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ON MERIT FUNCTIONS FOR QUASIVARIATIONAL INEQUALITIES
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(communicated by A. Čižmešija)

Abstract. It is well known that the quasivariational inequalities are equivalent to the fixed point
problems. We use this equivalent alternative formulation to construct some merit functions for
quasivariational inequalities and obtain error bounds under some conditions. Since quasivaria-
tional inequalities include the classical variational inequalities and the complementarity problems
as special cases, our results continue to hold for these problems.

1. Introduction

Variational inequality theory, introduced by Stampacchia [23] in the early 1960’s,
has witnessed an explosive growth in theoretical advances, algorithmic developments
and applications across all disciplines of pure and applied sciences. Variational in-
equalities have been generalized and extended in various directions using innovative
techniques. A useful and significant generalization of variational inequalities is called
the quasivariational inequality, which enables us to study the free-moving, unilateral
and equilibriumproblems arising in elasticity, fluid flow through porous media, finance,
economics, transportation, circuit and structural analysis in a unified framework, see
[1–24]. As a result of interaction among different branches of mathematical and engi-
neering sciences, there exist now a variety of techniques including the projectionmethod
and its variant forms, auxiliary principle, Wiener-Hopf equations, to suggest and analyze
various iterative algorithms for solving variational inequalities and related optimization
problems. It has been shown that the quasivariational inequalities are equivalent to the
fixed points essentially using the projection lemma. This equivalence has been used to
develop several iterative methods for solving quasivariational inequalities and to study
the sensitivity analysis, see [1–23] and the references therein.

In recent years, much attention has been given to reformulate the variational in-
equality as an optimization problem. A function which can constitute an equivalent
optimization problem is called a merit (gap) function. Merit functions turn out to be
very useful in designing new globally convergent algorithms and in analyzing the rate
of convergence of some iterative methods. Various merit (gap) functions for variational
inequalities and complementarity problems have been suggested and proposed by many
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authors, see [4,5,16–22] and the references therein. Error bounds are functions which
provide a measure of the distance between a solution set and an arbitrary point. There-
fore, error bounds play an important role in the analysis of global or local convergence
analysis of algorithms for solving variational inequalities. To the best of our knowledge,
very few merit functions have been considered for quasivariational inequalities.

In this paper, we construct some merit functions for the quasivariational inequali-
ties using the equivalence between the fixed-point and the quasivariational inequalities
coupled with the auxiliary principle technique. We also obtain error bounds for the
solutions of the quasi variational inequalities under some weaker conditions. Proofs of
our results are simple and straightforward as compared with other methods. Since the
quasi variational inequalities include variational inequalities and the implicit (quasi)
complementarity problems as special cases, our results continue to hold for these prob-
lems. In this respect, our results can be considered as refinement of the previously
known results for variational inequalities and related optimization problems.

2. Formulations and Basic Facts

Let H be a real Hilbert space, whose inner product and norm are denoted by
〈 ·, ·〉 and ‖ · ‖, respectively. Let K(u) be a closed and convex-valued set in H and
T : H −→ H be a nonlinear operator.

A quasivariational inequality consists in finding u ∈ K(u), such that

〈Tu, v − u〉 � 0, ∀v ∈ K(u). (1)

It is well known [2, 10–18] that a large class of obstacle, unilateral, contact, free, mov-
ing, and equilibrium problems arising in economics, finance, physical, mathematical,
engineering and applied sciences can be studied in the unifying and general framework
of (1).

