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Abstract. Let

aIp(x) =
∑
n�0

(x/2)2n+p

n!Γ(p + an + 1)

be the Galué’s generalized modified Bessel function depending on parameters a = 0, 1, 2, . . .
and p > −1. Consider the function aI p : R → R, defined by aI p(x) = 2pΓ(p+1)x−p

aIp(x).
Motivated by the inequality of Lazarević, namely

cosh x <

(
sinh x

x

)3

for x �= 0, in order to generalize this inequality we prove that the Turán-type, Lazarević-type
inequalities

[aI p+1(x)]2 � aI p(x)aI p+2(x), [aI p(x)]p+1 � [aI p+1(x)]p+a+1

hold for all x ∈ R. Moreover, we prove that the functions

p �→ aI p+1(x)/aI p(x), p �→ [aI p(x)](p+1)(p+2)...(p+a)

are increasing on (−1,∞).

1. Introduction and Preliminaries

Let us consider the well-known second-order Bessel differential equation [20, p.
38]

x2y′′(x) + xy′(x) + (x2 − p2)y(x) = 0. (1)

The function Jp, which is called the Bessel function of the first kind of order p, is
defined as a particular solution of (1). This function has the form [20, p. 40]

Jp(x) =
∑
n�0

(−1)n

n!Γ(p + n + 1)

( x
2

)2n+p
, x ∈ R. (2)
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The differential equation [20, p. 77]

x2y′′(x) + xy′(x) − (x2 + p2)y(x) = 0, (3)

which differs from Bessel’s equation only in the coefficient of y, is of frequent occur-
rence in problems of mathematical physics. The particular solution of (3) is called the
modified Bessel function of the first kind of order p, and is defined by the formula [20,
p. 77]

Ip(x) =
∑
n�0

1
n!Γ(p + n + 1)

( x
2

)2n+p
, ∈ R. (4)

Recently, Galué [13] introduced a generalized Bessel function of the form

aJp(x) =
∑
n�0

(−1)n

n!Γ(p + an + 1)

( x
2

)2n+p
, x ∈ R, (5)

where a is a natural number and for this generalized Bessel function he derived some
differential properties and integral representations. Observe that 1Jp = Jp. We define
Galué’s generalized modified Bessel function analogously with (5) by the following
formula:

aIp(x) =
∑
n�0

1
n!Γ(p + an + 1)

( x
2

)2n+p
, x ∈ R, a ∈ N. (6)

Let us consider the function aI p(x) = 2pΓ(p + 1)x−p
aIp(x) and denote 1I p simply

with I p. In 1951 Thiruvenkatachar and Nanjundiah [19] have proved the Turán-type
inequality

[I p(x)]2 � I p−1(x)I p+1(x) ⇐⇒ I2
p(x) − Ip−1(x)Ip+1(x) �

I2
p(x)

p + 1
, (7)

by comparing the coefficients in the Cauchy product

Ip(x)Iq(x) =
∑
n�0

(
p + q + 2n

n

)
(x/2)p+q+2n

Γ(p + n + 1)Γ(q + n + 1)
.

For more details about the Turán type inequalities the interested reader is referred to the
most recent papers [1], [7], [10], [15] on this topic and to the references therein.

In 1991 Joshi and Bissu [14] examined an alternate derivation of (7) and slightly
extended this inequality. Recently in [8] using a different approach we rediscovered the
inequality (7), moreover we improved the extension of Joshi and Bissu, proving that
the function p �→ I p+1(x)/I p(x) is increasing, i.e. if p � q > −1, then we have that
[8, Theorem 1.8]

I p+1(x)I q(x) � I p(x)I q+1(x). (8)

On the other hand there is another inequality of special interest, namely the Lazarević
inequality [16, p. 270]

I−1/2(x) = cosh x �
(

sinh x
x

)3

= [I 1/2(x)]3,
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or equivalently the inequality

[I−1/2(x)]−1/2+1 � [I 1/2(x)]1/2+1, (9)

where x ∈ R and the exponent 3 is the least possible. In the same paper [8, Theorem
1.8] using (7) we generalized (9) proving that if p > −1, then

[I p(x)]p+1 � [I p+1(x)]p+2, x ∈ R. (10)

Moreover using (8) we proved that [8, Theorem 1.8] for x ∈ R, p > −1 the function
p �→ [I p(x)]p+1 is increasing, i.e. we have ∂[I p(x)]p+1/∂p � 0. Our aim in Section 2
is to extend these results to Galué’s generalized modified Bessel functions. Theorem 1,
2 are the main results of Section 2. In Section 3 we derive some other properties of the
functions aIp and aI p.

