ ny, z}) −
{

f (λ nx), f (λ ny), f (z)
}∥∥∥

K

� ε lim
n→∞

1
λ 2n

[
λ nq1‖x‖q1

J + λ nq2‖y‖q2
J + ‖z‖q3

J )
]

= 0

for all x, y, z ∈ J \ {0}. So {H(x), H(y), H(z)} = {H(x), H(y), f (z)} for all x, y, z ∈
J \{0}. Letting x = y = x0 in the last equality, we get f (z) = H(z) for all z ∈ J \{0}.
Since H(0) = f (0) = 0, then f = H. Similarly, one can show that H(z) = f (z) for
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all z ∈ J when 0 < λ < 1 and limn→∞ λ nf ( x0
λn ) = e′. Therefore the mapping

f : J → K is a JB∗ -triple homomorphism. �

REMARK 4.2. Theorem 4.1 will be valid if we replace the conditions q1, q2 < 2
and q3 < 3 by q2, q3 < 2 and q1 < 3.

THEOREM 4.3. Let ε, θ, p1, p2, p3, q1, q2, q3 be non-negative real numbers such
that p1, p2, p3 > 1 and q1, q2, q3 > 2. Suppose that f : J → K is a mapping satisfying
(2.19) and ∥∥∥f ({x, y, z}) −

{
f (x), f (y), f (z)

}∥∥∥
K

� ε
(
‖x‖q1

J‖y‖q2

J + ‖y‖q2

J‖z‖q3

J + ‖x‖q1

J ‖z‖q3

J
) (4.3)

for all μ ∈ T1 and all x, y, z ∈ J. If there exists a real number λ > 1 (0 < λ < 1)
and an element x0 ∈ J such that limn→∞ λ nf ( x0

λn ) = e′ (limn→∞ 1
λn f (λ nx0) = e′),

then the mapping f : J → K is a JB∗ -triple homomorphism.

Proof. By Theorem 2.8 there exists a unique JB∗ -triple homomorphism H : J →
K such that

∥∥f (x) − H(x)
∥∥
K � θ

3

3∑
i=1

1
2pi − 2

‖x‖pi
J (4.4)

for all x ∈ J. It follows from (4.4) that

H(x) = lim
n→∞ λ nf (

x
λ n

),
(
H(x) = lim

n→∞
1
λ n

f (λ nx)
)

(4.5)

for all x ∈ J and all real number λ > 1 (0 < λ < 1). Therefore by the assumption,
we get that H(x0) = e′. Let λ > 1 and limn→∞ λ nf ( x0

λn ) = e′ . It follows from (4.3)
that∥∥∥{H(x), H(y), H(z)} − {H(x), H(y), f (z)}

∥∥∥
K

=
∥∥∥H({x, y, z}) − {H(x), H(y), f (z)}

∥∥∥
K

= lim
n→∞ λ 2n

∥∥∥f
({ x

λ n
,

y
λ n

, z
})

−
{

f
( x
λ n

)
, f

( y
λ n

)
, f (z)

}∥∥∥
K

� ε lim
n→∞ λ 2n

[ 1
λ n(q1+q2)

‖x‖q1
J‖y‖q2

J +
1

λ nq2
‖y‖q2

J‖z‖q3
J +

1
λ nq1

‖x‖q1
J‖z‖q3

J )
]

= 0

for all x, y, z ∈ J. So {H(x), H(y), H(z)} = {H(x), H(y), f (z)} for all x, y, z ∈ J.
Letting x = y = x0 in the last equality, we get f (z) = H(z) for all z ∈ J. Similarly, one
can show that H(z) = f (z) for all z ∈ J when 0 < λ < 1 and limn→∞ 1

λn f (λ nx0) =
e′. Therefore the mapping f : J → K is a JB∗ -triple homomorphism. �
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5. Derivations and Stability of derivations on JB∗ -triples

Throughout this section, assume that J is a JB∗ -triple with norm ‖ · ‖J .
In this section we prove the Hyers–Ulam–Rassias stability of derivations on JB∗ -

triples for the functional equation Dμ f (x, y, z) = 0.

