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Abstract. In this article, it is shown that some new extensions on the Hardy-Hilbert inequality
related to exponent function can be established by introducing a parameter λ ( 1− q

p < λ � 2 ,
1
p + 1

q = 1 and p � q > 1) and two exponent functions Aax (A > 0, a > 1) and Bby

(B > 0, b > 1) . In particular, for the case p = 2 , an extension of the Hilbert integral inequality
is built. As an application, a new Hardy-Littlewood integral inequality is given.

1. Introduction and lemmas

Let f (x), g(x) � 0, f (x) ∈ Lp (0, +∞) , g(x) ∈ Lq (0, +∞) , 1
p + 1

q = 1 and
p > 1 . Then

∞∫
0

∞∫
0

f (x)g(y)
x + y

dxdy � π
sinπ/p

⎧⎨
⎩

∞∫
0

f p(x)dx

⎫⎬
⎭

1/p ⎧⎨
⎩

∞∫
0

gq(y)dy

⎫⎬
⎭

1/q

(1.1)

where the constant factor π
sin π/p is the best possible. And the equality in (1.1) holds if

and only if f (x) = 0 or g(x) = 0 . This is the famous Hardy-Hilbert integral inequality
(see [1]). In particular, when p = 2 , the classical Hilbert’s integral inequality is that

∞∫
0

∞∫
0

f (x)g(y)
x + y

dxdy � π

⎧⎨
⎩

∞∫
0

f 2(x)dx

⎫⎬
⎭

1/2 ⎧⎨
⎩

∞∫
0

g2 (y) dy

⎫⎬
⎭

1/2

(1.2)

where the constant factor π is the best possible.
The both inequalities (1.1) and (1.2) are important in analysis and its applications

(see [2]). Recently, the various extensions on the inequality (1.1) and (1.2) appeared
in some papers (such as [3]-[7] etc.). They focalize on changing the denominator of the
function of the left-hand side of (1.1). Such as the denominator ( x + y) is replaced by
(Ax + By)λ in paper [4]; the denominator ( x+y) is replaced by xt +yt ( t is a parameter
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which is independent of x and y ) in the paper [5]; Generally, the denominator ( x + y)
is replaced by (xu(x) + yv(y))λ in the paper [6] etc. Some new results in these papers
were yielded. If the denominator of the function of the left-hand side of (1.1) is replaced
by (Aax + Bby)λ and the integral area of it is replaced by (−∞, +∞)× (−∞, +∞) ,a
new inequality established is significant in theory and applications. The main purpose
of the present paper is to establishthe following inequality of the form

+∞∫
−∞

+∞∫
−∞

f (x)g(y)

(Aax + Bby)λ
dxdy

� k (λ )

⎧⎨
⎩

+∞∫
−∞

ωp (λ , x) f p(x)dx

⎫⎬
⎭

1/p ⎧⎨
⎩

+∞∫
−∞

ωq (λ , x) gq (x) dx

⎫⎬
⎭

1/q (1.3)

and to decide the coefficient k (λ ) and to prove k (λ ) to be the best possible, at
same time to find the specific expression of the weight function ωr (λ , x) , (r = p, q) .
Evidently, a special kernel of exponential type and the interval of integration in (1.3)
are different from those in the above -mentioned papers. In particular, it should be
mentionable that Aax can not be replaced by xu(x) in paper [6] and that Bby can not
be also replaced by yv(y) in paper [6], where u and v are non-negative differentiable
functions, because xu(x) and yv(y) have no definitions in paper [6] when x � 0 and
y � 0 . In general, the method adopted by us has trait itself, explicitly, the proof of the
optimization k (λ ) possesses new meanings.

For convenience, let αp = 1 − 2−λ
p . Throughout this paper, we will frequently

use the beta function of the form B∗ = B (λ − αp,αp) . In order to prove our assertions
we need the following lemmas.

LEMMA 1.1. Let r > 1, 0 � rs < 1 and λ > 1 − rs . Then

∞∫
0

1
(1 + t)λ

(
1
t

)rs

dt = B (λ − (1 − rs), 1 − rs) , (1.4)

where B ( p, q) is the beta function.

LEMMA 1.2. Let 0 � ps < 1 and 1 − qs < λ � 2 . Define a function Φ by

Φ(s) = {B (λ − (1 − ps) , 1 − ps)}1/p {B (λ − (1 − qs) , 1 − qs)}1/q (1.5)

where B(m, n) is beta function. Then Φ(s) attains the minimumB∗ , when s = 2−λ
pq .