2. Generalization of Lazarević’s inequality

Our first main result reads as follows.

THEOREM 1. If a = 0, 1, 2, . . . and p > −1, then the inequalities

[aI p+1(x)]2 � aI p(x)aI p+2(x), [aI p(x)]p+1 � [aI p+1(x)]p+a+1 (11)

hold for all x ∈ R. In both of inequalities equality holds if x = 0 or a = 0. Moreover
here the exponent p is the best possible in the sense that α = (p + a + 1)/(p + 1) is
the smallest value of α for which aI p(x) � [aI p+1(x)]α holds.

Proof. First observe that when a = 0 the function aI p becomes ex2/2, thus in
both inequalities of (11) we have equality. In what follows suppose that a �= 0. Let
us consider the function aγp defined by the relation aI p(x) = aγp(x2), x ∈ R. Due to
definitions it is enough to show that aγp+1(x) �

√
aγp(x)aγp+2(x) holds for all x � 0.

For convenience let us introduce the following notations:

Qp
n(x) :=

n∑
i=0

ai(p)xi, where ai(p) :=
(1/4)iΓ(p + 1)
Γ(p + ai + 1)i!

, i ∈ {0, 1, . . . , n}. (12)

The power series aγp(x) is convergent for all x ∈ R, so from (12) it is clear that
lim

n→∞Qp
n(x) = aγp(x), thus it is enough to show that

Qp+1
n (x) �

√
Qp

n(x)Q
p+2
n (x) (13)

holds for all x � 0 and p > −1. Using the well-known Cauchy–Buniakowsky–
Schwarz inequality we obtain that

Qp
n(x)Q

p+2
n (x) =

[
n∑

i=0

ai(p)xi

][
n∑

i=0

ai(p + 2)xi

]
�

[
n∑

i=0

√
ai(p)ai(p + 2)xi

]2

.
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Taking into account this inequality in order to prove (13) we just need to show that
the following inequality holds

n∑
i=0

√
ai(p)ai(p + 2)xi � Qp+1

n (x) =
n∑

i=0

ai(p + 1)xi.

Now for this we prove that
√

ai(p)ai(p + 2) � ai(p+1)holds for all i ∈ {0, 1, . . . , n}.
Using (12) and the hypotheses (p > −1 ) this relation is equivalent to the inequality
(p + ai + 1)(p + 2) � (p + ai + 2)(p + 1), which clearly holds, because ai � 0. Thus
the first inequality in (11) holds.

It remains to prove that the first inequality in (11) implies the second inequality in
(11). Observe that the function aI p is even, thus in fact it is enough to show that the
inequality [aγp(x)]p+1 � [aγp+1(x)]p+a+1, or equivalently

[aγp+1(x)]
p+a+1
p+1

aγp(x)
� 1. (14)

holds for all x � 0. Taking the logarithm (due to the hypotheses we have aγp(x) > 0 )
of both sides of (14) we just need to prove that

ϕ(x) :=
p + a + 1

p + 1
log[aγp+1(x)] − log[aγp(x)] � 0. (15)

In order to show (15) we prove that the function ϕ : [0,∞) → R is increasing, and
consequently ϕ(x) � ϕ(0) = 0. It results that

ϕ′(x) =
p + a + 1

p + 1
· aγ ′p+1(x)

aγp+1(x)
− aγ ′p(x)

aγp(x)
.

