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EXACT INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS

TAMÁS F. MÓRI

(communicated by J. Pečarić)

Abstract. Pachpatte [2] presented linear inequalities involving certain integrals of convex func-
tions defined on a finite closed interval. In the present notewe explore the thewhole set of possible
values of those quantities, thus obtaining sharp inequalities that cannot be further improved. Our
results are obtained by the application of the convexity method, a simple but powerful tool which
is often used in probability theory for deriving moment-type inequalities.

1. Introduction

Let f be a nonnegative convex function defined on the interval [a, b] . Pachpatte
presented the following integral inequalities ([2], (5.1)–(5.3), in a slightly rearranged
form)

1
(b − a)2

∫∫
a�x<y�b

[∫ 1

0
f (tx + (1 − t)y) dt

]
dx dy

� 3
2
· 1
(b − a)2

∫ b

a
(b − x)f (x) dx − 1

4
f (a). (1.1)

1
(b − a)2

∫∫
a�y<x�b

[∫ 1

0
f (tx + (1 − t)y) dt

]
dx dy

� 3
2
· 1
(b − a)2

∫ b

a
(x − a)f (x) dx − 1

4
f (b). (1.2)

1
(b − a)2

∫ b

a

∫ b

a

∫ 1

0
f (tx + (1 − t)y) dt dx dy

� 3
2
· 1
b − a

∫ b

a
f (x) dx − 1

4
[f (a) + f (b)]. (1.3)

All these inequalities hold with equality for linear functions.
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It is clear that the two non-symmetric cases (1.1) and (1.2) are equivalent, and
symmetric case (1.3) can be obtained simply by adding them. Inequality (1.1) can be
obtained by replacing the function f with its tangent line at x in the innermost integral
on the left-hand side.

The aim of the present note is to improve these inequalities by computing exact
upper and lower bounds for the triple integral on the left-hand sides, as functions of the
two terms on the left-hand sides. When doing so we will apply the convexity method.
This method is known to provide exact bounds for integral-type functionals in terms
of other quantities of the same kind. A detailed description of the method and some
examples of applications can be found in [1].

The bounds we are going to derive are not simply slight improvements on inequal-
ities that were once obtained with short and simply proofs. They are exact in the sense
that they cannot be further improved. In addition, they are obtained by a systematic
method which, by its applicability, is more useful than any ad hoc methods, whatever
short and simple they may be. This property makes them worth computing in spite that
they require more effort. However, these exact bounds are often too complicated to
replace the much simpler linear estimates.

Themain result will be stated and proved in Section 3 (symmetric case) and Section
4 (nonsymmetric case). Section 2 is devoted to a lemma of independent interest.

Before applying the convexitymethod we transform the quantities in consideration
into a standardized form, so as to get rid of some nuissance parameters.

First, we can assume that f is continuous. It surely is on the open interval (a, b) ,
but can have jumps at a or b . If we redefine it at the endpoints so that it becomes
continuous, the integrals do not change, but f (a)+ f (b) decreases. Therefore the upper
bounds obtained for continuous functions remain valid in the general case, but in the
lower bounds f (a) and f (b) must be substituted with f (a+) and f (b−) , resp.

In the symmetric case (1.3) we can also suppose that f (a) + f (b) is equal to 1,
because it appears in the integrals as a multiplicative factor. If there is an upper or lower
bound of the form

F

(
1

b − a

∫ b

a
f (x) dx

)
in this particular case, it can be extended to the general case as

[f (a) + f (b)] F

(
1

f (a) + f (b)
· 1
b − a

∫ b

a
f (x) dx

)
.

Next, let us introduce s by x = a(1 − s) + bs . Then s runs over [0, 1] as x runs
over [a, b] . Clearly, dx = (b − a)ds , and tx + (1 − t)y = a[t(1 − s) + (1 − t)(1 −
r)] + b[ts + (1 − t)r] . Let f̃ (z) = f (a(1−z) + bz) , then

1
(b − a)2

∫ b

a

∫ b

a

∫ 1

0
f (tx + (1 − t)y) dt dx dy

=
∫ 1

0

∫ 1

0

∫ 1

0
f̃ (ts + (1 − t)r) dt ds dr,
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1
b − a

∫ b

a
f (x) dx =

∫ 1

0
f̃ (s) ds,

1
(b − a)2

∫ b

a
(b − x)f (x) dx =

∫ 1

0
(1 − s)f̃ (s) ds,

1
(b − a)2

∫ b

a
(x − a)f (x) dx =

∫ 1

0
sf̃ (s) ds.