To convey an idea of the applications of the quasi variational inequalities, we
consider the second-order implicit obstacle boundary value problem of finding u such
that

−u′′ � f (x) on Ω = [a, b]
u � M(u) on Ω = [a, b]
[−u′′ − f (x)][u − M(u)] = 0 on Ω = [a, b]
u(a) = 0, u(b) = 0

⎫⎪⎪⎬
⎪⎪⎭

(2)

where f (x) is a continuous function and M(u) is the cost (obstacle) function. For
the prototype encountered in applications, see [24]. We study the problem (2) in the
framework of variational inequality approach. To do so, we first define the set K as

K(u) = {v : v ∈ H1
0(Ω) : v � M(u), on Ω}, (3)

which is a closed convex-valued set in H1
0(Ω) , where H1

0(Ω) is a Sobolev (Hilbert)
space. One can easily show that the energy functional associated with the problem (2)
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is

I[v] = −
∫ b

a

(
d2v
dx2

)
vdx − 2

∫ b

a
f (x) (v) dx, ∀v ∈ K(u)

=
∫ b

a

(
dv
dx

)2

dx − 2
∫ b

a
f (x) (v) dx

= 〈Tv, v〉 − 2〈 f , v〉 (4)

where

〈Tu, v〉 =
∫ b

a

(
d2u
dx2

)
(v) dx =

∫ b

a

du
dx

dv
dx

dx (5)

〈 f , v〉 =
∫ b

a
f (x)(v)dx.

It is clear that the operator T defined by (5) is linear, symmetric and positive. Using the
technique of Noor [15], one can show that the minimumof the functional I[v] defined by
(4) associated with the problem (2) on the closed convex-valued set K(u) can be char-
acterized by the inequality of type (1). See also [1–18] for the formulation, applications,
numerical methods and sensitivity analysis of the quasi variational inequalities.

If the convex-valued set K(u) is independent of the solution u, that is, K(u) = K,
a closed convex set, then problem (1) is equivalent to finding u ∈ K, such that

〈Tu, v − u〉 � 0, ∀v ∈ K, (6)

which is known as the classic variational inequality introduced and studied by Stam-
pacchia [23] in 1964. For the state of the art in this theory; see [1–24].

We also need the following well-known concepts and results.

DEFINITION 2.1. The operator T : H −→ H is said to be
(a) strongly monotone, iff, there exists a constant α > 0, such that

〈Tu − Tv, u − v〉 � α‖u − v‖2. ∀u, v ∈ H.

(b) Lipschitz continuous, iff, there exists a constant β > 0 such that

‖Tu − Tv‖ � β‖u − v‖, ∀ u, v ∈ H.

In particular, from (a) and (b) , it follows that α � β .

DEFINITION 2.2. A function M : H −→ R∪{+∞} is called a merit (gap) function
for the quasivariational inequalities (1), if and only if,
(i) M(u) � 0, ∀u ∈ K(u).
(ii) M(ū) = 0, iff, ū ∈ K(u) solves (1).
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LEMMA 2.1. Let K be a nonempty closed convex set in a real Hilbert space. For
a given z ∈ H, u ∈ K satisfies the inequality

〈 u − z, v − u〉 � 0, ∀v ∈ K, (7)

if and only if

u = PKz,

where PK is the projection of H onto the closed convex set K.

It is well known that the projection operator PK is a nonexpansive operator, that
is,

‖PKu − PKv|| � ‖u − v‖, ∀u, v ∈ H.

We also need the following condition .

ASSUMPTION 2.1. ∀u, v, w ∈ H , the operator PK(u) satisfies the condition

‖PK(u)w − PK(v)w‖ � ν‖u − v‖, (8)

where ν > 0 is a constant. For the applications and the examples of Assumption 2.1,
see [11–13, 15].

3. Main Results

In this section, we consider three merit functions for the quasivariational inequal-
ities (1) and obtain error bounds for the solution of the quasivariational inequalities
(1).

We need the following result, which can be proved by using Lemma 2.1.

LEMMA 3.1. The quasivariational inequality (1) has a solution u ∈ K(u) if and
only if u ∈ K(u) satisfies the relation

u = PK(u)[u − ρTu], (9)

where ρ > 0 is a constant.

From Lemma 3.1, we conclude that the quasivariational inequalities are equivalent
to the fixed point problem. This alternative equivalent formulation plays an important
part in suggesting and analyzing several iterative methods for solving variational in-
equalities. This fixed-point formulation has been used to suggest and analyze several
iterative methods for solving the quasivariational inequalities (1).