Since (n + 1)an+1(p) = a1(p)an(p + a) holds for all a, n ∈ N, p > −1, it is easy to
verify that

aγ ′p(x) = a1(p)aγp+a(x), (16)

for all a ∈ N, x ∈ R, p ∈ R such that p + 1 �= 0,−1,−2, . . . . Thus applying (16)
for p and p + 1 together with (12), we obtain

ϕ′(x) =
p + a + 1

p + 1
a1(p + 1) aγp+a+1(x)

aγp+1(x)
− a1(p) aγp+a(x)

aγp(x)

=a1(p)
[

aγp+a+1(x)
aγp+1(x)

− aγp+a(x)
aγp(x)

]
.

Due to the inequality [aγp+1(x)]2 � aγp(x)aγp+2(x), we have

aγp+1(x)
aγp(x)

� aγp+2(x)
aγp+1(x)

� aγp+3(x)
aγp+2(x)

� · · · � aγp+m+1(x)
aγp+m(x)

for allp > −1, m = 1, 2, 3, . . . and x � 0. Thus choosing m = a it is easy to verify
that

aγp+a+1(x)aγp(x) � aγp+a(x)aγp+1(x)
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holds for all a = 1, 2, . . . , x � 0, p > −1. It follows that ϕ′(x) � 0, hence the
asserted result follows. Finally observe that the second inequality in (11) can be written
as

aI p(x) � [aI p+1(x)](p+a+1)/(p+1). (17)

All that remains is to note that both members of (17) are even functions. Since

aI p(x) = 1 + a1(p)x2 + . . . , and [aI p+1(x)]α = 1 + α · a1(p + 1)x2 + . . . ,

we infer that α = a1(p)/a1(p + 1) = (p + a + 1)/(p + 1) is the smallest value of α
for which aI p(x) � [aI p+1(x)]α holds. Thus the proof is complete. �

The next result is a generalization of Theorem 1.

THEOREM2. If a = 0, 1, 2, . . . and p > −1, then the function p �→ aI p+1(x)/aI p(x)
is increasing, i.e. if p � q > −1, then

aI p+1(x)aI q(x) � aI p(x)aI q+1(x). (18)

Moreover, the function p �→ [aI p(x)](p+1)(p+2)...(p+a) is increasing too.

Proof. There is nothing to prove when a = 0. So suppose that a �= 0. Observe
that to prove (18) it is enough to show that

aγp+1(x)aγq(x) � aγp(x)aγq+1(x), (19)

which is equivalent to∑
n�0

an(p + 1)xn ·
∑
n�0

an(q)xn �
∑
n�0

an(p)xn ·
∑
n�0

an(q + 1)xn.

And this is true if

ai(p + 1)xiaj(q)xj + aj(p + 1)xjai(q)xi � aj(p)xjai(q + 1)xi + ai(p)xiaj(q + 1)xj

holds for all i, j ∈ N. This can be verified by adding up the corresponding parts of these
inequalities for i and then summing for j. In what follows we want to prove that the
inequality

ai(p + 1)aj(q) + aj(p + 1)ai(q) � aj(p)ai(q + 1) + ai(p)aj(q + 1) (20)

holds for all i, j ∈ N. Using the notations

β1 := Γ(p + ai + 2)Γ(q + aj + 2),

β2 := Γ(q + ai + 2)Γ(p + aj + 2),

we get that (20) is equivalent to the inequality

(p+1) [β2(q + aj + 1) + β1(q + ai + 1)] � (q+1) [β1(p + aj + 1) + β2(p + ai + 1)] .

Hence it is enough to show that

(p + 1)(iβ1 + jβ2) − (q + 1)(iβ2 + jβ1) � 0 (21)
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holds for all i, j ∈ N. Because p � q, to deduce (21) it remains to prove that
(i − j)(β1 − β2) � 0. Finally observe that this above inequality clearly holds because
by assumptions we have that if i � j ( i � j respectively) then β1 � β2 (β1 � β2

respectively). This is justified by the fact that the function

x �→ Γ(ax + p + 2)
Γ(ax + q + 2)

is increasing on [0,∞), and from this it remains to prove that

Γ′(ax + p + 2)
Γ(ax + p + 2)

� Γ′(ax + q + 2)
Γ(ax + q + 2)

(22)

holds for all x � 0 and p � q > −1. It is well-known that the function x �→ Γ(ax) is
log-convex, therefore x �→ Γ′(ax)/Γ(ax) is increasing, which implies (22).