The proofs of the lemmas 1.1 and 1.2 have given in the paper [8]. It is omitted
here.
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2. Theorem and its corollaries

In the section, we will apply the above lemmas to build some new inequalities. For
sake of convenience, we need also to define some functions.

ωp (λ , x) = (Aax)1−λ (Aax ln a)1−p andωq (λ , x) = (Bbx)1−λ (Bbx ln b)1−q (2.1)

THEOREM 2.1. Let A, B > 0, a, b > 1, f (x), g (x) � 0, 1
p+ 1

q = 1, p � q > 1, 1−
q
p < λ � 2. If

+∞∫
−∞

{
(ax)2−λ−p

}
f p (x) dx < +∞ and

+∞∫
−∞

{
(bx)2−λ−q

}
gq (x) dx < +∞ ,

then

+∞∫
−∞

+∞∫
−∞

f (x)g(y)

(Aax + Bby)λ
dxdy � μB∗

⎧⎨
⎩

+∞∫
−∞

{
(ax)2−λ−p

}
f p(x)dx

⎫⎬
⎭

1/p

×
⎧⎨
⎩

+∞∫
−∞

{
(bx)2−λ−q

}
gq (x) dx

⎫⎬
⎭

1/q

,

(2.2)

where μ =
(

A1−λ

B ln b

) 1
p

(
B1−λ

B ln a

) 1
q

, B∗ is beta function and the constant factor μB∗ is

the best possible. The equality in (2.2) holds if and only if f (x) = 0 or g(x) = 0 .

Proof. Let s > p , f (x) = F (x) {Aax ln a}1/q and g(y) = G(y) {Bby ln b}1/p .
We firstly define two functions:

α =
F(x) {Bby ln b}1/p

(Aax + Bby)λ/p

(
Aax

Bby

)s

and β =
G(y) {Aax ln a}1/q

(Aax + Bby)λ/q

(
Bby

Aax

)s

(2.3)

Let’s apply Hölder’s inequality to estimate the right hand side of (2.2) as follows:

+∞∫
−∞

+∞∫
−∞

f (x)g(y)

(Aax + Bby)λ
dxdy

=

+∞∫
−∞

+∞∫
−∞

F(x) {Bby ln b}1/p

(Aax + Bby)λ/p

(
Aax

Bby

)s G(y) {Aax ln a}1/q

(Aax + Bby)λ/q

(
Bby

Aax

)s

dxdy

=

+∞∫
−∞

+∞∫
−∞

αβdxdy �

⎧⎨
⎩

+∞∫
−∞

+∞∫
−∞

αpdxdy

⎫⎬
⎭

1/p ⎧⎨
⎩

+∞∫
−∞

+∞∫
−∞

βqdxdy

⎫⎬
⎭

1/q

(2.4)
It is easy to deduce that

+∞∫
−∞

+∞∫
−∞

αpdxdy =

+∞∫
−∞

+∞∫
−∞

Fp(x)(Bby ln b)
(Aax + Bby)λ

(
Aax

Bby

)ps

dxdy =

+∞∫
−∞

ϖ (p, λ , x) Fp(x)dx
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Based on Lemma 1.1 we compute the weight function ϖ as follows:

ϖ (p, λ , x) =

+∞∫
−∞

Bby ln b

(Aax + Bby)λ

(
Aax

Bby

)ps

dy =

+∞∫
0

(Aax)1−λ

(1 + t)λ

(
1
t

)ps

dt

= (Aax)1−λ B (λ − (1 − ps) , 1 − ps)

Notice that F(x) = {Aax ln a}−1/q f (x) , hence we have

+∞∫
−∞

+∞∫
−∞

αpdxdy = B (λ − (1 − ps) , 1 − ps)

+∞∫
−∞

ωp (λ , x) f p(x)dx (2.5)

where ωp (λ , x) is defined by (2.1).
Similarly, we have

+∞∫
−∞

+∞∫
−∞

βqdxdy = B (λ − (1 − qs) , 1 − qs)

∞∫
−∞

ωq (λ , x) gq(x)dx (2.6)

where ωq (λ , x) is defined by (2.1). Substituting (2.5) and (2.6) into (2.4), we obtain

+∞∫
−∞

+∞∫
−∞

f (x)g(y)
(Aax + Bby)λ

� Φ (s)