We now consider the residue vector

Rρ(u) ≡ R(u) := u − PK(u)[u − ρTu]. (10)

It is clear from Lemma 3.1 that (1) has a solution u ∈ K(u), iff, u ∈ K(u) is a root of
the equation

R(u) = 0. (11)

It is known that the normal residue vector ‖R(u)‖ is a merit function for the quasi-
variational inequalities (1). We use the relation (11) to derive the error bound for the
solution of (1).
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THEOREM 3.1. Let u ∈ K(u) be a solution of (1) and let Assumption 2.1 hold.
Let the operator T be both strongly monotone and Lipschitz continuous with constants
α > 0 and and β > 0 respectively. If u ∈ K(u) satisfies

〈Tu, v − ū〉 � 0, ∀v ∈ K(ū), (12)

then

k1‖R(u)‖ � ‖u − ū‖ � k2‖R(u)‖, ∀u ∈ K(u), (13)

where k1, k2 are generic constants.

Proof. Let u ∈ K(u) be solution of (1). Then, taking v = PK(u)[u−ρTu] in (12),
we have

〈Tu, PK(u)[u − ρTu] − u〉 � 0. (14)

Letting u = PK(u)[u − ρTu], z = u − ρTu and v = u in (7), we have

〈 ρTu + PK(u)[u − ρTu] − u, u − PK(u)[u − ρTu]〉 � 0. (15)

Adding (14) and (15), we obtain

〈Tu − Tu + (1/ρ)(u − PK(u)[u − ρTu]), PK(u)[u − ρTu] − u〉 � 0. (16)

Since T is a strongly monotone, there exists a constant α > 0, such that

α‖u − u‖2 � 〈Tu − Tu, u − u〉
= 〈Tu − Tu, u − PK(u)[u − ρTu]〉 + 〈Tu − Tu, PK(u)[u − ρTu] − u〉
� (1/ρ)〈 u− PK(u)[u − ρTu], PK(u)[u − ρTu] − u + u − u〉

+〈Tu − Tu, PK(u)[u − ρTu] − u〉
� −(1/ρ)‖R(u)‖2 + (1/ρ)‖R(u)‖‖u− u‖ + ‖Tu − Tu‖‖R(u)‖
� (1/ρ)(1 + βρ)‖R(u)‖‖u− u‖,

which implies that

‖u − u‖ � k2‖R(u)‖, (17)

the right-hand inequality in (13) with k2 = (1/αρ)(1 + ρβ).
Now from Assumption 2.1 and Lipschitz continuity of T, we have

‖R(u)‖ = ‖u − PK(u)[u − ρTu]‖
= ‖u − ū + PK(ū)[ū − ρTū] − PK(u)[u − ρTu]‖
� ‖u − ū‖ + ‖PK(ū)[ū − ρTū] − PK(ū)[u − ρTu]‖

+‖PK(ū)[u − ρTu] − PK(u)[u − ρTu]‖
� ‖u − ū‖ + ν‖u − ū‖ + ‖u − ū + ρ(Tu − Tū)‖
� {2 + ν + ρβ}‖u − ū‖ = k1‖u − ū‖,



264 MUHAMMAD ASLAM NOOR

from which we have

(1/k1)‖R(u)‖ � ‖u − ū‖, (18)

the left-most inequality in (13) with k1 = (2 + ν + ρβ).
Combining (17) and (18), we obtain the required (13). �
Letting u = 0 in (13), we have

(1/k1)‖R(0)‖ � ‖ū‖ � k2‖R(0)‖. (19)

Combining (13) and (19), we obtain a relative error bound for any point u ∈ K(u).