Since f̃ is a convex function itself, one can suppose that a = 0 and b = 1 without
loss of generality.

First we deal with the symmetric case, thus we suppose that f (0) + f (1) = 1 .
By symmetry we have∫∫

0�r<s�1

[∫ 1

0
f (ts + (1 − t)r) dt

]
ds dr =

∫∫
0�s<r�1

[∫ 1

0
f (ts + (1 − t)r) dt

]
ds dr

=
1
2

∫ 1

0

∫ 1

0

∫ 1

0
f (ts + (1 − t)r) dt ds dr.

(1.4)

Let us substitute u = ts + (1 − t)r in the inner integral, then interchange the order of
integration to obtain∫∫
0�r<s�1

[∫ 1

0
f (ts + (1 − t)r) dt

]
ds dr =

∫∫
0�r<s�1

∫ s

r

f (u)
s − r

du ds dr

=
∫ 1

0
f (u)

∫ u

0

∫ 1

u

1
s − r

ds dr du

=
∫ 1

0
f (u)

∫ u

0

[
log(1 − r) − log(u − r)

]
dr du

=
∫ 1

0
f (u)H(u) du, (1.5)

where H(u) = −u log u − (1 − u) log(1 − u) denotes the entropy function.
Let us introduce the following notations. F is the set of nonnegative convex

functions f : [0, 1] → R , such that f (0) + f (1) = 1 , and

L =
{

(ξ ,η)
∣∣∣ ξ =

∫ 1

0
f (u) du, η = 2

∫ 1

0
f (u)H(u) du, f ∈ F

}
.

Thus, we fix ξ and aim at finding

inf / sup{η | (ξ ,η) ∈ L},
or more generally, we want to characterize the whole set L .

For the convexity method we first have to find the extremal points of the set F .
Such a result may be of independent interest, therefore it is presented in a separate
section.
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2. Extremal points of F

For 0 < x � 1 let ϕx(t) =
(x − t)

x

+

, and for 0 � x < 1 let ψx(t) =
(t − x)
1 − x

+

.

THEOREM 2.1. The set of extremal points of F is equal to

F0 = {ϕx | 0 < x � 1} ∪ {ψx | 0 � x < 1}.
Every f ∈ F can be expressed as their mixture, that is, there exist measures λ and μ
defined on the Borel subsets of [0, 1] such that λ (0, 1] + μ[0, 1) = 1 , and

f (t) =
∫ 1

0+
ϕx(t) λ (dx) +

∫ 1−

0
ψx(t)μ(dx), 0 � t � 1. (2.1)

REMARK 2.1. This form of f is not unique, e.g.,

1
2

(
ϕ2/3 + ψ1/3

)
= 1

4

(
ϕ1/3 + ϕ1 + ψ0 + ψ2/3

)
.

Proof. We will prove (2.1) by constructing λ and μ explicitely. Let f ′
− , and f ′

+
denote the left, resp. right derivative of f . Furthermore, let δx denote the degenerate
distribution (unit mass) concentrated to x . Let c = argmin f , then f ′

−(c) � 0 , if
c > 0 , and f ′

+(c) � 0 , if c < 1 .
If 0 < c < 1 , define

λ = f (c)δ1 − cf ′
−(c)δc + λ0, μ = f (c)δ0 + (1 − c)f ′

+(c)δc + μ0,

where λ0(dx) = x 1(0,c)(x) df ′
−(x) , and μ0(dx) = (1 − x)1(c,1)(x) df ′

+(x) .
If c = 0 , let λ = f (0)δ1 , and μ = [f (0) + f ′

+(0)]δ0 + μ0 .
Finally, if c = 1 , let λ = [f (1) − f ′

−(1)]δ1 + λ0 , and μ = f (1)δ0 .
It is not too hard to show that in this way λ and μ satisfy (2.1). Here we only

deal with the case 0 < c < 1 in full details. One can proceed similarly in the (simpler)
cases c = 0 or c = 1 . In order to avoid lengthy repetitions those cases are left to the
reader.