⎧⎨
⎩

+∞∫
−∞

ωp (λ , x) f p(x)dx

⎫⎬
⎭

1/p

×
⎧⎨
⎩

+∞∫
−∞

ωq (λ , x) gq(x)dx

⎫⎬
⎭

1/q
(2.7)

where Φ (s) is defined by (1.5).
It follows from Lemma 1.2 that the minimum of Φ (s) is B∗ , when s = 2−λ

pq ,
where λ satisfies the constraint 1 − q

p < λ � 2 . So we obtain from (2.7) that

+∞∫
−∞

+∞∫
−∞

f (x)g(y)
(Aax+Bby)λ

dxdy � B∗

⎧⎨
⎩

+∞∫
−∞

ωp (λ , x) f p(x)dx

⎫⎬
⎭

1/p

×
⎧⎨
⎩

+∞∫
−∞

ωq (λ , x) gq(x)dx

⎫⎬
⎭

1/q

.

(2.8)

where ωr (λ , x) is defined by (2.1), r = p, q .
It remains to show that B∗ in (2.8) is the best possible. Define two functions by

˜f (x) =
{

0, x ∈ (−∞, 1)

(Aax)−(2−λ+ε)/p (Aax ln a) , x ∈ [1, +∞)
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g̃(y) =
{

0, y ∈ (−∞, 1)

(Bby)−(2−λ+ε)/q (Bby ln b) , y ∈ [1, +∞)
Assume that 0 < ε < (λ − 1) + q

2p , then

+∞∫
−∞

(Aax)1−λ (Aax ln a)1−p ˜f p(x)dx =
∫ +∞

1
(Aax)−1−ε d (Aax) =

1
ε
.

Similarly, we have
∞∫

−∞
(Bby)1−λ (Bby ln b)1−q g̃q(y)dy =

1
ε
.

If B∗ is not the best possible, then there exists k > 0 and k less than B∗ such that

+∞∫
−∞

+∞∫
−∞

˜f (x)g̃(y)

(Aax + Bby)λ
dxdy < k

⎛
⎝

∞∫
−∞

ωp (λ , x) ˜f p(x)dx

⎞
⎠

1/p ⎛
⎝

∞∫
−∞

ωq (λ , x) g̃q(x)dx

⎞
⎠

1/q

= k

⎧⎨
⎩

+∞∫
−∞

(Aax)1−λ (Aax ln a)1−p ˜f p(x)dx

⎫⎬
⎭

1/p

×
⎧⎨
⎩

∞∫
−∞

(Bby)1−λ (Bby ln b)1−q g̃q(y)dy

⎫⎬
⎭

1/q

=
k
ε

(2.9)
where ωr (λ , x) is defined by (2.1), r = p, q .

On the other hand, we have
+∞∫

−∞

+∞∫
−∞

˜f (x)g̃(y)

(Aax + Bby)λ
dxdy

=

∞∫
1

∞∫
1

{
(Aax)−(2−λ+ε)/p (Aax ln a)

} {
(Bby)−(2−λ+ε)/q (Bby ln b)

}

(Aax + Bby)λ
dxdy

=

∞∫
1

⎧⎨
⎩

∞∫
1

(Bby)−(2−λ+ε)/q (Bby ln b)

(Aax + Bby)λ
dy

⎫⎬
⎭

{
(Aax)−(2−λ+ε)/p (Aax ln a)

}
dx

=

+∞∫
1

⎧⎪⎪⎨
⎪⎪⎩

+∞∫

Bb/Aax

1

(1 + t)λ

(
1
t

)−(2−λ+ε)/q

dt

⎫⎪⎪⎬
⎪⎪⎭

{
(Aax)−1−ε (Aax ln a)

}
dx

=
1
ε

∞∫

Bb/Aax

1

(1 + t)λ
(

1
t

)(2−λ+ε)/q
dt
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If the lower limit Bb/Aax of the integral is replaced by zero, thenthe resulting error

is smaller than (Bb/Aax)α
α , where α is positive and independent of ε . In fact, we have

Bb/Aax∫
0

1

(1 + t)λ

(
1
t

)(2−λ+ε)/q

dt <

Bb/Aax∫
0

t−(2−λ+ε)/qdt =
(Bb/Aax)β

β

where β = 1 − (2 − λ + ε)/q. If 0 < ε < (λ − 1) + q
2p , then we may take α such

that

α = 1 − (2 − λ ) + ((λ − 1) + q/2p)
q

=
1
2p

.