THEOREM 3.2. Assume that all the assumptions of Theorem 3.1 hold. If 0 �= ū ∈
K(u) is a solution of (1), then

c1‖R(u)‖/‖R(0)‖ � ‖u − ū‖/‖ū‖ � c2‖R(u)‖/‖R(0)‖.
Note that the normal residue vector (merit function ) R(u) defined by (10) is

nondifferentiable. To overcome the nondifferentiability, which is a serious drawback of
the residue merit function, we consider another merit function associated with problem
(1). This merit function can be viewed as a regularized merit function, see [18–21]. We
consider the function

Mρ(u) = 〈Tu, u − PK(u)[u − ρTu]〉
−(1/2ρ)‖u− PK(u)[u − ρTu]‖2, ∀u ∈ K(u). (20)

from which it follows that Mρ(u) � 0, ∀u ∈ K(u).
We now show that the function Mρ(u) defined by (20) is a merit function and this

is the main motivation of our next result.

THEOREM 3.3. ∀u ∈ K(u), we have

Mρ(u) � (1/2ρ)‖R(u)‖2. (21)

In particular, we have Mρ(u) = 0, iff, u ∈ K(u) is a solution of (1).

Proof. Setting v = u, u = PK(u)[u − ρTu] and z = u − ρTu in (7), we have

〈Tu − (1/ρ)(u − PK(u)[u − ρTu]), u − PK(u)[u − ρTu]〉 � 0.

which implies that

〈Tu, R(u)〉 � (1/ρ)‖R(u)‖2. (22)

Combining (20) and (22), we have

Mρ(u) = 〈Tu, R(u)〉 − (1/2ρ)‖R(u)‖2

� (1/ρ)‖R(u)‖2 − (1/2ρ)‖R(u)‖2

= (1/2ρ)‖R(u)‖2,

the required result (21). Clearly we have Mρ(u) � 0, ∀u ∈ K(u).
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Now if Mρ(u) = 0, then clearly R(u) = 0. Hence by Lemma 3.1, we see that
u ∈ K(u) is a solution of (1). Conversely, if u ∈ K(u) is a solution of (1), then
u = PK(u)[u − ρTu] by Lemma 3.1. Consequently, from (20), we see that Mρ(u) = 0,
the required result. �

From Theorem 3.3, we see that the function Mρ(u) defined by (20) is a merit
function for the quasivariational inequalities (1). We now derive the error bounds
without using the Lipschitz continuity of the operator T.

THEOREM 3.4. Let T be a strongly monotone with a constant α > 0. If u ∈ K(u)
is a solution of (1), then

‖u − ū‖2 � (2ρ)/(2αρ − 1)Mρ(u), ∀u ∈ H. (23)

Proof. From (20), we have

Mρ(u) � 〈Tu, u − ū〉 − (1/2ρ)‖u− ū‖2

= 〈Tu − Tū + ū, u − ū〉 − (1/2ρ)‖u− ū‖2

� 〈Tū, u − ū〉 + α‖u − ū‖2 − (1/2ρ)‖u− ū‖2, (24)

where we have used the fact that the operator T is strongly monotone with a constant
α > 0. Taking v = u in (13), we have

〈Tū, u − ū〉 � 0. (25)

From (20) and (24), we have

Mρ(u) � α‖u − ū‖2 − (1/2ρ)‖u− ū‖2

= (α − 1/2ρ)‖u− ū‖2,

from which the result (19) follows. �
We consider another merit function associated with quasivariational inequalities

(1), which can be viewed as a difference of two regularized merit functions. Such
type of the merit functions functions were introduced and studied by many authors for
solving variational inequalities and complementarity problems; see [18–21]. Here we
define the D-merit function by a formal difference of the regularized merit function
defined by (20). To this end, we consider the following function

Dρ,μ(u) = 〈Tu, PK(u)[u − μTu] − PK(u)[u − ρTu]〉
+(1/2μ)‖u− PK(u)[u − μTu]‖2 − (1/2ρ)‖u − PK(u)[u − ρTu]‖2

= 〈Tu, Rρ(u) − Rμ(u)〉 + (1/2μ)‖Rμ(u)‖2

−(1/2ρ)‖Rρ(u)‖2, u ∈ K(u), ρ > μ > 0. (26)

It is clear that the Dρ,μ(u) is everywhere finite. We now show that the function Dρ,μ(u)
defined by (26) is indeed a merit function for the mixed quasivariational inequalities
(1) and this is the motivation of our next result.
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THEOREM 3.5. ∀u ∈ K(u), ρ > μ > 0, we have

(ρ − μ)‖Rρ(u)‖2 � 2ρμDρ,μ(u) � (ρ − μ)‖Rμ(u)‖2. (27)

In particular, Dρ,μ(u) = 0, iff u ∈ K(u) solves problem (1).