Thus, suppose 0 < c < 1 . Let I(t) denote the sum of integrals on the right-hand
side of (2.1). Then

I(0) =
∫ 1

0+
dλ = f (c) − cf ′

−(c) +
∫ c−

0+
x df ′

−(x).

Integrating by parts we get∫ c−

0+
x df ′

−(x) =
[
xf ′

−(x)
]c−

0+
−
∫ c−

0+
f ′
−(x) dx = cf ′

−(c) − f (c) + f (0),

that is, I(0) = f (0) .
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Similarly, we have

I(1) =
∫ 1−

0
dμ = f (c) + (1 − c)f ′

+(c) +
∫ 1−

c+
(1 − x) df ′

+(x)

= f (c) + (1 − c)f ′
+(c) +

[
(1 − x)f ′

+(x)
]1−

c+
+
∫ 1−

c+
f ′
+(x) dx

= f (c) + (1 − c)f ′
+(c) − (1 − c)f ′

+(c) + f (1) − f (c) = f (1).

Obviously, I(c) = (1 − c)λ ({1}) + cμ({0}) = f (c) .
Let 0 < t < c . Integrating by parts again we can write

I(t) =
∫ 1

t+

x − t
x

λ (dx) +
∫ t−

0

t − x
1 − x

μ(dx)

= f (c)(1 − t) + f (c)t +
c − t

c
(−c)f ′

−(c) +
∫ c−

t+

x − t
x

x df ′
−(x)

= f (c) − (c − t)f ′
−(c) +

[
(x − t)f ′

+(x)
]c−

t+
−
∫ c−

t+
f ′
−(x) dx

= f (c) − (c − t)f ′
−(c) + (c − t)f ′

−(c) − f (c) + f (t) = f (t).

Finally, let c < t < 1 . Then

I(t) =
∫ 1

t+

x − t
x

λ (dx) +
∫ t−

0

t − x
1 − x

μ(dx)

= f (c)(1 − t) + f (c)t +
t − c
1 − c

(1 − c)f ′
+(c) +

∫ t−

c+

t − x
1 − x

(1 − x) df ′
+(x)

= f (c) + (t − c)f ′
+(c) +

[
(t − x)f ′

+(x)
]t−

c+
+
∫ t−

c+
f ′
+(x) dx

= f (c) + (t − c)f ′
+(c) − (t − c)f ′

+(c) + f (t) − f (c) = f (t).

In fact, what we have just shown is that all extremal points are among the functions
ϕx and ψx . We are also expected to prove that none of them can be expressed as a
mixture of the others. This is obviously true and not too hard to see, but, since this part
of the theorem is not needed for the convexity method, we omit the proof. �

3. Application of the convexity method in the symmetric case

In this section we characterize the set

L =
{

(ξ ,η)
∣∣∣ ξ =

∫ 1

0
f (u) du, η = 2

∫ 1

0
f (u)H(u) du, f ∈ F

}
.
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THEOREM 3.1. L is a convex set, and its projection on the horizontal (ξ) axis is
[0, 1/2] . Its boundaries are the following.

(i) Upper boundary.

L is bounded from above by the straight line η = ξ
(ii) Lower boundary.

If 0 � ξ � 1/4 , L is bounded from below by the curve η = Φ(2ξ) , where

Φ(x) = −1
3

x2 log x − (1 − x)3

3x
log(1 − x) +

5x − 2
6

. (3.1)

If 1/4 � ξ � 1/2 , L is bounded from below by the straight line

η =
5 − 2 log 2

3
ξ − 1 − log 2

3
. (3.2)

Proof. By the linearity of the integral, the set L is equal to the convex hull of
the set L0 = {(ξ , η) | f ∈ F0} . L0 is the union of its two subsets defined by
f = ϕx , 0 < x � 1 , and f = ψx , 0 � x < 1 , resp. Since ψx(s) = ϕ1−x(1 − s) , and
H(s) = H(1 − s) , the two sets of points coincide, thus we can focus on the first one.
This set is a curve Γ given in parametrized form

ξ =
∫ x

0

(
1 − t

x

)
dt =

x
2
, η = 2

∫ x

0

(
1 − t

x

)
H(t) dt = Φ(x).