THEOREM 5.1. Let ϕ : J × J × J → [0,∞) and ψ : J × J × J → [0,∞) be
functions such that

ϕ̃(x) :=
∞∑

n=0

1
2n
ϕ(2nx, 2nx, 2nx) < ∞, lim

n→∞
1
2n
ϕ(2nx, 2ny, 2nz) = 0, (5.1)

lim
n→∞

1
8n
ψ(2nx, 2ny, 2nz) = 0 (5.2)

for all x, y, z ∈ J. Suppose that f : J → J is a mapping satisfying

‖Dμ f (x, y, z)‖J � ϕ(x, y, z), (5.3)∥∥∥f ({x, y, z}) − {f (x), y, z} − {x, f (y), z} − {x, y, f (z)}
∥∥∥
J

� ψ(x, y, z) (5.4)

for all μ ∈ T1 and all x, y, z ∈ J. Then there exists a unique JB∗ -triple derivation
D : J → J such that ∥∥f (x) − D(x)

∥∥
J � 1

6
ϕ̃(x) (5.5)

for all x ∈ J.

Proof. By the proof of Theorem 2.6, there exists a unique C -linear mapping
D : J → J satisfying (5.5) and

D(x) := lim
n→∞

1
2n

f (2nx)

for all x ∈ J. It follows from (5.2) and (5.4) that∥∥∥D({x, y, z}) − {D(x), y, z} − {x, D(y), z} − {x, y, D(z)}
∥∥∥
J

= lim
n→∞

1
8n

∥∥∥f ({2nx, 2ny, 2nz}) − {f (2nx), 2ny, 2nz}

− {2nx, f (2ny), 2nz} − {2nx, 2ny, f (2nz)}
∥∥∥
J

� lim
n→∞

1
8n
ψ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ J. So

D({x, y, z}) = {D(x), y, z} + {x, D(y), z} + {x, y, D(z)}
for all x, y, z ∈ J. Therefore the mapping D : J → J is a JB∗ -triple derivation. �

THEOREM 5.2. Let ϕ : J × J× J → [0,∞) be a function satisfying (5.1).
Suppose that the function ψ : J × J× J → [0,∞) satisfies in one of the following
conditions
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(i) limn→∞ 1
4nψ(2nx, 2ny, z) = 0;

(ii) limn→∞ 1
4nψ(x, 2ny, 2nz) = 0;

(iii) limn→∞ 1
4nψ(2nx, y, 2nz) = 0

for all x, y, z ∈ J. Let f : J → J be a mapping satisfying (5.3) and (5.4). Then the
mapping f : J → J is a JB∗ -triple derivation.

Proof. By the proof of Theorem 2.6, there exists a C -linear mapping D : J → J
defined by

D(x) := lim
n→∞

1
2n

f (2nx)

for all x ∈ J. We show that if the mapping ψ satisfies in one of the conditions (i), (ii)
or (iii), then f = D.

Let ψ satisfy in (i) (we have a similar proof if ψ satisfies in (ii) or (iii) ). It
follows from (5.4) that∥∥∥D({x, y, z}) − {D(x), y, z} − {x, D(y), z} − {x, y, f (z)}

∥∥∥
J

= lim
n→∞

1
4n

∥∥∥f ({2nx, 2ny, z}) − {f (2nx), 2ny, z}

− {2nx, f (2ny), z} − {2nx, 2ny, f (z)}
∥∥∥
J

� lim
n→∞

1
4n
ψ(2nx, 2ny, z) = 0

for all x, y, z ∈ J . Therefore

D({x, y, z}) = {D(x), y, z} + {x, D(y), z} + {x, y, f (z)} (5.6)

for all x, y, z ∈ J. Replacing z by 2z in (5.6), we get

2D({x, y, z}) = 2{D(x), y, z} + 2{x, D(y), z} + {x, y, f (2z)} (5.7)

for all x, y, z ∈ J. It follows from (5.6) and (5.7) that

{x, y, f (2z) − 2f (z)} = 0

for all x, y, z ∈ J. Letting x = y = f (2z) − 2f (z) in the last equation, we get