Proof. Taking v = PK(u)[u − μTu], u = PK(u)[u − ρTu] and z = u − ρTu in (7),
we have

〈PK(u)[u − ρTu] − u + ρTu, PK(u)[u − μTu] − PK(u)[u − ρTu]〉 � 0.

which implies that

〈Tu, Rρ(u) − Rμ(u)〉 � (1/ρ)〈Rρ(u), Rρ(u) − Rμ(u)〉 . (28)

From (26) and (28), we have

Dρ,μ(u) � (1/ρ)〈Rρ(u), Rρ(u) − Rμ(u)〉 + (1/2μ)‖Rμ(u)‖2 − (1/2ρ)‖Rρ(u)‖2

= 1/2(1/μ − 1/ρ)‖Rμ(u)‖2 + (1/ρ)〈Rρ(u), Rρ(u) − Rμ(u)〉
−(1/2ρ)‖Rρ(u) − Rμ(u)‖2 − (1/ρ)〈Rμ(u), Rρ(u) − Rμ(u)〉

= 1/2(1/μ − 1/ρ)‖Rμ(u)‖2 + (1/2ρ)‖Rρ(u) − Rμ(u)‖2

� 1/2(1/μ − 1/ρ)‖Rμ(u)‖2, (29)

which implies the right-most inequality in (27).
In a similar way, by taking u = PK(u)[u − μTu], z = u − μTu and v = PK(u)[u −

μTu] in (7), we have

〈PK(u)[u − μTu] − u + μTu, PK(u)[u − μTu] − PK(u)[u − μTu]〉 � 0,

which implies that

〈Tu, Rρ(u) − Rμ(u)〉 � (1/μ)〈Rμ(u), Rρ(u) − Rμ(u)〉 . (30)

Consequently, from (26) and (30), we obtain

Dρ,μ(u) � (1/μ)〈Rμ(u), Rρ(u) − Rμ(u)〉 + (1/2μ)‖Rμ(u)‖2 − (1/2ρ)‖Rρ(u)‖2

= 1/2(1/μ − 1/ρ)‖Rμ(u)‖2 + (1/ρ)〈Rρ(u), Rρ(u) − Rμ(u)〉
−(1/2ρ)‖Rρ(u) − Rμ(u)‖2 − (1/ρ)〈Rμ(u), Rρ(u) − Rμ(u)〉

= 1/2(1/μ − 1/ρ)‖Rρ(u)‖2 − (1/2μ)‖Rρ(u) − Rμ(u)‖2

� 1/2(1/μ − 1/ρ)‖Rρ(u)‖2, (31)

which implies the left-most inequality in (27).
Combining (29) and (31), we obtain (27), the required result. �

Using essentially the technique of Theorem 3.4, we can obtain the following result.
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THEOREM 3.6. Let ū ∈ K(u) be a solution of (1). If the operator T is strongly
monotone with constant α > 0, then

‖u − ū‖2 � (2ρμ)/(ρ(2μα + 1) − μ)Dρ,μ , ∀u ∈ K(u). (32)

Proof. Let ū ∈ K(u) be a solution of (1). Then, taking v = u in (12), we have

〈Tū, u − ū〉 � 0. (33)

Also from (26), (33) and strongly monotonicity of T, we have

Dρ,μ(u) � 〈Tu, u − ū〉 + (1/2μ)‖u − ū‖2 − (1/2ρ)‖u− ū‖2

� 〈Tū, u − ū〉 + α‖u − ū‖2 + (1/2μ)‖u − ū‖2 − (1/2ρ)‖u − ū‖2

� (α + (1/2μ) − (1/2ρ))‖u− ū‖2,

from which the required result (32) follows. �
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