Consequently, we get

+∞∫
−∞

+∞∫
−∞

˜f (x)g̃(y)
(Aax + Bby)λ

dxdy >
1
ε
{B∗ + ◦ (1)} . (ε → 0) (2.10)

Clearly, when ε is small enough, the inequality (2.9) is in contradiction with
(2.10). Therefore, B∗ is the best possible value of which the inequality (2.8) keeps
valid.

As a result, it follows from (2.8) that the inequality (2.2) is yielded after simpli-
fications and the constant factor μB∗ is the best possible. And it is obvious that the
equality in (2.2) holds if and only if f ( x)=0 or g ( x)=0. The proof of Theorem is
completed.

In particular, when λ = 1 , B∗ is reduced to π
sin π/p , we have the following result:

COROLLARY 2.2. Let A, B > 0 , a, b > 1 , f (x), g(x) � 0 , 1
p + 1

q = 1 and p > 1 .

If
+∞∫
−∞

{
(ax)1−p

}
f p(x)dx < +∞ and

+∞∫
−∞

{
(bx)1−q

}
gq(x)dx < +∞ , then

+∞∫
−∞

+∞∫
−∞

f (x)g(y)
Aax + Bby

dxdy � π
μ1 sinπ/p

⎧⎨
⎩

+∞∫
−∞

{
(ax)1−p

}
f p(x)dx

⎫⎬
⎭

1/p

×
⎧⎨
⎩

+∞∫
−∞

{
(bx)1−q

}
gq(x)dx

⎫⎬
⎭

1/q

.

(2.11)

where μ1 = (A ln b)1/q(B ln a)1/p , and the constant factor π
μ1 sin π/p is the best possible.

When p = 2 , we get a new Hilbert integral type inequality.
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COROLLARY 2.3. Let A, B > 0 , a, b > 1 , 0 < λ � 2. If
+∞∫
−∞

a−λxf 2(x)dx < +∞

and
+∞∫
−∞

b−λxg2(x)dx < +∞ , then

(i)

+∞∫
−∞

+∞∫
−∞

f (x)g(y)

(Aax + Bby)λ
dxdy �

B
( λ

2 , λ
2

)
μ2

⎧⎨
⎩

+∞∫
−∞

a−λxf 2(x)dx

⎫⎬
⎭

1/2

×
⎧⎨
⎩

+∞∫
−∞

b−λxg2 (x) dx

⎫⎬
⎭

1/2

.

(2.12)

where μ2 =
(
(AB)λ ln a ln b

)1/2
and B( λ2 , λ2 ) is beta function, and the constant factor

B( λ2 , λ2 )
μ2

is the best possible. In particular,

(ii) For λ = 1 , we have

+∞∫
−∞

+∞∫
−∞

f (x)g(y)
Aax + Bby

dxdy � π
(AB ln a ln b)1/2

⎧⎨
⎩

+∞∫
−∞

a−xf 2(x)dx

⎫⎬
⎭

1/2

×
⎧⎨
⎩

+∞∫
−∞

b−xg2(x)dx

⎫⎬
⎭

1/2

.

(2.13)

In particular, when A = B = 1 and a = b , we have

+∞∫
−∞

+∞∫
−∞

f (x)g(y)
ax + ay

dxdy � π
ln a

⎧⎨
⎩

+∞∫
−∞

a−xf 2(x)dx

⎫⎬
⎭

1/2 ⎧⎨
⎩

+∞∫
−∞

a−xg2(x)dx

⎫⎬
⎭

1/2

. (2.14)

(iii) For λ = 2 , we have

+∞∫
−∞

+∞∫
−∞

f (x)g(y)

(Aax + Bby)2 dxdy � 1

AB (ln a ln b)1/2

⎧⎨
⎩

+∞∫
−∞

a−2xf 2(x)dx

⎫⎬
⎭

1/2

×
⎧⎨
⎩

+∞∫
−∞

b−2xg2(x)dx

⎫⎬
⎭

1/2

.

(2.15)

And the constant factors π
(AB ln a ln b)1/2 in (2.13), π

ln a in (2.14) and 1
AB(ln a ln b)1/2 in

(2.15) are the best possible.
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3. Application

In this section, we will give a new Hardy-Littlewood integral type inequality.