We will first show that the upper boundary of the convex hull of Γ is the chord
connecting the origin with the endpoint (1/2, 1/2) . To this end it is sufficent to prove
that Γ is below the chord everywhere over the interval (0, 1/2) .

By symmetry,

η = 2
∫ 1

0
ϕx(t)H(t) dt = 2

∫ 1/2

0
[ϕx(t) + ϕx(1 − t)]H(t) dt.

Here ϕx(t) + ϕx(1 − t) is decreasing in the interval [0, 1/2] , while H(t) is inreasing,
hence

η �
∫ 1/2

0
[ϕx(t) + ϕx(1 − t)] dt

∫ 1/2

0
4H(t) dt =

x
2

= ξ .

This proves the upper bound part of Theorem 3.1.
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Figure 1. Set L with curve Γ .

For the lower bound note that Γ is S -shaped: it is convex in the beginning, and
concave afterwards.

Consider the derivatives

dη
dξ

=
d
dξ

∫ 2ξ

0

(
1 − t

2ξ

)
2H(t) dt =

1
ξ 2

∫ 2ξ

0
tH(t) dt =

∫ 1

0
4sH(2sξ) ds,

d2η
dξ 2

=
∫ 1

0
8s2H′(2sξ) ds.

Since H is increasing, the first derivative is positive and increasing for ξ � 1/2 .
On the other hand, H′ is decreasing, thus so is the second derivative. It is negative
at ξ = 1/2 , therefore the second derivative is positive in the beginning, and then it is
negative. Hence Γ is S -shaped, indeed.

From this it follows that the largest convex minorant of Γ12 coincides with the
curve itself for 0 � ξ � ξ∗ , and with the tangent line to Γ at ξ∗ for ξ∗ < ξ � 1/2 ,
where ξ∗ is characterized by the property that the tangent line to the curve at ξ∗ goes
through the upper endpoint (1/2, 1/2) . Thus ξ∗ is the only solution to the equation

1
2 −Φ(2ξ)

1
2 − ξ

= 2Φ′(2ξ), (3.3)

in the interval (0, 1/2) . One can easily verify that ξ = 1/4 satisfies (3.3), and
Φ(1/2) = (1 + 2 log 2)/12 , hence the lower bound follows. �

REMARK 3.2. From the proof one can easily derive the conditions of equality in
our bounds.
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If ξ < 1/2 , equality in the upper bound cannot be attained for continuous functions
f , but one can get arbitrarily close. If the condition of continuity is dropped, equality
is attained for functions that are linear inside the unit interval: f (t) = bt + a(1 − t)
for 0 < t < 1 , where a, b � 0 , a + b = 2ξ , and f (0) � a , f (1) � b , such that
f (0) + f (1) = 1 (they are mixtures of ϕ1 , ψ0 , 1{0} , and 1{1} ).

ξ = 1/2 can only occur for linear functions of the form f (t) = at+(1−a)(1− t) ,
with 0 � a � 1 . In this case the upper bound is sharp.

If ξ � 1/4 , then in the lower bound equality holds if and only if f = aϕ2ξ+
(1 − a)ψ1−2ξ , 0 � a � 1 (piecewise linear taking on zero between 2ξ and 1 − 2ξ ).

Finally, if ξ > 1/4 , then equality in the lower bound is attained for f that is linear
in the intervals [0, 1/2] and [1/2, 1] , and f (0) + f (1) = 1 , while f (1/2) = 2ξ − 1/2
(convex combinations of ϕ1/2 , ψ1/2 , ϕ1 , ψ0 ).

In the original setting Theorem 3.1 yields the following exact bounds.

COROLLARY 3.3.