In what follows we proceed exactly as in the proof of Theorem 1. Suppose that
p � q > −1, and define the function φ : [0,∞) → R with the relation

φ(x) =
(p + 1)a

(q + 1)a

log[aγp(x)] − log[aγq(x)]. (23)

Application of (16) for p and q, together with (23) implies that

φ ′(x) = a1(q)
[

aγp+a(x)
aγp(x)

− aγq+a(x)
aγq(x)

]
.

Now from (19) we obtain that

aγq(x)
aγp(x)

� aγq+1(x)
aγp+1(x)

� aγq+2(x)
aγp+2(x)

� · · · � aγq+m(x)
aγp+m(x)

,

where p � q > −1, m = 1, 2, . . . and x � 0. Thus choosing again m = a it is clear
that we have

aγp+a(x)aγq(x) � aγp(x)aγq+a(x), (24)

and consequently φ ′(x) � 0, for all x � 0. Thus φ is increasing and consequently
φ(x) � φ(0) = 0, i.e. [aγp(x)](p+1)a � [aγq(x)](q+1)a , for all x � 0, where (p + 1)a =
(p + 1)(p + 2) . . . (p + a) = Γ(p + a + 1)/Γ(p + 1) , (p + 1)0 = 1 is the well-known
Pochhammer symbol defined in terms of Euler’s gamma function. This implies that
[aI p(x)](p+1)a � [aI q(x)](q+1)a , for all x ∈ R, therefore the proof is complete. �

There is another notion of generalized Bessel function, which was elaborated by
the author. Namely, the generalized Bessel function of the first kind vp is defined [9]
as a particular solution of the differential equation

x2v′′(x) + bxv′(x) +
[
cx2 − p2 + (1 − b)p

]
v(x) = 0, (25)

where b, p, c ∈ R, and vp has the infinite series representation

vp(x) =
∑
n�0

(−1)ncn

n!Γ
(
p + n + b+1

2

) ·
( x

2

)2n+p
, x ∈ R.
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This function permits us to study the Bessel function Jp -defined by (2)- and the
modified Bessel function Ip -defined by (4)- together. For c = 1 and b = 1 equation
(25) reduces to Bessel’s equation (1) with the Bessel function of the first kind as a
particular solution. Now for c = −1 and b = 1 the equation (25) reduces to the
differential equation (3). The generalized and normalized Bessel function of the first
kind is defined [9] as follows

up(x) = 2pΓ (κ) · x−p/2vp(x1/2) =
∑
n�0

(−c/4)n

(κ)n

xn

n!
, (26)

where κ := p+(b+1)/2 �= 0,−1,−2, . . . and (a)n = Γ(a+n)/Γ(a) is the well known
Pochhammer symbol defined in terms of Euler’s Γ -function. This function is related
to an obvious transform of hypergeometric function 0F1, i.e. up(x) = 0F1(κ ,−cx/4)
and satisfies the following differential equation

xu′′(x) + κu′(x) + (c/4)u(x) = 0.

For properties of the function up, such as differential properties, integral representations
and interesting functional inequalities we refer to the papers [5], [6], [9]. Finally, let us
consider the function λp defined by λp(x) = up(x2). Recall that for c = −1 and b = 1
this function reduces to the function I p, defined by I p(x) = 2pΓ(p + 1)x−pIp(x).

Thus, if we combine the two notions of generalized Bessel function, then we may
define the function avp depending now from four parameters a, b, c, p in the following
form:

avp(x) :=
∑
n�0

(−1)ncn

n!Γ
(
p + an + b+1

2

) ·
( x

2

)2n+p
, x ∈ R.

Moreover, analogously as in (26) we may define the normalized form of this generalized
Bessel function, i.e. for a ∈ N, b, c, p, x ∈ R such that κ := p + (b + 1)/2 �=
0,−1,−2, . . . , let us consider the function

aλp(x) := aup(x2) = 2pΓ (κ) · x−p
avp(x) =

∑
n�0

(−c/4)nΓ (κ)
Γ (κ + an)

x2n

n!
. (27)

It is worth mentioning that when c = −1 and b = 1 then aup reduces to aγp, while
aλp reduces to aI p. The next result improves the results from [8].