‖f (2z) − 2f (z)‖3
J =

∥∥∥{
f (2z) − 2f (z), f (2z) − 2f (z), f (2z) − 2f (z)

}∥∥∥
J

= 0

for all z ∈ J. So f (2z) = 2f (z) for all z ∈ J. By using induction, we infer that
f (2nz) = 2nf (z) for all z ∈ J and all n ∈ Z. Therefore D(x) = f (x) for all x ∈ J.
Hence it follows from (5.6) that the mapping f : J → J is a JB∗ -triple derivation. �

COROLLARY5.3. Let ε, θ be non-negative real numbers and let p1, p2, p3, q1, q2, q3

be real numbers such that p1, p2, p3 < 1 and qi, qj < 2 for some 1 � i < j � 3.
Suppose that f : J → J is a mapping with f (0) = 0 satisfying

‖Dμ f (x, y, z)‖J � θ(‖x‖p1
J + ‖y‖p2

J + ‖x‖p3
J ), (5.8)



STABILITY OF HOMOMORPHISMS ON JB∗ -TRIPLES 99∥∥∥f ({x, y, z}) − {f (x), y, z} − {x, f (y), z} − {x, y, f (z)}
∥∥∥
J

� ε(‖x‖q1
J + ‖y‖q2

J + ‖z‖q3
J )

(5.9)

for all μ ∈ T
1 and all x, y, z ∈ J �. Then the mapping f : J → J is a JB∗ -triple

derivation.

THEOREM 5.4. Let ϕ : J × J× J → [0,∞) be a function satisfying (5.1).
Suppose that the function ψ : J × J× J → [0,∞) satisfies in one of the following
conditions

(i) limn→∞ 1
2nψ(2nx, y, z) = 0;

(ii) limn→∞ 1
2nψ(x, 2ny, z) = 0;

(iii) limn→∞ 1
2nψ(x, y, 2nz) = 0

for all x, y, z ∈ J. Let f : J → J be a mapping satisfying (5.3) and (5.4). Then the
mapping f : J → J is a JB∗ -triple derivation.

Proof. By the proof of Theorem 2.6, there exists a C -linear mapping D : J → J
defined by

D(x) := lim
n→∞

1
2n

f (2nx)

for all x ∈ J. We show that if the mapping ψ satisfies in one of the conditions (i), (ii)
or (iii), then f = D.

Let ψ satisfy in (i) (we have a similar proof if ψ satisfies in (ii) or (iii) ). It
follows from (5.4) that∥∥∥D({x, y, z}) − {D(x), y, z} − {x, f (y), z} − {x, y, f (z)}

∥∥∥
J

= lim
n→∞

1
2n

∥∥∥f ({2nx, y, z}) − {f (2nx), y, z} − {2nx, f (y), z} − {2nx, y, f (z)}
∥∥∥
J

� lim
n→∞

1
2n
ψ(2nx, y, z) = 0

for all x, y, z ∈ J . Therefore

D({x, y, z}) = {D(x), y, z} + {x, f (y), z} + {x, y, f (z)} (5.10)

for all x, y, z ∈ J.
The rest of the proof is similar to the proof Theorem 5.2. �

COROLLARY5.5. Let ε, θ be non-negative real numbers and let p1, p2, p3, q1, q2, q3

be real numbers such that p1, p2, p3 < 1 and qi < 1 for some 1 � i � 3. Suppose that
f : J → J is a mapping with f (0) = 0 satisfying (5.8) and (5.9) for all μ ∈ T1 and
all x, y, z ∈ J �. Then the mapping f : J → J is a JB∗ -triple derivation.