1
(b − a)2

∫ b

a

∫ b

a

∫ 1

0
f (tx + (1 − t)y) dt dx dy � 1

b − a

∫ b

a
f (x) dx. (3.4)

If
1

b − a

∫ b

a
f (x) dx <

1
4

[f (a) + f (b)] , then

1
(b − a)2

∫ b

a

∫ b

a

∫ 1

0
f (tx + (1 − t)y) dt dx dy

� [f (a) + f (b)]Φ
(

1
f (a) + f (b)

· 1
b − a

∫ b

a
f (x) dx

)
, (3.4)

where Φ(x) is the function defined in (3.1).

On the other hand, if
1
4

[f (a) + f (b)] � 1
b − a

∫ b

a
f (x) dx , then

1
(b − a)2

∫ b

a

∫ b

a

∫ 1

0
f (tx + (1 − t)y) dt dx dy

� 5 − 2 log 2
3

· 1
b − a

∫ b

a
f (x) dx − 1 − log 2

3
[f (a) + f (b)] (3.5)

REMARK 3.4. We can see that Pachpatte’s lower bound (1.3) is sharp if and only
if f is a linear function. When a linear lower bound is needed, use (3.5) instead.

4. Application of the convexity method in the nonsymmetric case

By the equivalence of (1.1) and (1.2) it is sufficent to deal with one of them, let
that be the latter one. Thus, we want to describe the set

L′ =
{

(ξ ,η)
∣∣∣ ξ =

∫ 1

0
tf (t) dt, η =

∫ 1

0
f (t)H(t) dt, f ∈ F′

}
,
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where F′ is the set of nonnegative, convex, continuous functions f : [0, 1] → R such
that f (1) is fixed. Such an f can always be decomposed into a sum of f 0 ∈ F′ and
f 1 ∈ F′ , where f 1(1) = f 0(0) = 0 ; namely, with

f 1(t) = min
[0,t]

f − t · min
[0,1]

f , f 0(t) = min
[t,1]

f − (1 − t) · min
[0,1]

f .

This observation will be useful in the proof of the following result.

THEOREM 4.1. L′ is the upward infinite convex region bounded from below by the
following inequalities.

(i) Suppose 0 � ξ � 1
3

f (1) . Then η � 1
2

f (1)Φ(x) , where x is given by the

equation ξ =
1
6

f (1) x(3 − x) , and Φ is the function introduced in (3.1).

(ii) Suppose ξ >
1
3

f (1) . Then η � 3
2
ξ − 1

4
f (1) .

Proof. By defining

L0 =
{
(ξ ,η)

∣∣ f ∈ F′, f (0) = 1, f (1) = 0
}
,

L1 =
{
(ξ ,η)

∣∣ f ∈ F′, f (0) = 0, f (1) = 1
}

we have L′ = L̃0 + f (1)L1 , where L̃0 =
⋃
c>0

cL0 is the convex cone defined by L0 .

In order to characterize L′ we first study L0 and L1 .

Figure 2. L0 and L̃0 . Figure 3. f (1)L1 and L′ .

From Theorem 2.1 it follows that L0 is the convex hull of the curve Γ0 given in
the following parametrized form.

ξ =
∫ 1

0
tϕx(t) dt, η =

∫ 1

0
ϕx(t)H(t) dt, x ∈ (0, 1],



114 TAMÁS F. MÓRI

that is,

ξ =
∫ x

0

(
1 − t

x

)
t dt =

x2

6
, η =

∫ x

0

(
1 − t

x

)
H(t) dt = x

∫ 1

0
(1 − s)H(sx) ds.

The endpoints of the curve are (0, 0) (as x → 0 ), and (1/6, 1/4) (for x = 1 ). Since

dη
dξ

=
dη/dx
dξ/dx

=
3
x

∫ x

0

t
x2

H(t) dt =
3
x

∫ 1

0
sH(sx) ds � 0, (4.1)

η , as a function of ξ , is increasing.
Let us examine the sign of the second derivative.

d2η
dξ 2

=
3
x

[
− 9

x4

∫ x

0
tH(t) dt +

3
x2

H(x)
]

=
9
x5

[
x2H(x) − 3

∫ x

0
tH(t) dt

]
=

9
x5

[
2
∫ x

0
tH(t) dt +

∫ x

0
t2H′(t) dt − 3

∫ x

0
tH(t) dt

]
=

9
x5

∫ x

0
t3
(H(t)

t

)′
dt.