Let f (x) ∈ L2 (0, 1) and f (x) �= 0 . If an =
1∫
0

xnf (x)dx , n = 0, 1, 2, · · · , then

we have the Hardy-Littlewood’s inequality (see [1]) of the form

∞∑
n=0

a2
n < π

1∫
0

f 2 (x) dx (3.1)

where π is the best constant that the inequality (3.1) keeps valid. In our previous paper
[9], the inequality (3.1) was extended and established the following inequality:

∞∫
0

f 2(x)dx < π
1∫

0

h2(x)dx (3.2)

where f (x) =
1∫
0

txh(x)dx , x ∈ [0, +∞)

The inequality (3.2) is called the Hardy-Littlewood integral inequality. Afterwards
the inequality (3.2) was refined into the following form (see [10]):

∞∫
0

f 2(x)dx � π
1∫

0

th2 (t) dt. (3.3)

We will further extend the inequality (3.3) here.

THEOREM 3.1. Let h (t) ∈ L2 (0, 1) , h (t) �= 0 and a > 1 . Define a function by

f (x) =

1∫
0

ta
x |h (t)| dt x ∈ (−∞, +∞)

If 0 <
+∞∫
−∞

(ax)1−r f r(x)dx < +∞ , (r = p, q), 1
p + 1

q = 1 and p � q > 1 , then

⎛
⎝

+∞∫
−∞

f 2(x)dx

⎞
⎠

2

<
π

(sin π/p) ln a

⎛
⎝

+∞∫
−∞

(ax)1−p f p(x)dx

⎞
⎠

1/p

×
⎛
⎝

+∞∫
−∞

(ax)1−q f q(x)dx

⎞
⎠

1/q 1∫
0

th2 (t) dt

(3.4)
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where the constant factor π
(sin π/p) ln a in (3.4) is the best possible.

Proof. Let us write f 2(x) in form:

f 2(x) =

1∫
0

f (x)ta
x |h (t)| dt.

Apply, in turn, Schwarz’s inequality and Corollary 2.2, we have

⎛
⎝

+∞∫
−∞

f 2(x)dx

⎞
⎠

2

=

⎧⎨
⎩

∞∫
−∞

⎛
⎝

1∫
0

f (x)ta
x |h (t)| dt

⎞
⎠ dx

⎫⎬
⎭

2

=

⎧⎨
⎩

1∫
0

⎛
⎝

+∞∫
−∞

f (x)ta
x−1/2dx

⎞
⎠ t1/2 |h (t)| dt

⎫⎬
⎭

2

�
1∫

0

⎛
⎝

+∞∫
−∞

f (x)ta
x−1/2dx

⎞
⎠

2

dt

1∫
0

th2 (t) dt

=

1∫
0

⎛
⎝

+∞∫
−∞

f (x)ta
x−1/2dx

⎞
⎠

⎛
⎝

+∞∫
−∞

f (y)ta
y−1/2dy

⎞
⎠ dt

1∫
0

th2 (t) dt

=

1∫
0

⎛
⎝

+∞∫
−∞

+∞∫
−∞

f (x)f (y)ta
x+ay−1dxdy

⎞
⎠ dt

1∫
0

th2 (t) dt

=

⎛
⎝

+∞∫
−∞

+∞∫
−∞

f (x)f (y)
ax + ay

dxdy

⎞
⎠

1∫
0

th2 (t) dt

� π
(sin π/p) ln a

⎧⎨
⎩

+∞∫
−∞

(ax)1−pf p(x)dx

⎫⎬
⎭

1/p

×
⎧⎨
⎩

+∞∫
−∞

(ay)1−qf q(y)dy

⎫⎬
⎭

1/q 1∫
0

th2 (t) dt.

(3.5)
Since h (t) �= 0 , f 2(x) �= 0 , it is impossible to take equality in (3.5). The proof

of the theorem is completed. �

In particular, when p = 2 , we have the following result:

COROLLARY 3.2. Let a > 1 , h (t) and f (x) be the functions with the assumptions
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as the theorem 3.1. If 0 <
∞∫
0

(ax)−1f 2(x)dx < +∞ , then

⎛
⎝

+∞∫
−∞

f 2(x)dx

⎞
⎠

2

<
π

ln a

⎛
⎝

+∞∫
−∞

(ax)−1f 2(x)dx

⎞
⎠

1∫
0

th2 (t) dt (3.6)

where the constant factor π
ln a in (3.6) is the best possible.
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