THEOREM 3. If a = 0, 1, 2, . . . , c � 0, κ > 0 and x ∈ R, then

[aλp+1(x)]2 � aλp(x) · aλp+2(x), [aλp(x)]κ � [aλp+1(x)]κ+1.

In both inequalities equality holds if a = 0 or c = 0 or x = 0. Here the exponent
κ is the best possible in the sense that α = (κ + 1)/κ is the smallest value of α
for which aλp(x) � [aλp+1(x)]α holds. Moreover, the functions p �→ aλp+1(x)/aλp(x),
p �→ [aλp(x)]κ are increasing.

Proof. Taking into account the relation aλp(x) = aI κ−1(
√−cx) the results fol-

lows from Theorem 1 and 2 just changing in every inequality of the mentioned theorems
x with

√−cx, and p with κ − 1. �
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3. Properties of the functions aγp and aI p

Before we state and prove the main results of this section, let us recall a lemma due
to Biernacki and Krzy.z [12] which is one of the crucial facts in the proof of our results.
Note that this lemma is a special case of a more general lemma in [18].

LEMMA 1. [12, 18] Suppose that the power series f (x) =
∑

n�0 αnxn and g(x) =∑
n�0 βnxn (βn > 0 for all n � 0 ) both converge for |x| < ∞ . Then the function x �→

f (x)/g(x) is (strictly) increasing (decreasing) for x > 0 if the sequence {αn/βn}n�0

is (strictly) increasing (decreasing).

It is worth mentioning that this lemma for x ∈ (0, 1) was used, among other things,
to prove many interesting inequalities for the zero-balanced Gaussian hypergeometric
functions (see [3] and [18]) and also for the generalized Bessel functions (see [4], [5],
[6] for more details).

We note that we can see easily that this lemma remains true if we get even and odd
functions, i.e.

(1) f (x) =
∑

n�0 αnx2n and g(x) =
∑

n�0 βnx2n for x ∈ R,

(2) f (x) =
∑

n�0 αnx2n+1 and g(x) =
∑

n�0 βnx2n+1 for x > 0.
For the reader’s convenience we give a different proof of Lemma 1 to see that why we
can change the condition x ∈ (0, 1) with x > 0, moreover the functions f and g to
an even or odd function.

Proof of Lemma 1. We consider only the case when {αn/βn}n�0 is strictly in-
creasing and we prove that this implies that x �→ f (x)/g(x) is strictly increasing too.
The other cases are similar, so we omit the details. If x > y > 0, then inequality
f (x)/g(x) > f (y)/g(y) is equivalent to∑

n�0

αnx
n ·

∑
n�0

βny
n >

∑
n�0

αny
n ·

∑
n�0

βnx
n,

and this is true if
αiβjx

iyj + αjβix
jyi > αjβix

iyj + αiβjx
jyi (1)

holds for all i, j ∈ N. This can be verified by adding up the corresponding parts of these
inequalities for i and then summing for j. But (1) can be transformed to the inequality
(αiβj − αjβi)(xiyj − xjyi) > 0, which clearly holds because by assumptions we have
that if i > j ( i < j respectively) then αi/βi > αj/βj (αi/βi < αj/βj respectively) and
xiyj − xjyi = (xy)j(xi−j − yi−j) > 0 ( xiyj − xjyi = (xy)j(xi−j − yi−j) < 0 respectively).