THEOREM 5.6. Let Φ : J × J × J → [0,∞) and Ψ : J × J× J → [0,∞) be
functions such that

Φ̃(x) :=
∞∑

n=1

2nΦ
( x

2n
,

x
2n

,
x
2n

)
< ∞, lim

n→∞ 2nΦ
( x

2n
,

y
2n

,
z
2n

)
= 0, (5.11)
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lim
n→∞ 8nΨ

( x
2n

,
y
2n

,
z
2n

)
= 0 (5.12)

for all x, y, z ∈ J. Suppose that f : J → J is a mapping satisfying

‖Dμ f (x, y, z)‖J � Φ(x, y, z), (5.13)∥∥∥f ({x, y, z}) − {f (x), y, z} − {x, f (y), z} − {x, y, f (z)}
∥∥∥
J

� Ψ(x, y, z) (5.14)

for all μ ∈ T1 and all x, y, z ∈ J. Then there exists a unique JB∗ -triple derivation
D : J → J such that ∥∥f (x) − D(x)

∥∥
J � 1

6
Φ̃(x) (5.15)

for all x ∈ J.

Proof. By the proof of Theorem 2.8, there exists a unique C -linear mapping
D : J → J satisfying (5.15) and

D(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ J.

The rest of the proof is similar to the proof of Theorem 5.1. �

THEOREM 5.7. Let Φ : J × J× J → [0,∞) be a function satisfying (5.11).
Suppose that the function Ψ : J× J × J → [0,∞) satisfies in one of the following
conditions

(i) limn→∞ 4nΨ( x
2n , y

2n , z) = 0;
(ii) limn→∞ 4nΨ(x, y

2n , z
2n ) = 0;

(iii) limn→∞ 4nΨ( x
2n , y, z

2n ) = 0
for all x, y, z ∈ J. Let f : J → J be a mapping satisfying (5.13) and (5.14). Then the
mapping f : J → J is a JB∗ -triple derivation.

Proof. By the proof of Theorem 2.8, there exists a C -linear mapping D : J → J
defined by

D(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ J.

The rest of the proof is similar to the proof of Theorem 5.2. �

COROLLARY 5.8. Let ε, θ, p1, p2, p3, q1, q2, q3 be non-negative real numbers such
that p1, p2, p3 > 1 and q1, q2, q3 > 2. Suppose that f : J → J is a mapping satisfying
(5.8) and ∥∥∥f ({x, y, z}) − {f (x), y, z} − {x, f (y), z} − {x, y, f (z)}

∥∥∥
J

� ε
(
‖x‖q1

J‖y‖q2
J + ‖y‖q2

J‖z‖q3
J + ‖x‖q1

J ‖z‖q3
J

) (5.16)

for all x, y, z ∈ J. Then the mapping f : J → J is a JB∗ -triple derivation.
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THEOREM 5.9. Let Φ : J × J× J → [0,∞) be a function satisfying (5.11).
Suppose that the function Ψ : J× J × J → [0,∞) satisfies in one of the following
conditions

(i) limn→∞ 2nΨ( x
2n , y, z) = 0;

(ii) limn→∞ 2nΨ(x, y
2n , z) = 0;

(iii) limn→∞ 2nΨ(x, y, z
2n ) = 0

for all x, y, z ∈ J. Let f : J → J be a mapping satisfying (5.13) and (5.14). Then the
mapping f : J → J is a JB∗ -triple derivation.

Proof. By the proof of Theorem 2.8, there exists a C -linear mapping D : J → J
defined by

D(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ J.

The rest of the proof is similar to the proof of Theorem 5.4. �

THEOREM 5.10. Let ε, θ, p1, p2, p3 be non-negative real numbers and let q1, q2, q3

be real numbers such that pi > 0 and qj �= 1 for some 1 � i, j � 3. Suppose that
f : J → J is a mapping satisfying∥∥Dμ f (x, y, z)

∥∥
J � θ‖x‖p1

J‖y‖p2
J‖z‖p3

J , (5.17)

∥∥∥f ({x, y, z}) − {f (x), y, z} − {x, f (y), z} − {x, y, f (z)}
∥∥∥
J

� ε‖x‖q1
J‖y‖q2

J‖z‖q3
J

(5.18)

for all μ ∈ T1 and all x, y, z ∈ J �. Then the mapping f : J → J is a JB∗ -triple
derivation.