Here
(
H(t)/t

)′ = t−2 log(1 − t) < 0 , hence Γ0 is concave. Thus L0 is equal to the
domain between Γ0 and the chord connecting its endpoints. The vertical axis is tangent
to Γ0 at the origin, because from (4.1) we get lim

x→0
(dη/dξ) = +∞ . Therefore the

cone L̃0 is just the angular domain between the positive half of the vertical axis and the
ray η = 3ξ/2 , ξ � 0 .

Let us turn to L1 . It is the convex hull of the curve Γ1 given by

ξ =
∫ 1

0
tψy(t) dt, η =

∫ 1

0
ψy(t)H(t) dt, y ∈ [0, 1).

By substituting x = 1 − x and s = 1 − t we get

ξ =
∫ x

0

(
1 − s

x

)
(1 − s) ds =

x(3 − x)
6

,

η =
∫ x

0

(
1 − s

x

)
H(s) ds =

∫ x

0
ϕx(s)H(s) ds =

1
2
Φ(x).

This time we have

dη
dξ

=
dη/dx
dξ/dx

=
6

3 − 2x

∫ x

0

s
x2

H(s) ds,

d2η
dξ 2

=
6

3 − 2x

[(
12

(3 − 2x)2x2
− 12

(3 − 2x)x3

)∫ x

0
sH(s) ds +

6
(3 − 2x)x

H(x)

]

=
36 A(x)

(3 − 2x)3x3 ,
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where

A(x) = (3 − 2x)x2H(x) − 6(1 − x)
∫ x

0
sH(s) ds

= (3 − 2x)x2
(
−x log x − (1 − x) log(1 − x)

)
−

− 6(1 − x)
(
−x3

3
log x +

(1 − x)2(1 + 2x)
6

log(1 − x) +
x2 + 2x

12

)
= −x3 log x − (1 − x) log(1 − x) − (1 − x)

x2 + 2x
2

.

This is positive, because − log(1− x) � x +
x2

2
. Hence Γ1 is convex from below, and

L1 is equal to the domain between Γ1 and the chord connecting its endpoints, (0, 0)
and (1/3, 1/4) . If we move a point along Γ1 from the origin, the slope of the tangent
line drawn to Γ1 at that point increases, starting from 0 and arriving at 3/2 at ξ = 1/3 .
Therefore L′ is bounded from below by the curve f (1)Γ1 itself, if 0 � ξ � f (1)/3 ,
and by its tangent line at the endpoint

(
f (1)/3, f (1)/4

)
, if ξ � f (1)/3 . The equation

of the tangent line is

η =
3
2

(
ξ − 1

3
f (1)

)
+

1
4

f (1) =
3
2
ξ − 1

4
f (1) ;

this is the Pachpatte bound, which now proves to be sharp not only at a single point, but
over a whole halfline, unlike in the symmetric case.

Hence Theorem 4.1 follows. �

Summarizing our results in the original setting of (1.2) we obtain the following
exact lower bounds.

COROLLARY 4.2. Suppose
1

(b − a)2

∫ b

a
(x − a)f (x) dx <

1
3

f (b) . Then

1
(b − a)2

∫∫
a�y<x�b

[∫ 1

0
f (tx + (1 − t)y) dt

]
dx dy � 1

2
f (b)Φ(z),

where z is given by the equation

1
(b − a)2

∫ b

a
(x − a)f (x) dx =

1
6

f (b) z(3 − z),

and Φ is the function introduced in (3.1).

If
1

(b − a)2

∫ b

a
(x − a)f (x) dx � 1

3
f (b) , the best possible lower bound is that of

Pachpatte (1.2).
On the other hand, no upper bounds can be set. �
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Pázmány P. s. 1/C

H-1117 Budapest, Hungary
e-mail: moritamas@ludens.elte.hu

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