THEOREM 4. Suppose that a = 0, 1, 2, . . . and p > −1. Then the following
assertions are true:

(1) the function x �→ aγp(x) is log-concave on (0,∞);
(2) the function x �→ aγp(e−x) is log-convex on (0,∞);
(3) the function x �→ [aγp(1 − e−x)]−1 is log-convex on (0,∞);
(4) the function x �→ aγp(e−x)/aγp(1 − e−x) is log-convex on (0,∞);
(5) the function x �→ aI p(x) is log-convex on R provided p � −1/2;
(6) the function x �→ aI p(x)/aI q(x) is increasing (decreasing) on R for p � q

( p � q ).
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Proof. First let us focus on parts (1)–(5). Observe that in particular 0γp(x) = ex/2

and 0I p(x) = ex2/2, thus parts (1)–(5) clearly holds for a = 0. When a = 1 then
1γp = γp and 1I p = I p. For the function γp parts (1)–(4) among other things were
established more generally in [5] and [6]. For the function I p part (5) was established
by Neuman in [17]. Suppose that for a = k parts (1)–(5) hold. Now changing p with
p + k, where k is a natural number, it is clear that parts (1)–(5) remain true. Let us
record the formula

(p + 1)a · a+1γp(x) = aγp+a(x), (2)

where p > −1, a = 0, 1, 2, . . . and x ∈ R. Using (2) it follows that (1)–(5) hold for
a = k + 1, hence by mathematical induction the asserted results follow.

Now let us prove part (6). In view of (12) let us consider the sequence

rn =
(1/4)nΓ(p + 1)
Γ(p + an + 1)n!

/
(1/4)nΓ(q + 1)
Γ(q + an + 1)n!

,

then it is clear that (p + an + 1)arn+1 = (q + an + 1)arn for all n � 0 and p, q > −1.
So we get that rn+1 � rn if and only if q � p > −1 and rn � rn+1 if and only if
p � q > −1. These facts together with Lemma 1 in turn imply (6). Thus the proof is
complete. �

REMARK 1.
1. First note that proceeding exactly as in the proof of Theorem 3, the results of

Theorem 4 hold for the functions aup and aλp under corresponding conditions. Parts
(1)–(4) improve the results obtained in [5] for the function 1up = up. In fact, there is
another argument to prove (1)–(4). Namely from [5]weknow that part (2) actually holds
for every power series with positive coefficients, part (3) is a consequence of part (1),
and finally (4) follows from (2) and (3). Thus it remains to prove (1). In view of Lemma
1 it is enough to prove that the sequence sn = (n + 1)an+1(p)/an(p) is decreasing.
Observe that the inequality sn � sn+1, n � 0 is equivalent to (p + an + a + 1)a �
(p + an + 1)a, which by the ascending factorial notation clearly holds. Or rewriting
the last inequality in terms of Euler’s Γ− function, i.e.

Γ(p + an + 1)Γ(p + an + 2a + 1) � [Γ(p + an + a + 1)]2, (3)

because

Γ(x) =
∫ ∞

0
tx−1e−tdt,

(3) is a simple consequence of the following generalizationof Schwarz inequality

∫ b

a
f (t)[g(t)]idt ·

∫ b

a
f (t)[g(t)]jdt �

[∫ b

a
f (t)[g(t)]

i+j
2 dt

]2

,

where f and g are two nonnegative functions of a real variable, i and j are real
numbers such that the integrals exist.

2. Many other functional inequalities can be deduced from parts (1)–(5) of
Theorem 4 using the definition of log-concavity, log-convexity respectively (please see
[5], [6], [11] and [17] for further results).
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3. Finally, we note that from part (6) of Theorem 4 can be deduced an extension of
the asymptotic formula [8, Theorem 1.8] [Ip(x)]2 ∼ Ip−1(x)Ip+1(x). Namely if x > 0
and a = 0, 1, 2, . . . are fixed and p → ∞, then

aIp(x)aIp+a−1(x) ∼ aIp−1(x)aIp+a(x).

In order to prove the asserted result, we show that for p > 0 and x > 0 we have

1 � aIp(x)aIp+a−1(x)
aIp−1(x)aIp+a(x)

� 1 +
a
p
. (4)

From part (6) of Theorem 4 it is clear that if p � q > −1, then
(aI p(x)/aI q(x))′ � 0, i.e. we have for x > 0

aIp+a(x)aIq(x) − aIp(x)aIq+a(x) � 0. (5)

Taking in (5) q = p − 1 we get the left hand side of (4), which is in fact the extension
of the well-known Amos inequality [2, p. 243] for the function 1Ip = Ip. The right hand
side of (4) can be deduced easily from the proof of Theorem 2 using the inequality (24)
for q = p − 1.
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