Proof. Without any loss of generality, we may assume that q1 �= 1 and p1 > 0.
Therefore it follows from the proof of Theorem 3.1 that the mapping f : J → J is
C -linear. Let q1 < 1 . It follows from (5.18) that∥∥∥f ({x, y, z}) − {f (x), y, z} − {x, f (y), z} − {x, y, f (z)}

∥∥∥
J

= lim
n→∞

1
2n

∥∥∥f ({2nx, y, z} − {f (2nx), y, z} − {2nx, f (y), z} − {2nx, y, f (z)}
∥∥∥
J

� ε lim
n→∞

2nq1

2n
‖x‖q1

J ‖y‖q2
J‖z‖q3

J = 0

for all x, y, z ∈ J �. Therefore

f ({x, y, z}) = {f (x), y, z} + {x, f (y), z} + {x, y, f (z)} (5.19)

for all x, y, z ∈ J �. Since f (0) = 0, then (5.19) holds for all x, y, z ∈ J when qi < 0
for some 1 � i � 3. Similarly, we get (5.19) when q1 > 1 . So the mapping f : J → J
is a JB∗ -triple derivation. �
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THEOREM 5.11. Let ε, θ be non-negative real numbers and let p1, p2, p3, q1, q2, q3

be real numbers such that pipj < 0 for some 1 � i < j � 3 and qj �= 1 for some
1 � j � 3 . Suppose that f : J → J is a mapping satisfying (5.17) and (5.18) for all
μ ∈ T1 and all x, y, z ∈ J �. Then the mapping f : J → J is a JB∗ -triple derivation.

Proof. It follows from the proof of Theorem 3.3 that the mapping f : J → J is
C -linear. The rest of the proof is similar to the proof of Theorem 5.10. �

THEOREM 5.12. Let ε, θ, p1, p2, p3 be non-negative real numbers and let q1, q2, q3

be real numbers such that pi > 0 and q1 + q2 + q3 �= 3 for some 1 � i � 3. Suppose
that f : J → J is a mapping satisfying (5.17) and (5.18) for all μ ∈ T1 and all
x, y, z ∈ J �. Then the mapping f : J → J is a JB∗ -triple derivation.

Proof. It follows from the proof of Theorem 3.1 that the mapping f : J → J is
C -linear. Let q1 + q2 + q3 < 3. It follows from (5.18) that∥∥∥f ({x, y, z}) − {f (x), y, z} − {x, f (y), z} − {x, y, f (z)}

∥∥∥
J

= lim
n→∞

1
8n

∥∥∥f ({2nx, 2ny, 2nz}) − {f (2nx), 2ny, 2nz}

− {2nx, f (2ny), 2nz} − {2nx, 2ny, f (2nz)}
∥∥∥
J

� ε lim
n→∞

2n(q1+q2+q3)

8n
‖x‖q1

J ‖y‖q2
J‖z‖q3

J = 0

for all x, y, z ∈ J �. Therefore

f ({x, y, z}) = {f (x), y, z} + {x, f (y), z} + {x, y, f (z)} (5.20)

for all x, y, z ∈ J �. Since f (0) = 0, then (5.20) holds for all x, y, z ∈ J when qi < 0
for some 1 � i � 3. Similarly, we get (5.20) when q1 + q2 + q3 > 3. So the mapping
f : J → J is a JB∗ -triple derivation. �

THEOREM 5.13. Let ε, θ be non-negative real numbers and let p1, p2, p3, q1, q2, q3

be real numbers such that pipj < 0 for some 1 � i < j � 3 and q1 + q2 + q3 �= 3.
Suppose that f : J → J is a mapping satisfying (5.17) and (5.18) for all x, y, z ∈ J �.
Then the mapping f : J → J is a JB∗ -triple derivation.

Proof. It follows from the proof of Theorem 3.3 that the mapping f : J → J is
C -linear. The rest of the proof is similar to the proof of Theorem 5.12. �

REMARK 5.14. If we replace the condition q1 + q2 + q3 �= 3 in Theorems 5.12
and 5.13 by qi + qj �= 2 for some 1 � i < j � 3, then by using the similar proof of
Theorem 5.12, we get that the mapping f : J → J is a JB∗ -triple derivation.
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